用户名: 密码: 验证码:
两个水稻二氢乳清酸脱氢酶基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嘧啶核苷酸是生物体内非常重要的一类低分子化合物,具有极其重要的生理功能,它们不仅是DNA、RNA合成的前体,也作为调节物质参与多聚糖、糖蛋白和磷脂等多种生物体内物质的代谢过程。因此,嘧啶核苷酸的代谢及其在细胞间的储备量直接影响着整个细胞的正常代谢。尿嘧啶(UMP)是生物体内合成的第一个嘧啶。UMP的合成包括从头合成和补救合成两种途径,其中从头合成途径由6个酶催化完成。二氢乳清酸脱氢酶(DHODH)催化UMP从头合成途径中的第四步反应。
     本研究的前期工作已经分离到两个水稻二氢乳清酸脱氢酶基因OsDHODH1和OsDHODH2。两个基因的编码产物催化相同的化学反应,即催化尿嘧啶从头合成途径的第四步反应,将二氢乳清酸(DHO)还原为乳清酸(OA)。诱导表达分析,这两个基因的表达受到非生物逆境胁迫的诱导,在大肠杆菌中的表达提高了菌体对非生物逆境的抗性。为了进一步研究这两个基因的功能,将OsDHODH1和OsDHODH2基因转入酵母中,测定转基因酵母的二氢乳清酸脱氢酶活性,发现在转OsDHODH1和OsDHODH2基因的酵母细胞中,DHODH的活性显著高于转空载体和非转化酵母细胞。在液体培养第3天和第4天时,转OsDHODH1和OsDHODH2基因酵母培养物中活细胞的数目显著高于转空载体和非转化酵母,说明OsDHODH1和OsDHODH2可能延缓酵母细胞衰老。
     分别构建了OsDHODH1和OsDHODH2过量表达载体和抑制表达载体,以粳稻日本晴的幼胚为受体材料,通过农杆菌介导法,将OsDHODH1和OsDHODH2的ORF转化水稻,获得了OsDHODH1过量表达、OsDHODH1抑制表达和OsDHODH2抑制表达等三种类型的转基因株系。RT-PCR检测其表达水平,结果表明在过量表达OsDHODH1的转基因株系中,目的基因的mRNA水平显著高于野生型;在OsDHODH1和OsDHODH2抑制表达的转基因株系中,目的基因的mRNA水平显著低于野生型。酶活性测定结果显示,OsDHODH1过量表达植株中的二氢乳清酸脱氢酶的活性是野生型的1.9倍,OsDHODH1和OsDHODH2基因抑制表达的转基因植株中的酶活性与野生型相比没有显著改变,说明OsDHODH1基因过量表达增强了二氢乳清酸脱氢酶的活性,证实了OsDHODH基因具有二氢乳清酸脱氢酶的功能。进一步比较T2代转基因植株与野生型植株的主要农艺性状,发现转三种类型的转基因植株与野生型没有显著差别,仅在OsDHODH2抑制表达的株系中,发现其种子明显小于野生型种子,说明OsDHODH2基因的抑制表达或者其转基因插入位点效应可能影响了水稻种子的正常发育。
     对OsDHODH1过量表达、OsDHODHl抑制表达和OsDHODH2抑制表达等三种类型的转基因植株幼苗进行干旱胁迫和盐胁迫处理,以确定目的基因在两种非生物逆境胁迫下的可能功能。发现在200 mM NaCl和干旱处理下,OsDHODH1过量表达的转基因幼苗受害症状明显轻于野生型,而OsDHODH1和OsDHODH2抑制表达的转基因幼苗对两种逆境胁迫表现更为敏感。测定比较了转基因植株和野生型植株在两种逆境处理前后的脯氨酸和叶绿素含量及电解质渗透率,发现在OsDHODH1过量表达的转基因水稻幼苗中脯氨酸和叶绿素含量都高于野生型,而OsDHODH1和OsDHODH2抑制表达的转基因幼苗中脯氨酸和叶绿素含量则低于野生型;在OsDHODHl过量表达的转基因水稻幼苗中电解质渗透率低于野生型,而OsDHODHl和OsDHODH2抑制表达的转基因幼苗中都高于野生型。说明OsDHODHl和OsDHODH2基因有可能参与水稻植株对干旱胁迫和盐胁迫等两种逆境的应答反应。
Pyrimidine nucleotides are abundant molecules with essential functions in a multitude of biochemical processes. They are required not only the precursors of RNA and DNA, but also required for energy metabolism and for the continued synthesis of many biosynthetic products such as phospholipids, polysaccharides and glycoproteins. The metabolism of pyrimidine nucleotides and their intracellular pool sizes influence vast areas of normal cellular metabolism. The first pyrimidine, UMP, is synthesized by de novo pathway and salvage pathway. The de novo biosynthetic pathway consists of six enzymatic steps. Dihydroorotate dehydrogenase (DHODH) is the fourth step of de novo catalyzing the oxidation of dehydroorotate to orotate.
