用户名: 密码: 验证码:
引种棕榈植物的耐寒适应性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棕榈科(Palmae)植物是热带地带性植物,多分布在热带与亚热带地区,其种类繁多,近年来已成为我国南方城市绿化的主要树种之一。寒害是棕榈科植物最重要的自然灾害,为了更好对棕榈植物引种与管理提供科学依据,避免因盲目引种而造成的经济损失,本文选择厦门植物园种植的布迪椰子(Butia capitata Becc.)、沼地棕[Acoelorraphe wrightii(Griseb.& H.Wendl.)H.Wendl.ex Becc.]和油棕(Elaeis guineensis Jacq.)3种棕榈科植物进行了耐寒适应性评价与耐寒机理研究。研究结果如下:
     1.首次提出棕榈科植物的寒害指数,通过调查露地剧烈降温后越冬期间叶片的寒害等级,计算寒害指数。同时通过测定棕榈科植物电解质渗透率,并通过拟合的Logistic方程求其拐点值来确定半致死温度。利用寒害指数、电解质渗透率与半致死温度研究了布迪椰子、沼地棕和油棕3种棕榈科植物在厦门露天栽种的耐寒性,结果表明,它们的寒害指数差异明显,布迪椰子的寒害指数为7.29,在露地能顺利越冬:沼地棕的为20.24,适当保护才能越冬,油棕为75.00,不能在露地越冬。应用Logistic方程分别求出各自的半致死温度(LT_(50)),布迪椰子、沼地棕和油棕在低温锻炼前(10月份)的半致死温度分别为-7.93℃、-5.03℃和-2.19℃,在低温锻炼后(次年1月份)的半致死温度分别为-19.10℃、-6.60℃和-2.94℃。发现布迪椰子的耐寒力最强而且对降温反应速度最快、油棕最弱耐寒力,对温度反应最慢,沼地棕的居中。综合上述的研究结果可作为棕榈科植物北移推广应用的参考模式。
     2.测定了3种棕榈科植物叶片的角质层、表皮、栅栏组织和海绵组织等厚度,比较了不同耐寒性棕榈植物叶的解剖结构特征,细胞结构紧密度(CTR)、细胞结构疏松度(SR),结果表明:细胞结构紧密度大小顺序为沼地棕>布迪椰子>油棕,耐寒性最强的布迪椰子细胞紧密度小于沼地棕;细胞结构疏松度大小顺序为布迪椰子=油棕>沼地棕,耐寒性最强的布迪椰子细胞疏松度大于沼地棕,而最耐寒的布迪椰子和最不耐寒的油棕的疏松度相近;3种不同棕榈科植物之间的耐寒性与细胞组织的紧密度和细胞组织的疏松度不具有相关性,所以,对于不同棕榈科植物种之间的耐寒性比较,首先要考虑叶片的结构不同,如布迪椰子有明显的上、下栅栏组织分化,虽然沼地棕也有上、下栅栏组织分化,但是不明显,而油棕却只有上栅栏组织,并没有下栅栏组织产生,而且栅栏组织的细胞较长,所以,要首先应该考虑叶片本身的结构特征与植物的耐寒性的关系,然后再综合考虑叶片厚度、叶面具有角质层厚度、叶肉栅栏组织厚并且排列紧密以及栅栏组织与海绵组织比值等特点,是耐寒性植物叶片的结构特征。
     3.测定棕榈植物在4个季节自然条件下的总酚、可溶性单宁和缩合单宁等酚类物质含量的变化。比较耐寒性不同的3种棕榈植物叶片总酚含量的季节变化规律,油棕的总酚含量4个季节中都处于最低水平(介于16.2-26.5mg/g),4个季节的平均含量为21.80mg/g,远远低于其它两种的4个季节总酚含量的平均值;秋季-冬季的变化幅度大小顺序为:油棕(1.76mg/g)>沼地棕(1.24mg/g)>布迪椰子(1.06mg/g)。布迪椰子在春季、夏季和秋季的结合态缩合单宁的含量都保持在较高水平,沼地棕和油棕在秋季和冬季明显下降。
     布迪椰子的总酚、总缩合单宁和可溶性缩合单宁含量在夏、秋季节最低,生长投入多而减少合成次生代谢物,使其可以在良好自然条件下保持生长速度快,使得在冬季抗寒的过程中更具竞争能力。而油棕的总缩合单宁和可溶性缩合单宁在夏、秋季节最高,既浪费能量又无法在冬季起抗寒作用。所以,耐寒强的棕榈植物体内具有最佳的防寒系统。
     4.首次利用质谱法MALDI-TOF-MS对耐寒性不同的棕榈植物的单宁结构进行测定和分析比较。结果发现,布迪椰子和油棕两种植物的质谱图中存在两组离子峰系列,主要的离子峰系列(A)m/z为:711-999-1287-1575-1863…,其单宁的结构单元主要为儿茶酚,系列(B)离子峰m/z为:727-1015-1303-1591-1879-2167-2455…,离子峰之间的峰值多m/z 16,其单宁的结构单元主要为棓儿茶酚,该系列的离子峰很可能是由那些在羟基数量上比由U272构成的黄烷三醇聚合物在B环上多一个-OH;它们具有相同的单宁结构,具有相同的R_1和R_2结构,从而可以推测其耐寒性的差异与单宁的结构没有关系。
     5.首次比较布迪椰子、沼地棕和油棕的幼叶、成熟叶、叶柄和根不同器官在4个季节中的灰分含量、干重热值和去灰分热值,从能量角度揭示其耐寒适应性强弱的能量生态学策略和原理。
     布迪椰子4个季节干重热值的平均值为成熟叶(20.65kJ/g)>幼叶(19.84kJ/g>根(19.55kJ/g)>叶柄(18.77kJ/g),秋季的干重热值明显高于其它3个季节的干重热值,冬季的干重热值最低,去灰分热值与干重热值的变化趋势基本相同。灰分含量4个季节的平均值为根(5.14%)>叶柄(4.33%)>幼叶(4.21%)>成熟叶(3.97%)。成熟叶的灰分含量一直维持在比较低的水平,而幼叶在秋季的灰分含量明显下降,在冬季明显上升,幼叶灰分含量的季节变化趋势与成熟叶的相同,叶柄的灰分含量在冬季明显低于根部。布迪椰子不同器官在不同季节的热值和灰分的变化规律显示其具有较强的耐寒适应性
     沼地棕不同器官在4个季节中的平均干重热值大小顺序为成熟叶(20.46kJ/g)>幼叶(19.50kJ/g)>根(19.34kJ/g)>叶柄(18.48kJ/g),并且经t检验,根与成熟叶之间无显著差异(p>0.05),沼地棕不同器官的变化趋势与布迪椰子类似。沼地棕的不同器官在4个季节中的平均灰分含量高低顺序为成熟叶(6.18%)>幼叶(5.19%)>根(4.87%)>叶柄(4.56%),成熟叶的平均灰分含量显著高于其它器官。
     油棕不同器官在4个季节中的平均干重热值高低顺序为成熟叶(19.73kJ/g)>根(19.33kJ/g)>幼叶(19.06kJ/g)>叶柄(18.17kJ/g),并且经t检验,根与成熟叶的干重热值无显著差异(p>0.05),成熟叶从夏季到秋季期间几乎不变,冬季下降。油棕的不同器官在4个季节中的平均灰分含量的高低顺序为根(7.01%)>成熟叶(6.78%)>叶柄(5.31%)>幼叶(5.28%),根和成熟叶的平均灰分含量显著高于幼叶和叶柄。
     布迪椰子和沼地棕的幼叶和成熟叶的干重热值均与灰分含量具有极显著线性负相关,而油棕只有成熟叶的干重热值均与灰分含量具有显著线性负相关,本研究中3种棕榈植物的叶柄和根均与灰分含量没有有显著线性负相关,说明灰分的含量对干重热值没有造成影响。
Palms are widely distributed in tropical and subtropical area, which have been widely introduced into many cities of Southern China for landscape. Cold injury is the most serious factor that limits them to grow in the introduced area.
     Experiments were conducted to evaluate the adaptation and mechanism to endure cold of Butia capitata Becc, Elaeis guineensis Jacq. and Acoelorraphe wrightii (Griseb.& H. Wendl.) H. Wendl. ex Becc. cultivated in Xiamen Botanical Garden. The results the research were summarized as follows:
     1.The cold injury index (CI) of palms was proposed to weigh the cold endurance. The results showed that the CI of Butia capitata, Elaeis guineensis and Acoelorraphe wrightii was 7.29, 75.00 and 20.24 respectively. The electrolyte leakage of leaves was measured in October and January under different temperature, and the semi-lethal low temperature (LT_(50)) of leaves was assayed in different sampling period by Logistic equation. The LT_(50) of Butia capitata., Acoelorraphe wrightii and Elaeis guineensis was -7.93℃,-5.03℃and -2.19℃respectively in October, -19.10℃,-6.60℃and -2.94℃respectively in January. The results showed that the sequence of the cold tolerance was: Butia capitata>Acoelorraphe wrightii >Elaeis guineensis. We can also apply the model of the three palm species in different cities, and can also predict the cold resistance of other palm species.
     2. The anatomical features of leaves of 3 palm species were surveyed and analyzed firstly. The morphological features of structure were described and stated thoroughly by means of optical microscopy. Calculating the ratio of spongy/palisade tissues, The results of CTR and SR followed the order: Acoelorraphe wrightii>Butia capitata>Elaeis guineensis. and Butia capitata-Elaeis guineensis>Acoelorraphe wrightii, respectively. The results showed the CTR and SR are not related to the cold resistance. The different cold resistance of three palms have different palisade tissues, Therefore, the features of anatomy and structure of leaves should be considered first, then structural quantity be considered secondly to explain the cold resistance.
     3. The studies on the seasonal changes of extractable total polyphenol content(ETP)、soluable condensed tannins(SCT)、BCT and total condensed tannins(TCT) content of palm leaves were conducted for the first time. The content extractable total polyphenol content(ETP) of Elaeis guineensis in the four seasons was the lowest, varying from 16.20mg/g to 26.5mg/g. The annual average content of Elaeis guineensis leaves was 21.80mg/g. It was much lower than that of Butia capitata and Acoelorraphe wrightii. From autumn to winter, the range of extractable total polyphenol content(ETP) was in the following order: Elaeis guineensis(1.76mg/g) >Acoelorraphe wrightii(1.24mg/g)>Butia capitata(1.06mg/g).
     The content of BCT was higher in the leaves of Butia capitata in the spring and summer and autumn.markedly decreased for the Acoelorraphe wrightii and Elaeis guineensis in the winter and autumn. This indicated the Butia capitata with much more efficient photosynthesis, while the decreasing content of Acoelorraphe wrightii and Elaeis guineensis may be related with the low photosynthesis.
     The high cold resistant Butia capitata had minimum content of total polyphenol content(ETP), soluable condensed tannins(SCT) and total condensed tannins (TCT) in the summer and autumn, in order to reduce the investment for the second-metabolism and to keep more investment for the cold resistance in the winter. However, The content of total condensed tannins(TCT) and soluable condensed tannins(SCT) in Elaeis guineensis leaves was in the maximum in the summer and autumn, This was not a good energy strategy for adapting to the low temperature.