     In the previous research OsDHODH1 and OsDHODH2 genes were isolated from rice, the deduced anim acids catalyze the fourth step of de novo catalyzing the oxidation of dehydroorotate to orotate. Expression analysis indicated that OsDHODH1 and OsDHODH2 are up-regulated by abiotic stress. Expression of OsDHODHl and OsDHODH2 in E. coli improved the tolerance to abiotic stress. For further research the function of OsDHODH1 and OsDHODH2, these two genes were transferred into yeast. The enzyme assay showed that the DHODH activity of transgenic OsDHODHl and OsDHODH2 yeast was significantly increased. The cell numbers of 1 ml yeast liguid culture in recombinant OsDHODH1 and OsDHODH2 yeast were more than that in transgenic pFL61 vector yeast in the third and forth days. This indicated that OsDHODHl and OsDHODH2 might be relevant with senescence.
     The overexpression and repression vectors of OsDHODHl and OsDHODH2 were constructed. The transgenic rice plants were obtained by Agrobacterium-mediated transformation. The expression of OsDHODH1 and OsDHODH2 in transgenic lines and WT were analyzed by semi-quantitative RT-PCR. RT-PCR showed that the expression levels of OsDHODHl in three independent OsDHODH1 overexpression lines (A1, A2 and A3) were significantly higher than those in WT plants, and in OsDHODHl repression lines (B1, B2 and B3) and OsDHODH2 repression lines (C1, C2 and C3) were significantly lower than those in WT plants. The DHODH activities were compared among the WT and transgenic lines. The enzymatic activity of DHODH in the OsDHODH1 overexpression lines were 1.9 times of WT. However, the enzymatic activity of DHODH did not show a significant reduction from the OsDHODH1 repression and OsDHODH2 repression lines. OsDHODH1 overexpression increase the DHODH activity, this indicated that OsDHODH have the function of dihydroorotate dehydrogenase. The agronomic traits of T2 transgenic rice were compared with type plants. There were no significant difference between WT and transgenic lines, but in OsDHODH2 repression lines, the size of seeds were smaller than WT. This indicated that OsDHODH2 repression or the transgenic insert sites may influence the normal growth of seeds.
     For further identification the function of OsDHODH1 and OsDHODH2 under salt and drought stress, salt and drought tolerance were tested in OsDHODH1 overexpression, OsDHODH1 repression and OsDHODH2 repression transgenic rice. Under salt and drought stress, OsDHODH1 overexpression lines showed improved tolerance to stress treatment, OsDHODH1 respression and OsDHODH2 repression lines were more sensitive. After salt and drought treatment, the chlorophyll and proline contents in OsDHODH1 overexpression lines were higher than in WT, and in OsDHODH1 and OsDHODH2 repression lines were lower than in WT. The relative electrolyte leakages in OsDHODH1 overexpression were lower than in WT, and in OsDHODH1 and OsDHODH2 repression lines were higher than in WT. Thus, we conclude that OsDHODH1 and OsDHODH2 may play important roles in salt and drought tolerance response in rice.
引文
1. Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15 (1):63-78
    2. Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell,1997,9 (10):1859-1868
    3. Alia, Hayashi H, Sakamoto A, et al. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J,1998,16 (2): 155-161
    4. Allen G J and Sanders D. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J,1996,10(6):1055-1069
    5. Andersen P S, Jansen P J and Hammer K. Two different dihydroorotate dehydrogenases in Lactococcus lactis. J Bacteriol,1994,176 (13):3975-3982
    6. Annoura T, Nara T, Makiuchi T, et al. The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions. J Mol Evol,2005,60 (1):113-127
    7. Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science,1999,285 (5431):1256-1258
    8. Apse M P and Blumwald E. Na+transport in plants. FEBS Lett,2007,581 (12):2247-2254
    9. Arakaki T L, Buckner F S, Gillespie J R, et al. Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Mol Microbiol,2008,68 (1):37-50
    10. Armengaud P, Thiery L, Buhot N, et al. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant, 2004,120 (3):442-450
    11. Asada K. The water cycle in choroplasts:scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    12. Ashraf M and Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Exp Botany,2008,62:266-273
    13. Asryants R A, Duszenkova I V and Nagradova N K. Determination of Sepharose-bound protein with Coomassie brilliant blue G-250. Anal Biochem,1985,151 (2):571-574
    14. Bahrun A, Jensen C R, Asch F, et al. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot,2002,53 (367):251-263
    15. Baldwin J, Michnoff C H, Malmquist N A, et al. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biol Chem,2005,280(23): 21847-21853
    16. Barbara A. Moffatt and Hiroshi A. Purine and Pyrimidine Nucleotide Synthesis and Metabolism. The Arabidopsis Book. American Society of Plant Biologists.2002.
    17. Beuneu C, Auger R, Loffler M, et al. Indirect inhibition of mitochondrial dihydroorotate dehydrogenase activity by nitric oxide. Free Radic Biol Med,2000,28 (8):1206-1213
    18. Bewley J. Physiological aspects of desiccation-tolerance. Annu Rev of Plant Physiol,1979,30: 195-238
    19. Bilaud T, Koering C E, Binet-Brasselet E, et al. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res,1996,24 (7):1294-1303
    20. Bjornberg O, Rowland P, Larsen S, et al. Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry,1997,36 (51):16197-16205
    21. Boa A N, Canavan S P, Hirst P R, et al. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase. Bioorg Med Chem,2005,13 (6):1945-1967
    22. Boyer J S. Plant Productivity and Environment. Science,1982,218(4571):443-448
    23. Buchanan B B, Gruissem W and Jones R L. Biochemistry and molecular biology of plants. The American Society of Plant Physiologists,2000, New York:1189-1196
    24. Cattivell L, Baldi P, Crosatti C, et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol,2002,48 (5-6):649-665
    25. Charrier B, Champion A, Henry Y, et al. Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol, 2002,130 (2):577-590
    26. Chen Z, Hong X, Zhang H, et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J,2005,43 (2):273-283
    27. Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors. J Biol Chem,2000,275 (3):1723-1730
    28. Christopherson R I, Lyons S D and Wilson P K. Inhibitors of de novo nucleotide biosynthesis as
    drugs. Acc Chem Res,2002,35 (11):961-971
    29. Cochard H, Froux F, Mayr S, et al. Xylem wall collapse in water-stressed pine needles. Plant Physiol,2004,134 (1):401-408
    30. Daniels M J, Mirkov T E and Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol,1994,106(4):1325-1333
    31. Doremus H D and Jagendorf A T. Subcellular Localization of the Pathway of de Novo Pyrimidine Nucleotide Biosynthesis in Pea Leaves. Plant Physiol,1985,79 (3):856-861
    32. Doremus H D and Jagendorf A T. Site of Synthesis of the Enzymes of the Pyrimidine Biosynthetic Pathway in Oat (Avena sativa L.) Leaves. Plant Physiol,1987,83 (3):657-658
    33. Dure L,3rd. A repeating 11-mer amino acid motif and plant desiccation. Plant J,1993,3 (3): 363-369
    34. El Maarouf H, Zuily-Fodil Y, Gareil M, et al. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol,1999,39 (6):1257-1265