     4. For the first time to characterize the authentic tannins chemical structure in the mature leaves by MALDI-TOF in palms, The spectra obtained through MALDI-TOF-MS analysis revealed the presence of two series of tannin oligomers. The first series consists of m/z 711-999-1287-1575-1863..., and the second series consists of m/z 727-1015-1303-1591-1879-2167-2455..., and different cold resistant species have the same structure of R_1 and R_2,From this can estimate that there is no relationship between the cold resistance and tannins chemical structure in the palms'cold resistance.
     5. The gross caloric value(GCV) and ash free caloric value(AFCV) and ash content of different components of three different cold resistant palms were studied for the first time with an oxygen bomb thermometer.
     The annual average caloric value of Butia capitata was in the following order: mature leaves(20.65kJ/g)>young leaves(19.84kJ/g)>roots(19.55kJ/g)>petioles(18.77kJ/g).The components showed maximum gross caloric value(GCV) in autumn and minimum one in winter. Ash free caloric value(AFCV) varied as same as gross caloric value(GCV). The annual average ash content followed the order: roots(5.14%)>petioles(4.33%)>young leaves(4.21%)>mature leaves(3.97%). The ash content was lower in mature leaves, markedly decreased in young leaves during autumn, and then increased during winter. Seasonal changes of ash content in mature leaves were the same as those in young leaves. Petioles had much lower ash content than roots in winter. Changes in ash content and caloric value of Butia capitata in different seasons reflected the good energy strategy for species with high cold resistance to adapt to the low temperature.
     The annual average gross caloric value of Acoelorraphe wrightii was in the following order: mature leaves(20.46kJ/g) > young leaves(19.50kJ/g) > roots(19.34kJ/g)> petioles(18.48 kJ/g), There was no significant difference between roots GCV and mature leaves GCV (p>0.05), The GCV of Acoelorraphe wrightii had the same trends of seasons' change as Butia capitata. The annual average ash content followed the order: mature leaves(6.18%)>young leaves(5.19%)>roots(4.84%)>petioles(4.56%). The mature leaves had the highest ash content value.
     The annual average gross caloric value of Elaeis guineensis was in the following order: mature leaves(19.73kJ/g)>roots(19.33kJ/g)>young leaves(19.06kJ/g)>petioles(18.17kJ/g), There was no significant difference between roots GCV and mature leaves GCV(p>0.05), The GCV of Elaeis guineensis in summer was almost the same as that of autumn. The annual average ash content followed the order: roots(7.01%) > mature leaves(6.78%)> petioles(5.31%)>young leaves(5.28%). The roots and mature leaves had the higher ash content value than those of young leaves and petioles.
     The gross caloric value was negative correlated remarkably with ash content for young leaves and mature leaves of Butia capitata and Acoelorraphe wrightii, there was only for mature leaves of Elaeis guineensis. Whereas there was no significant negative correlation between gross caloric value and ash content for petioles and roots of the three palms.
引文
1. Akiyama T, Shiyomi M, Takahashi S, et al. Ecological efficiencies of energy conversion in pasture IV. Change in calorific values of several pasture plants and energy storage in glassland[J].J. Jpn. Grassl. Sci., 1983,29: 28-37.
    