    35. Eric van der Graaff, Paul Hooykaas, Wolfgang Lein, et al. Molecular analysis of de novo purine biosynthesis in solanaceous species and in ababidopsis thaliana. Frontiers in Bioscience,2004,9: 1803-1816
    36. Espinosa-Ruiz A, Belles J M, Serrano R, et al. Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J,1999,20 (5):529-539
    37. Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci,2000,5 (5):199-206
    38. Evans D R and Guy H I. Mammalian pyrimidine biosynthesis:fresh insights into an ancient pathway. J Biol Chem,2004,279 (32):33035-33038
    39. Fabro G, Kovacs I, Pavet V, et al. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact,2004,17 (4):343-350
    40. Fagan R L, Jensen K F, Bjornberg O, et al. Mechanism of flavin reduction in the class 1A dihydroorotate dehydrogenase from Lactococcus lactis. Biochemistry,2007,46 (13):4028-4036
    41. Flowers T J. Improving crop salt tolerance. J Exp Bot,2004,55(396):307-319
    42. Frank W, Munnik T, Kerkmann K, et al. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell,2000,12 (1):111-124
    43. Frank W, Phillips J, Salamini F, et al. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J, 1998,15 (3):413-421
    44. Gaxiola R A, Li J, Undurraga S, et al. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A,2001,98 (20):11444-11449
    45. Geigenberger P, Regierer B, Nunes-Nesi A, et al. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell,2005,17 (7):2077-2088
    46. Giermann N, Schroder M, Ritter T, et al. Molecular analysis of de novo pyrimidine synthesis in solanaceous species. Plant Mol Biol,2002,50 (3):393-403
    47. Golldack D and Dietz K J. Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol,2001,125 (4):1643-1654
    48. Grzelczak Z and Buchowicz J. Purine and pyrimidine bases and nucleosides of germinating Triticum aestivum (wheat) seeds. Phytochemistry,1975,14:329-331
    49. Guo Y, Xiong L, Ishitani M, et al. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc Natl Acad Sci USA,2002a,99 (11):7786-7791
    50. Guo Y, Xiong L, Song C P, et al. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell,2002b,3 (2):233-244
    51. Gupta A S, Heinen J L, Holaday A S, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A,1993, 90 (4):1629-1633
    52. Guy C L. Cold Accelimation and Freezing Stress Tolerance:Role of Protein Metabolism. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:187-223
    53. Hansen M, Le Nours J, Johansson E, et al. Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain. Protein Sci,2004, 13(4):1031-1042
    54. Haupt H and Fock H P. Oxygen exchange in relation to carbon assimilation in water stress leaves during photosynthesis. Ann Bot,2002,89:851-895
    55. Hayashi H, Alia, Mustardy L, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J,1997,12(1):133-142
    56. Higginson T, Li S F and Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J,2003,35 (2):177-192
    57. HolmstrOm K-O, Mantyla E, Welin B, et al. Drought tolerance in tobacco. nature,1996,379: 683-684
    58. Hong S W, Jon J H, Kwak J M, et al. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol,1997,113 (4):1203-1212
    59. Hussain N S, Conaway C C, Guo N, et al. Oxidative DNA and RNA damage in rat liver due to acetoxime:similarity to effects of 2-nitropropane. Carcinogenesis,1990,11 (6):1013-1016
    60. Ichimura K, Mizoguchi T, Irie K, et al. Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun,1998,253 (2):532-543
    61. Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J,2000,24 (5):655-665
    62. Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol,1997,33 (5):857-865
    63. Imlay J A and Linn S. DNA damage and oxygen radical toxicity. Science,1988,240 (4857): 1302-1309
    64. Ito M, Araki S, Matsunaga S, et al. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell,2001,13 (8):1891-1905
    65. Jang I C, Oh S J, Seo J S, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 2003,131 (2):516-524
    66. Johansson I, Karlsson M, Shukla V K, et al. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell,1998,10 (3):451-459
    67. Johnson S M, Doherty S J and Croy R R. Biphasic superoxide generation in potato tubers. A self-amplifying response to stress. Plant Physiol,2003,131 (3):1440-1449