    2. Bigras F J, Calme S. Viability test for estimating root cold tolerance of black spruce seedlings[J]. Can. Jou. For. Res., 1994,24(5): 1039-1048.
    
    3. Blombery A. Palms. An Informative, Practical Guide to Palms of the World[M]. Sydney: Angus and Robertson Publishers, 1988.
    
    4. Boyer K. Palms & Cycads Beyond The Tropics[M]. Palm & Cycad Societies of Australia, 1992.
    
    5. Bravo L, Manas E, Saura-Calixto S. Dietary non-extractable condensed tammins as indigestible compounds: effects on faecal weight, and protein and fat excretion[J]. J. Sci. Food Agric, 1993,63:63-68.
    
    6. Bruyne T D, Pieters L, Deelstra H. Condensed vegetable tannins: Biodiversity in structure and biological activities[J]. Biochem. Syst. Ecol, 1999,27: 445-459.
    
    7. Budini R, Tonelli D, Girotti S. Analysis of total phenols using the Prussian blue method [J]. J. Agric. Food Chem., 1980, 28: 1236-1238.
    
    8. Dalzell S A, Kerven G L. A rapid method for the measurement of Leucaena spp. Proantho- cyanidins by the proanthocyanidin (butanol/HCL) assay [J]. J. Sci. Food Agric, 1998, 78: 405-416.
    
    9. Dexter S T, Emmert F H. Preliminary results in measuring the hardines of plants[J]. Physiol., 1930,5:215-223.
    
    10. Giannopolitis C N, Ries S K. Superoxide dismutase II: Purification and quantitative rela--tionship with water soluble protein in seedlings. Plant Physiol., 1977, 59: 315-318.
    
    11. Giner C B, Van Soest P J, Robertson J B, et al. A method for isolating condendsed tann- ins from crude plant extracts with trivalent ytterbium[J]. J. Sci. Food Agric, 1997, 74: 359-368.
    
    12. Giner C B. Condensed tannins in tropical forages[D]. PhD Thesis. Ithaca, NY, Cornell University, 1996.
    
    13. Golley F B. Caloric values of wet tropical forest vegetation[J]. Ecology, 1969,50(3): 517-519.
    
    14. Graham H D. Stabilization of the Prussian blue color in the determination of polyphenols[J]. J. Agric. Food Chem., 1992, 40: 801-805.
    
    15. Gusta L V, Fowler D B. In order to achieve the full level of cold hardiness, a period of freezing temperatures may be required[J]. Plant Sci., 1977,57: 213-219.
    
    16. Guzman-Maldonado H, Castellanos J, Gonzalez de Mejia E. Relationship between theo--retical and experimentally detected tannin content of common beans (Phaseolusvulgaris L.)[J]. FoodChem., 1996, 55: 333-335.
    
    17. Hagerman A E, Butler L G. Choosing appropriate methods and standards for assaying tannins[J].J Chem. Ecol., 1989,15: 1795-1810.
    
    18. Hagerman A E. Tannin Chemistry [EB/OL]. 2002.
    
    19. Haslam E. Vegetable tannins. In (Conn EE, ed.): The Biochemistry of Plants [M]. Vol. 7. New York: Academic Press, 1981.
    
    20. Hawkins B J, Russell J, Shorn R. Effect of population, environment and maturation on the frost har-diness of yellow-ceder[J]. Can. Jou. For. Res., 1994,24(5): 945-953.
    
    21. Hemingway R W, Karchesy J J. Chemistry and Significance of Condensed Tannins[M]. New York: Plenum, 1989.
    
    22. Hernes P J, Benner R, Cowie G L, et al. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach[J]. Geochim. Cosmochim., 2001, 65(18): 3109-3122.
    
    23. Hernes P J. Tannin geochemistry of natural systems: Method development and application[D]. Ph.D. thesis, University of Washington, Seattle, WA, 1999.
    
    24. Howes F N. Vegetable Tannins Materials[M\. London: Butterworths Scientific Publications, 1953.
    
    25. Hughe M K. Seasonal calorific values from a deciduous woodland in England[J]. Ecology, 1971,52:923-926.
    
    26. Jack K. Palms & Cycads Around the World[M]. Washington D. C: Smithsonian Insititution Press, 1990.
    27. Jame T D W, Smith D W. Seasonal changes in the caloric values of the leaves and twigs of Populus tremuloides[i]. Can. J. Bot., 1978, 56: 1804-1805.
    
    28. Jones D L. Palms Throughout the World[M]. Smithsonian Insititution Press, Washington, D. C, 1994.
    
    29. Lees G L, Hinks C F, Suttill N H. Effect of high temperature on condensed tannin accumulation in leaf tissues of Big Trefoil (Lotus uliginosus Schkuhr). J. Sci. Food Agric, 1994,65(4): 415-421.
    
    30. Leng P, Itamura H, Yamamura H. Freezing tolerance of several Diospyros species and ka- ki cultivars as related to anthocyan information[J]. J. Japan. Soc. Hort. Sci, 1993, 61(4): 795-804.
    
    31. Leng P, Itamura H, Yamamura H. Changes of phenylalanine ammonialyase(PAL)activity in twig tissues of two Diospyros species during cold acculimation[J]. Environ. Control in Biol., 1995,33(1): 43-48.
    
    32. Lyons J M. Chilling injury in plants[J]. Ann. Rev. Plant Physiol, 1973,24: 445-446.
    
    33. Makkar H, Singh B. Determination of condensed tannins in complexes with fibre and proteins[J]. J. Sci. FoodAgric, 1995,69: 129-132.
    
    34. Mueller-Harvey I. Analysis of hydrolysable tannins[J]. Anim. Feed Sci. Technol., 2001, 91: 3-20.
    
    35. Nemenyi A, Georgakopoulos J H, Kissimon J. Diurnal cycle and photoinhibition of photosynthesis in palm Trachycarpus fortunei H. Wendl. under winter and summer conditions[J]. J. Biosci.,. 1999, 54 (9-10): 658-664.
    
    36. Ohnishi K M, Yanagida A., Kanda T.,et al. Identification of Mueller-Harvey I. Analysis of hydrolysable tannins[J].Anim. Feed Sci. Technoi., 2001, 91: 3-20.
    
    37. Orville M L. The use of leaf parts to estimate the cold hardiness of southern Magnolia (Magnolia grandiflora L.)[J]. Hort. Sci., 1992,27(3): 247-249.
    
    38. Ovington J D. Some aspects of energy flow in plantations of Plnus sylveetris L. Annals of Botany, 1961, 25(27): 12-20.
    
    39. Pasch H, Pizzi A, Rode K. MALDI-TOF mass spectrometry of polyflavonoid tannins[J]. Polymer, 2001, 42: 7531-7539.
    
    40. Perret C, Pezet R, Tabacchi R. Fractionation of grape tannins and analysis by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Phytochem. Anal, 2003,14(4): 202-208.
    
    41. Peter M R, George L, G, Peter L. S. Desiccation injury and direct freezing injury to evergreen Azaleas: A comparison of cultivars[J].J. Amer. Hort.Sci., 1983,108(1): 28-31.
    
    42. Porter L J, Hrstich L N, Chan B G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin[J]. Phytochem.,1986,1: 223-230.
    
    43. Price M L, Butler L G. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain[J]. J. Agric. Food Chem., 1977, 26: 1268-1273.
    
    44. Proebsting E L. and .Mills H H A. Synoptic Analysis of Peach and Cherry Flower Bud Hardiness[J]. J. Amer. Soc. Hort. Sci., 1978,103(6): 842-845.
    
    45. Rajashekar C, Gusta L V, Burke M J. Frost damage in liardy herbaceous species. In: Lyons J M. Low Temperature Stressed in Crop Plants-the Role of Membrane[M]. New York: Academic Press, 1979.
    
    46. Reed J D, Krueger C G, Vestling M M. MALDI-TOF mass spectrometry of oligomeric food polyphenols[J]. Phytochem., 2005,66(18): 2248-2263.
    
    47. Reed J D. Nutritional toxicology of tannins and related polyphenols in forage legumes[J]. J. Anim. Sci., 1995, 73(5): 1516-1528.
    
    48. Scalbert A. Antimicrobial properties of tannins[J]. Phytochem., 1991,30(12): 3875-3883.
    
    49. Shen S R, Zhao Y F, Yang X Q. Mechanism of tea polyphenols on protective actions of biomicromolecule against free radicals[J]. J. Zhejiang Agricultural University (Agric.& Life Sci.)., 1995,21(4): 361-365.
    
    50. Singh A K, Misra K N, Ambasht R S. Energy dynamics in a savanna ecosystem in India[J]. Japan. J. Ecol., 1980,3: 295-305.
    
    51. Singleton V L, Orthofer R, Lamuela-Ravents R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent[J]. Meth. Enzymol., 1999,299:152-178.
    