    68. Jones M E. Pyrimidine nucleotide biosynthesis in animals:genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem,1980,49:253-279
    69. Kafer C, Zhou L, Santoso D, et al. Regulation of pyrimidine metabolism in plants. Front Biosci, 2004,9:1611-1625
    70. Kammerloher W, Fischer U, Piechottka G P, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J,1994,6 (2):187-199
    71. Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol,1999,17 (3):287-291
    72. Kiegerl S, Cardinale F, Siligan C, et al. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell,2000,12 (11):2247-2258
    73. Kim K S, Choi Y H, Kim K H, et al. Protective and anti-arthritic effects of deer antler aqua-acupuncture (DAA), inhibiting dihydroorotate dehydrogenase, on phosphate ions-mediated chondrocyte apoptosis and rat collagen-induced arthritis. Int Immunopharmacol,2004,4 (7): 963-973
    74. Kjeldsen T, Pettersson A F and Hach M. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol Appl Biochem,1999,29 (Pt 1):79-86
    75. Knecht W and Loffler M. Species-related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives. Biochem Pharmacol,1998,56 (9):1259-1264
    76. Kovtun Y, Chiu W L, Tena G, et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A,2000,97 (6): 2940-2945
    77. Kranz H D, Denekamp M, Greco R, et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J,1998,16 (2):263-276
    78. Krishnan N, Dickman M B and Becker D F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med,2008,44 (4):671-681
    79. Lee D H, Kim Y S and Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol,2001,158:737-745
    80. Lee J H, Van Montagu M and Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci U S A,1999,96 (10):5873-5877
    81. Leung J and Giraudat J. Abscisic Acid Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:199-222
    82. Liang J and Zhang J. How do roots control xylemsapABA concentration in response to soil drying? Plant andCell Physiol,197,38:10-16
    83. Ligterink W and Hirt H. Mitogen-activated protein (MAP) kinase pathways in plants:versatile signaling tools. Int Rev Cytol,2001,201:209-275
    84. Lilius G, Holmberg N and Bulow L. Enhanced NaCl Stress Tolerance in Transgenic Tobacco Expressing Bacterial Choline Dehydrogenase. Bio/Technology 1996,14:177-180
    85. Liu J and Zhu J K. Proline accumulation and salt-stress-induced gene expression in a
    salt-hypersensitive mutant of Arabidopsis. Plant Physiol,1997,114 (2):591-596
    86. Liu K, Wang L, Xu Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226 (4):1007-1016
    87. Liu Q, Umeda M and Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Mol Biol,1994,26 (6):2003-2007
    88. Loef 11, Stitt M and Geigenberger P. Orotate leads to a specific increase in uridine nucleotide levels and a stimulation of sucrose degradation and starch synthesis in discs from growing potato tubers. Planta,1999,209 (3):314-323
    89. Loffler M, Knecht W, Rawls J, et al. Drosophila melanogaster dihydroorotate dehydrogenase:the N-terminus is important for biological function in vivo but not for catalytic properties in vitro. Insect Biochem Mol Biol,2002,32 (9):1159-1169
    90. Lu Y. Effect of NaCl stress on water and phytosynthetisgas exchange of spinach leaves. Plant Physiol communi,1999,35:
    91. Marcinkeviciene J, Jiang W, Locke G, et al. A second dihydroorotate dehydrogenase (Type A) of the human pathogen Enterococcus faecalis:expression, purification, and steady-state kinetic mechanism. Arch Biochem Biophys,2000,377 (1):178-186
    92. Marcotte W R, Jr., Russell S H and Quatrano R S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell,1989,1(10):969-976
    93. Mcainsh M R, Brownlee C and Hetherington A. Abscisic acid induced elevation of guard cell cytosolic Ca2+precedes stomatal closue. Nature,1990,343:186-188
    94. McAinsh M R, Brownlee C and Hetherington A M. Visualizing Changes in Cytosolic-Free Ca2+ during the Response of Stomatal Guard Cells to Abscisic Acid. Plant Cell,1992,4 (9):1113-1122
    95. McNeil S D, Nuccio M L and Hanson A D. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol,1999,120 (4):945-950
    96. Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol,1999,119 (2):463-470
    97. Mikolajczyk M, Awotunde O S, Muszynska G, et al. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell,2000,12 (1):165-178
    98. Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A,2003,100 (1):358-363
    99. Moran J F, Becana M and Iturke-onnaetxel. Drought induces oxidative stress in pea plants. Planta, 1994,94:346-352
    100. Morsy M R, Almutairi A M, Gibbons J, et al. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene,2005,344:171-180
    101. Mundy J, Yamaguchi-Shinozaki K and Chua N H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci U S A,1990,87 (4): 1406-1410
    102. Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses. Plant, Cell and Environment,1993,16:15-24
    103.Nara T, Hshimoto T and Aoki T. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. Gene,2000,257 (2):209-222
    104. Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors:structurally distinct, functionally diverse. Trends Plant Sci,2005,10 (2):79-87
    105. Orozco-Cardenas M L, Narvaez-Vasquez J and Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell,2001,13 (1):179-191
    106. Ottosen M B, Bjornberg O, Norager S, et al. The dimeric dihydroorotate dehydrogenase A from Lactococcus lactis dissociates reversibly into inactive monomers. Protein Sci,2002,11 (11): 2575-2583
    107. Parida A K and Das A B. Salt tolerance and salinity effects on plants:a review. Ecotoxicol Environ Saf,2005,60 (3):324-349
    108. Peltzer D, Dreyer E and Polle A. Temperature dependencies of antioxidative enzyme in two constrsting species. Plant Physiol Biochem,2002,40:141-150
    109. Powers R W,3rd, Kaeberlein M, Caldwell S D, et al. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev,2006,20 (2):174-184
    110. Quandt K, Frech K, Karas H, et al. MatInd and MatInspector:new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res,1995,23 (23): 4878-4884
    111. Quattrocchio F, Wing J, van der Woude K, et al. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell,1999,11 (8):1433-1444
    112. Quintero F J, Ohta M, Shi H, et al. Reconstitution in yeast of the Arabidopsis SOS signaling
    pathway for Na+homeostasis. Proc Natl Acad Sci U S A,2002,99 (13):9061-9066
    113. Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A,1997,94 (7):3454-3458
    114. Rawls J, Knecht W, Diekert K, et al. Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur. J. Biochem.2000,267:2079-2087.
    115. Reece K S, McElroy D and Wu R. Genomic nucleotide sequence of four rice (Oryza sativa) actin genes. Plant Mol Biol,1990,14 (4):621-624
    116. Romanos M A, Scorer C A and Clare J J. Foreign gene expression in yeast:a review. Yeast,1992,8 (6):423-488
    117. Roxas V P, Lodhi S A, Garrett D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol,2000,41 (11): 1229-1234
    118. Sakamoto A, Alia and Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol,1998,38 (6):1011-1019
    119. Sariego I, Annoura T, Nara T, et al. Genetic diversity and kinetic properties of Trypanosoma cruzi dihydroorotate dehydrogenase isoforms. Parasitol Int,2006,55 (1):11-16
    120. Savoure A, Jaoua S, Hua X J, et al. Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett,1995, 372(1):13-19
    121. Scandalios J. Oxygen stress and superoxide dismutases. Plant Physiol,1993,101:7-12
    122. Schroder M, Giermann N and Zrenner R. Functional analysis of the pyrimidine de novo synthesis pathway in solanaceous species. Plant Physiol,2005,138 (4):1926-1938
    123. Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J,2002, 31 (3):279-292
    124. Sharp R E and LeNoble M E. ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot,2002,53 (366):33-37
    125. Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science,1996,274 (5294):1900-1902
    126. Shen Q and Ho T H. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell,1995,7 (3):295-307
    127. Shen Q, Zhang P and Ho T H. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell,1996,8 (7):1107-1119
    128. Sheveleva E, Chmara W, Bohnert H J, et al. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L. Plant Physiol,1997,115(3):1211-1219