    52. Stergrios B G, Howell G S[J]. Amer. Soc. Hort. Sci., 1973, 98(4): 325-330.
    
    53. Steward L. Palms & Cycads of the World[M]. Palm & Cycad Societies of Australia, 1993.
    
    54. Sukumaran N P, Weiser C J. An excised leaflet test for evaluating potato frost tolerance[J]. Hort. Sci., 1972,7:467-468.
    55. Sun B, Ricardo-da-Silva J M, Spranger.Ⅰ.Critical factors of vanillin assay for catechins and Proanthocyanidins[J].J.Agric.Food Chem.,1998,46:4267-4274.
    56. Taiz L, Zeiger E. Plant Physiology(3rd edition).Sunderland: Sinauer Associates, Inc.2002.
    57. Taylor A W, Barofsky E, Kennedy J A, et al. Hop (Humulus lupulus L.) phroanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography[J]. J. Agric. Food Chem.,2003,51(14): 4101-4110.
    58. Taylor A O,Rowley J A. Plant under climatic stress Ⅰ.Low temperature, hight light effects on photosynthesis[J]. Plant Physiol.,47(5):713-718.
    59. Terrill T H, Rowan A M, Douglas G B, et al. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains[J].J. Sci. Food Agric, 1992, 58: 321-329.
    60. Tomasz A, Orville M L. Seasonal changes in cold hardiness of Rhododendron L.;"Cataw-biense Boursault" grown under continuous and periodic water stress[J]. J. Amer. Soc.Hort. Sci,1996,121:301-306.
    61. Tomlinson P B. Anatomy of the Monocotyledons,Ⅱ.Palmae.Oxford: Clarendon Press,1961.
    62. Volker W, Owen J V, Barralho N M G. Genetic variances and corariances for frost tolerance in Eucalyptus globules and E. nitens[J]. Silvae Genetic, 1994, 43(5-6): 366-372.
    63. Wang D, Bormann F H, Lugo A E, et al. Comparison of nutrient-use efficiency and biomass production in five tropical tree taxa[J]. For. Eco. Man.,1991,46(12):1-21.
    64. Waterman P G, Mole S. Analysis of Phenolic Plant Metabolites[M].Oxford: Blackwell Scientific Publications, 1994.
    65. Wielgolaski F E, Kjevik S. Energy content and use of solar radiation of Fennoseandian Tundra plants, Fennoseandian Tundra Ecosystem, Part Ⅰ: Plant and Microorganism[M].Berlin: Springer-Verlag, 1975.
    66.蔡永立,宋永昌.浙江天章常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较[J].植物生态学报,2001,25(1):90-98.
    67.曹锡清.脂质过氧化对细胞与机体的作用[J].生物化学与生物物理学进展,1986,2:17-23
    68.陈波,杨永川,周莹.浙江天童常绿阔叶林内七种优势植物的热值研究[J].华东范大学学报(自然科学版),2006,2:105-111.
    69.陈恒彬,周新.常见棕榈科植物在园林绿化中的应用[J].亚热带植物通讯,1995,24(2):46-50.
    70.陈俊愉.植物的引种驯化与栽培繁殖[J].植物引种驯化集刊[M].,1966.
    71.陈榕生主编.厦门市园林植物园建园四十周年纪念文集[M].厦门大学出版社,2000.
    72.陈瑞锋.茶树寒害及其耐寒性[J].中国茶叶,1985,2:34-35.
    73.陈席卿.茶树叶片解剖结构与抗寒性的相关性研究[J].蚕桑茶叶通讯,1980,3:11-14.
    74.陈香波,罗玉兰,田旗.三角花品种越冬抗寒性比较研究[J].江苏林业科技,2004,31(1):15-18.
    75.陈星,冯宝华,张凌俊,等.棕榈在北方不同生态环境下越冬栽培适应性的生理研究[J].北京师范大学学报(自然科学版),2003,39(3):390-396.
    76.陈星,李俊全.低温下棕榈某些生理变化及低温锻炼对棕榈耐寒性的影响[J].北京师范大学学报(自然科学版),1999,35(2):257-260.
    77.陈璋.棕榈植物[M].福州:福建科学技术出版社,2001.
    78.陈振东,林秀香.福建省棕榈科植物冻害调查初报[J].福建热作科技,2001,26(1):33-35.
    79.程金水.园林植物遗传育种学[M].北京:中国林业出版社,2000.
    80.丁印龙,廖启炓,谢潮添,等.低温胁迫下夏威夷椰子幼苗叶肉细胞Ca~(2+)水平及细胞超微结构变化的研究[J].厦门大学学报(自然科学版),2002,41(4):679-682.
    81.董丽.北京园林中几种常绿阔叶植物越冬适应性的研究[M].北京:北京林业大学博士学位论文,1997.