    129. Shi H and Zhu J K. Regulation of expression of the vacuolar Na+/H+antiporter gene AtNHXl by salt stress and abscisic acid. Plant Mol Biol,2002,50 (3):543-550
    130. Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot,2002,53 (372):1305-1319
    131. Shinozaki K. Plant response to drought and salt stress:overview. Tanpakushitsu Kakusan Koso, 1999,44 (15 Suppl):2186-2187
    132. Shinozaki K, Yamaguchi-Shinozaki K and Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,2003,6 (5):410-417
    133. Sierra Pagan M L and Zimmermann B H. Cloning and expression of the dihydroorotate dehydrogenase from Toxoplasma gondii. Biochim Biophys Acta,2003,1637 (2):178-181
    134. Singh K B. Transcriptional regulation in plants:the importance of combinatorial control. Plant Physiol,1998,118(4):1111-1120
    135. Skopelitis D S, Paranychianakis N V, Paschalidis K A, et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell,2006,18 (10):2767-2781
    136. Socias F X, Correia M J and Chaves M M. The role of abscisis acid and water relations in drought response of subterranean clove. J Exp Bot,1997,48:281-288
    137. Soderman E, Hjellstrom M, Fahleson J, et al. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol, 1999,40 (6):1073-1083
    138. Steponkus P L. Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol,1984,35:543-548
    139. Steponkus P L, Uemura M and Webb M S. Membrane destabilization during freeze-induced dehydration. Curr Topics Plant Physiol,1993,10:37-47
    140. Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABII and AXR2 in Arabidopsis. Plant J,1997,12 (3):557-569
    141. Su H, Golldack D, Zhao C, et al. The expression of HAK-type K+transporters is regulated in response to salinity stress in common ice plant. Plant Physiol,2002,129 (4):1482-1493
    142. Sudhakar C, Reddy P S and K. V. Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaseolus aureus P.) seedlings. J Plant Physiol,1993,141:621-623
    143. Sulpice R, Tsukaya H, Nonaka H, et al. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J,2003,36 (2):165-176
    144. Szekely G, Abraham E, Cseplo A, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J,2008,53(1):11-28
    145. Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J,2002,29 (4):417-426
    146. Takashima E, Inaoka D K, Osanai A, et al. Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi. Mol Biochem Parasitol,2002,122 (2):189-200
    147. Tamura T, Hara K, Yamaguchi Y, et al. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol,2003, 131 (2):454-462
    148. Tezara W, Mitchell V J and Driscoll S D. Water stress inhibits plant photsynthesis by decteasing coupling factor and ATP. Nature,1999,1401:914-917
    149. Trinchant J C, Boscari A, Spennato G, et al. Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol, 2004,135 (3):1583-1594
    150. Troll W and Lindsley J. A photometric method for the determination of proline. J Biol Chem,1955, 215 (2):655-660
    151.Uemura M, Joseph RA and Steponkus PL. Cold acclimation of Arabidopsis thaliana.Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol,1995,109:15-30
    152. Ullrich A, Knecht W, Fries M, et al. Recombinant expression of N-terminal truncated mutants of the membrane bound mouse, rat and human flavoenzyme dihydroorotate dehydrogenase. A versatile tool to rate inhibitor effects Eur J Biochem,2001,268 (6):1861-1868
    153. Ullrich A, Knecht W, Piskur J, et al. Plant dihydroorotate dehydrogenase differs significantly in substrate specificity and inhibition from the animal enzymes. FEBS Lett,2002,529 (2-3):346-350
    154. Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell,1999,11 (9):1743-1754
    155. Vailleau F, Daniel X, Tronchet M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA,2002,99 (15):10179-10184
    156. Vernon D M and Bohnert H J. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. Embo J,1992,11 (6):2077-2085
    157. Vinocur B and Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol,2005,16 (2):123-132
    158. Wang W, Sun Y H, Wang Y P, et al. Expression of grass carp growth hormone in the yeast Pichia pastoris. Yi Chuan Xue Bao,2003,30 (4):301-306
    159. Welin B V, Olson A, Nylander M, et al. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol,1994,26(1):131-144
    160. Williamson C L and Slocum R D. Molecular cloning and evidence for osmoregulation of the delta 1-pyrroline-5-carboxylate reductase (proC) gene in pea(Pisum sativum L.). Plant Physiol,1992, 100:1464-1470
    161. Xu D, Duan X, Wang B, et al. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol, 1996,110(1):249-257
    162. Xu H, Jiang X, Zhan K, et al. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys,2008,473 (1):8-15
    163. Yamaguchi T and Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities. Trends Plant Sci,2005,10 (12):615-620
    164. Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol,1997a,38 (10):1095-1102
    165. Yoshiba Y, Kiyosue T, Shinozaki K, et al. Proline biosynthesis and water stress tolerance in plants. Tanpakushitsu Kakusan Koso,1997b,42 (6):842-855
    166. Yoshida S, Forno D A, Cock J H, et al. Laboratory Mannual for Physiological Studies of Rice, third ed, International Rice Research Institute, Philippines,1976, pp.61-64
    167. Zameitat E, Freymark G, Dietz C D, et al. Functional expression of human dihydroorotate dehydrogenase (DHODH) in pyr4 mutants of ustilago maydis allows target validation of DHODH inhibitors in vivo. Appl Environ Microbiol,2007,73 (10):3371-3379
    168. Zameitat E, Gojkovic Z, Knecht W, et al. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans. Febs J, 2006,273 (14):3183-3191
    169. Zameitat E, Knecht W, Piskur J, et al. Two different dihydroorotate dehydrogenases from yeast Saccharomyces kluyveri. FEBS Lett,2004,568 (1-3):129-134
    170. Zhang J S, Xie C and Li Z Y. Expression of the plasma membrane H+-ATP gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor. Appl. Genet.,1999,99: 1006-1011
    171. Zhu J K. Plant salt tolerance. Trends Plant Sci,2001,6 (2):66-71
    172.陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报,2003b,21(2):177-182
    173.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    174.高玉葆,任安芝,刘峰等.黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应.植物生态学报,1999,23(3):193-204
    175.郭秀林,李孟军,关军锋.PEG胁迫下小麦幼苗ABA与Ca2+/CaM的关系.作物学报,2002,28(4):537-540
    176.郝治安,吕有军.植物耐盐机制研究进展.河南农业科学,2004,(11):30-33
    177.黄建昌,肖艳.水分胁迫对番木瓜糖代谢和膜脂过氧化的影响.热带作物学报,2004,25(1):24-27
    178.贾庚祥.甜菜碱与植物耐盐基因工程.植物学通报,2002,19(3):272-279
    179.景蕊莲,胡荣海,朱志华等.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,1997,12(2):152-157
    180.李德全,邹琦,程炳嵩.抗旱性不同的冬小麦品种渗透调节能力的研究.山东农业大学学报,1991b,22(4):377-383
    181.李德全,邹琦,程炳嵩.土壤水分胁迫下小麦叶片的渗透调节与膨压维持.华北农学报,1991a,6(4):100-105
    182.梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响.干旱地区农业研究,2006,3(24):108-110
    183.廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展.生态学报,2007,27(5):2077-2089
    184.刘俊君,王海云,黄绍兴等.转基因烟草的甘露醇合成和耐盐性.生物工程学报,1996,12(2):206-210
    185.吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化与脱酯化.中国科学(C辑),1996,26(1):26-30
    186.马雅琴,翁跃进,赵勇等.植物耐盐相关基因克隆的研究进展.植物遗传资源学报,2004,5(1):81-86
    187.潘瑞炽.植物生理学.高等教育出版社,2004:北京
    188.彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐旱机制研究进展.西北植物学报,2002,22(5):1275-1281
    189.汪沛洪,王保莉,张林生等.干旱逆境下药剂处理小麦种子对灌浆期某些生理影响与产量形 成的关系.干旱地区农业研究,1995,13(3):58-66
    190.王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通报,2000,17(1):17-26
    191.王凤茹,张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究.电子显微学报,2002,21(2):106-109
    192.王妹梅.二氢乳清酸脱氢酶基因的克隆.南京农业大学硕士毕业论文,2006:
    193.王齐红,黄骥,张红生.一种快速微量提取植物叶片DNA的方法.生物技术通讯,2004,15(5):479-480
    194.王荣富,张云华,钱立生等.超级杂交稻两优培九及其亲本的光氧化特性,2003,14(8):1309-1312
    195.王希庆,陈柏君,印莉萍.植物中的MYB转录因子.生物技术通讯,2003,2(2):22-25
    196.王毅,方秀娟,徐欣等.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响.园艺学报,1995,22(3):299-300
    197.王中英.果树抗旱生理.中国农业出版社,2000:北京
    198.吴旭红,高玉芝.盐胁迫对植物形态和生理过程的影响.高师理科学报,2002,22:51-53
    199.杨敏文.化学科技活动一则分光光度法测定叶片叶绿素a、叶绿素b和类胡萝卜素含量.化学教学,2002,8:44-45
    200.俞嘉宁,高俊凤,崔四平等.Ca2+对水分胁迫下小麦诱导蛋白产生的影响.干旱地区农业研究,1999,17(1):72-77
    201.喻方圆,徐锡增.植物逆境生理研究进展.世界林业研究,2003,5(16):6-11
    202.曾乃燕,何军贤,赵文等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,16(1):6-11
    203.张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002b,10(1):50-56
    204.张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响.西北水资源与水工程,1999,10(3):18-21
    205.赵可夫.植物抗盐生理.中国科学技术出版社,1993:北京
    206.郑江平,王春乙.低温、干旱并发对玉米苗期生理过程的影响.应用气象学报,2006,17(1):119-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700