    82.董丽娟,贺利雄,张曙光.抗寒优质红茶品种-湘红1号选育研究初报[J].茶叶通讯.1996.2:5-8.
    83.郭金铨.在冻害过程中咖啡离体叶细胞膜透性变化的研究[J].植物生理学报,1978,5(3):199-203.
    84.郭启荣.木麻黄遗传多样性及其物质与能量特征研究[M].厦门大学硕士学位论文,2003.
    85.J.B.Harborne.等编.黄酮类化合物[M].戴伦凯,谢玉如等译.北京:科学出版社, 1983.
    86.韩善华,李劲松.沙冬青叶片结构特征及其与抗寒性的关系[J].林业科学,1992,28(3):198-201.
    87.何洁英.华南的短期绝对低温是引种热带棕榈成败的关键[J].广东园林(棕榈专刊),1998.1:33.
    88.贺善安,孙醉君,毕绘蟾.常绿阔叶树种抗冻种质筛选[A].南京中山植物园研究论文集[C],南京江苏科学技术出版社,1985.
    89.简令成,孙德兰,施国雄,等.不同柑橘种类叶片组织的结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168.
    90.简令成.植物冻害和抗冻性的细胞生物学研究[J].植物生理生化进展,1987,5:1-16.
    91.简令成.植物抗寒机理研究的新进展[J].植物学通报,1992,9(3):17-22.
    92.简令成.植物抗寒性的细胞及分子生物学研究进展[J].细胞生物学进展,1990,2:296-320.
    93.冷平.数品种苹果枝皮层花青苷含量与抗寒性之间的关系.全国果树生理与分子生物学专题讨论会论文摘要集[S],北京:中国农业大学出版社,1998.
    94.李正理.植物组织制片学[M].北京:北京大学出版社,1996.
    95.廖启炓,丁印龙,杨盛昌,等.通过低温胁迫下加拿利海枣膜脂过氧化及保护酶活性的变化[J].厦门大学学报(自然科学版),2002,41(5):570-573.
    96.林光辉,林鹏.海莲、秋茄两种红树群落能量的研究[J].植物生态学与地植物学学报,1988,12(1):31-39.
    97.林鹏,林光辉.几种红树植物的热值和灰分含量研究[J].植物生态学与地植物学学报,1991,15(2):114-120.
    98.林鹏.红树林[M].北京:海洋出版社,1984.
    99.林秀香,陈振东,胡德友.棕榈科植物在园林绿化中的应用[J].福建热作科技,2000.1:25.
    100.林益明,郭启荣,叶功富,等.福建东山几种木麻黄的物质与能量特征[J].生态学报,2004,24(10):2217-2224.
    101.林益明,黎中宝,陈奕源,等.福建华安竹园一些竹类植物叶的热值研究[J].植物学通报,2001,18(3):356-362.
    102.林益明,林鹏,李振基,等.福建武夷山甜槠群落的能量研究[J].植物学报,1996, 38(12):989-994.
    103.林益明,林鹏,谭忠奇,等.棕榈科刺葵属5种植物热值的月变化研究[J].林业科学,2003,39(1):52-57.
    104.林益明,林鹏,王通.几种红树植物木材热值和灰分含量的研究[J].应用生态学报,2000,11(2):181-184.
    105.林益明,王湛昌,柯莉娜,等.四种灌木状与四种乔木状棕榈热值的月变化[J].生态学报,2003,23(6):1117-1124.
    106.林益明,向平,林鹏.深圳福田几种红树植物繁殖体与不同发育阶段叶片热值研究[J].海洋学报,2002,24(3):112-118.
    107.林益明.武夷山甜槠群落与黄山松群落生物量和能量的研究[M].厦门大学博士学位论文,1994.
    108.林有润,郭丽秀.浅谈棕榈科植物的形态特征、系统分类、起源及地理分布[J].广东园林,1998,76(1):1-9.
    109.林有润.观赏棕榈[M].哈尔滨:黑龙江科学技术出版社,2003.
    110.刘爱琴,尤华明.低温对不同种源杉木叶绿体超微结构的影响[J].福建林学院学报,1997,17(4):352-355.
    111.刘棣宁,莫力根.SOD与葡萄抗寒力的关系[J].内蒙古农牧学院学报,1990,11(2):13.
    112.刘海桑.观赏棕榈[M].北京:中国林业出版社,2002.
    113.刘海桑.棕榈植物的骄子-耐寒棕榈[J].云南农业科技,1998,6:36-37.
    114.刘世荣,王文章,王明启.落叶松人工林生态系统净初级生产力形成过程中的能量特征[J].植物生态学与地植物学学报,1992,16(3):209-219.
    115.刘祖祺,王洪春.植物耐寒性及防寒技术[M].北京:学术书刊出版社,1989.
    116.刘祖祺,周碧英,王元裕等.电导法鉴定柑桔耐寒性的试验[J].南京农学院学报,1981.2:32-37.
    117.罗广华.植物中的多酚物质对超氧化物自由基的清除作用[J].热带亚热带植物学报,1994,2(4):95-99.
    118.马玉.北京地区樱花抗寒情况的初探[J].中国园林,2001,2:74-76.
    119.倪穗,陈启瑺.青冈种群的热值研究[J].浙江大学学报(自然科学版),2001,27(4):390-392.
    120.欧阳光察.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯1988,3:9-16.
    121.欧永森.耐寒棕榈简介[J].广东园林,1998,1:34.
    122.彭明.多种棕榈在湛江的早期生长表现初报[J].广西林业科学,2002,31(2):90-92.
    123.秦小琼,贾士荣.植物抗氧化逆境的基因工程(综述)[J].农业生物技术学报,1997,4(3):14-24
    124.任海,彭少麟,刘鸿先,等.鼎湖山植物群落及其主要植物的热值研究[J].植物生态学报,1999,23(2):148-154.
    125.阮志平,廖启炓,丁印龙.厦门地区引种加拿利海枣的抗寒适应性研究[J].热带农业科学,2006,26(2):7-9.
    126.佘文琴,刘星辉.荔枝叶片细胞结构紧密度与耐寒性的关系[J].园艺学报,1995,13(3):185-186.
    127.沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):18-26.
    128.沈生荣,杨贤强,杨法军,等.儿茶素抗氧化作用的协同增效[J].茶叶科学,1993,13(2):141-146.
    129.沈生荣,赵保路.茶多酚复合及L-EGCG清除超氧阴离子自由基特性的研究[J].浙江农业大学学报,1992,18(4):11-16.
    130.石碧,狄莹.植物多酚[M].北京:科学出版社,2000.
    131.苏维埃,宓容钦,王文美,等.植物抗性指标的数量化研究[J].中国科学(B辑),1987.10:1058-1067.
    132.苏维埃.植物对温度逆境的适应[A].余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998..
    133.孙达旺.植物单宁化学[M].北京:中国林业出版社,1992.
    134.孙国夫,郑志明,王兆骞.水稻热值的动态变化研究[J].生态学杂志,1993.12(1):1-4.
    135.谭忠奇,林益明,丁印龙.五种丛生棕榈植物叶片热值的月变化研究[J].应用生态学报,2004,15(7):1135-1138.
    136.唐金明,林立增,刘志忠.福州园林中应用的7种棕榈科植物[J].福建林学院学报,1994,14(3):257-261.
    137.陶大立,勒月华,杜英君.红松苗、大幼树越冬期间的PSⅡ电子传递活性与超氧化物 歧化酶变化的研究[J].林业科学,1990,26(4):289-293.
    138.陶大立,勒月华,杜英君.红松苗越冬伤害原因三假说检验[J].林业科学,1988,24(2):148-155.
    139.陶大立,勒月华,高均成.越冬针叶的有机自由基及自由基清除机制[J].林业科学,1992,28(3):194-197.
    140.王洪春.植物对低温逆境的反应.见:余叔文,汤章诚编,植物生理与分子生物学[M].北京:科学出版社,1992.
    141.王慷林.观赏棕榈[M].北京:建筑工业出版社,2004.
    142.王启明,张银慧,陈宝晶.蔷薇属植物抗寒性指标的研究[J].吉林林学院学报,1993,9(1):51-58.
    143.王荣富.植物抗寒指标的种类及应用[J].植物生理学通讯,1987,3:49-55.
    144.卫兆芬.棕榈科植物的区系地理.见:路安民主编,种子植物科属地理[M].北京:科学出版社,1999.
    145.肖艳,黄建昌.两种荫生观赏植物的抗冷性初探[J].仲恺农业技术学院学报,2002,15(2):5-9.
    146.谢潮添,杨盛昌,廖启炓,等.低温胁迫下董棕(Caryota urens L.)幼苗叶肉细胞内Ca~(2+)水平及细胞超微结构的变化[J].植物学通报,2003,20(2):212-217.
    147.谢庭味,欧阳美珊.13种木兰科树种叶片解剖与其抗寒性[J].武汉植物学研究,1989,7(3):234-238.
    148.谢孝福.植物引种学[M].北京:科学出版社,1994.
    149.熊佑清,李崇涛,刘晓辉.大叶黄杨的抗寒性及其应用研究[J].中国园林,2004,20(4):36-38.
    150.徐天明.山西临汾桃树冻害发生的原因[J].西北园艺,2003,12:42-43.
    151.徐晓薇,林绍生,曾爱平.蝴蝶兰抗寒力鉴定[J].浙江农业科学,2004,5:249-251.
    152.许煌灿,尹光天,张伟良.棕榈藤的研究[M].广州:广东科技出版社,1994.
    153.许再富.稀有濒危植物迁地保护的原理与方法[M].昆明:云南科技出版社,1998.
    154.薛应龙主编.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    155.严寒静,谈锋.栀子对自然降温的适应性研究[J].植物研究,2006,26(2):238-241.
    156.严寒静,谈锋.自然降温过程中栀子叶片膜保护系统的变化与低温半致死温度的关系[J].植物生念学报,2000,24(1):91-95.
    157.杨家胭,刘祖祺,刘谷良.电导法测定柑桔耐寒性的灵敏度和精确性的检验[J].南京农学院学报,1980,1:87-95.
    158.杨盛昌,李云波,林鹏.冷胁迫下红树植物白骨壤和桐花树叶片热值的变化[J].台湾海峡,2003,22(1):46-52.
    159.杨盛昌,林鹏.红树植物秋茄幼苗抗低温特性的初步研究.见:郎惠卿,林鹏,陆健健主编.中国湿地研究和保护[M].上海:华东师范大学出版社,1998.
    160.杨盛昌,谢潮添,张平,等.冷锻炼对低温胁迫下夏威夷椰子膜脂过氧化及保护酶活性的影响[J].植物资源与环境学报,2002,11(4):25-28.
    161.杨盛昌,谢潮添,张平,等.低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化[J].园艺学报,2003,30(1):104-106.
    162.伊稍K.种子植物解剖学[M].李正理译.上海:上海科学技术出版社,1979.
    163.尹毅,林鹏.广西红海榄红树群落的能量研究[J].厦门大学学报(自然科学版),1993,32(1):100-103.
    164.袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.
    165.张德瞬.八种常绿阔叶树种抗寒性的研究[J].园艺学报,1994,21(3):283-287.
    166.张惠斌,刘星辉.龙眼叶片组织细胞结构特性与耐寒性的关系[J].园艺学报,1993,10(1):1-7
    167.张庆费,吴海萍,许东新.上海引种的7种棕榈科植物冻害状况分析[J].浙江林学院学报,2007,24(1):110-114.
    168.张育英.西双版纳湿热地区经济植物引种驯化的研究[J].云南植物研究,1982,4(4):375-382.
    169.郑名祥,龙振海.海南岛棕榈科植物引种驯化的研究[J].海南大学学报(自然科学版),1993,11(4):10-17.
    170.钟如松.引种棕榈图谱[M].合肥:安徽科学技术出版社,2004.
    171.朱根海,刘祖祺,朱培仁.应用Logistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报,1986,3:12-16.
    172.朱根海,朱培仁.小麦抗冻性的季节变化以及温度对脱锻炼的效应[J].南京农学院学报,1984,2(2):9-16.
    173.朱立武,李绍德,刘加法,等.李抗逆性生理生化指标及其相关性的研究[J].园艺学报,2001,28(2):164-166.
    174.朱小华,王大进,张玲莉,等.甘草查尔酮抗脂质过氧化及自由基的实验研究[J].同济医科大学学报,1996,25(1):25-27.
    175.朱月林,曹寿椿,刘祖祺.致死温度确定法的改进及其在不结球白菜上的验证[J].园艺学报.1988,15(1):51-56.
    176.邹天才,娄义龙.山茶属三种植物叶片解剖特征研究[J].贵州科学,1995,13(1):11-17.
    177.祖元刚.能量生态学引论[M].长春:吉林科学技术出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700