用户名: 密码: 验证码:
拟南芥AtSUC2和AtSUC4对理化逆境及外源ABA的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔗糖作为高等植物中光合同化物运输的主要形式,其运输方向和分配速率影响植物的生长发育,甚至决定作物的产量。细胞膜上的蔗糖转运蛋白(sucrose transporters, SUCs或SUTs)承担着蔗糖从源细胞的外运、韧皮部的装载和卸载,以及向库细胞装入的功能,从而影响蔗糖的运输方向、速率和分配,其基因表达受多种因子的调控,如内源激素、生物逆境和理化逆境等。因此,深入研究SUCs基因表达与环境因子和激素的关系,是阐明环境胁迫下植物光合产物运输和分配调节机制的关键。
     蔗糖转运蛋白由多基因家族编码的。在模式植物拟南芥中,蔗糖转运蛋白基因家族有9个成员,分属于3个亚族:SUT1、SUT2和SUT4。基因敲除研究表明,一些成员之间在功能上存在互补作用,有的基因敲除突变体只在特定条件下发生表现型变化。这暗示着不同家族成员的表达调节机制存在差异,不同成员的基因表达对环境胁迫的响应不同。脱落酸(ABA)是植物体内的重要激素之一,是植物逆境响应的关键激素,有胁迫激素之称,参与许多植物逆境反应的调节,包括光合产物运输和分配的调节。但是,目前少有SUCs基因表达与ABA关系的报道。
     本研究以拟南芥为材料,利用生物信息学和实时定量PCR (real-time quantitative reverse transcription PCR, qRT-PCR)技术鉴定出高盐、渗透、低温及干旱胁迫和ABA处理响应的拟南芥蔗糖转运蛋白基因:高亲和/低转运的AtSUC2和低亲和/高转运的AtSUC4。观察理化逆境和ABA处理时,AtSUC2和AtSUC4纯合突变体植株的生长发育变化、蔗糖含量变化、ABA响应基因及ABF相关基因表达变化,从而探讨AtSUC2和AtSUC4在拟南芥逆境响应中的作用、AtSUC2和AtSUC4基因表达与其他蔗糖转运蛋白基因表达之间的关系,以及ABA参与调节SUCs基因表达的可能机制。主要结果如下:
     1.通过分析基因芯片数据发现:在高盐、渗透、低温和干旱处理期间,AtSUC2和AtSUC4表达量主要表现为显著上升,说明AtSUC2和AtSUC4受理化逆境的正向调节;AtSUCl和AtSUC5在4种胁迫处理期间,表达量均主要表现为显著下降,表明AtSUC1和AtSUC5受理化逆境的负向调节;AtSUC3表达量仅在处理的个别时间发生明显变化;在胁迫处理期间,AtSUC6、AtSUC1、AtSUC8和AtSUC9表达量几乎不发生变化,说明它们在4种理化逆境下可能发挥次要作用。因此,AtSUC2和AtSUC4可能是拟南芥蔗糖转运蛋白基因家族中对理化逆境正向响应的关键基因。
     2.利用qRT-PCR技术分析在高盐、渗透、低温和干旱胁迫下拟南芥野生型(wild-type, WT)植株的AtSUC2和AtSUC4基因表达量变化,发现4种胁迫均诱导AtSUC2和AtSUC4基因的表达,表达量均显著高于对照。在处理期间,AtSUC2和AtSUC4表达量先增加,达到最大值后再下降。
     3.利用三引物PCR法和RT-PCR (performing reverse transcription, PCRRT-PCR)法均筛选Atsuc2-1、Atsuc2-3、Atsuc3、Atsuc4-1和Atsuc4-2的纯合突变体,作为后续研究的实验材料。
     4.在正常条件下,突变体与WT相比,在萌发和生长方面存在显著差异,表现在萌发率降低、叶片数和叶面积减少,主根长度变短。在高盐、渗透和低温胁迫下,突变体与WT在萌发率方面的差异更加明显。但是,随着胁迫时间的延长,突变体萌发率与WT的差异逐渐变小。这些结果表明,理化逆境只是延缓了突变体和WT种子的萌发,并不抑制种子的最终萌发率。在幼苗期,随着胁迫程度的加深,突变体与WT幼苗生长的差异更加显著,这表明AtSUC2和AtSUC4基因的缺失增大植株对理化逆境的敏感性。
     5.在正常条件下,AtSUC2和AtSUC4突变体叶片中的蔗糖含量相近,均显著高于WT植株,根中的蔗糖含量相近,均显著低于WT植株。在高盐、渗透和低温胁迫下,WT叶片和根中蔗糖含量与正常条件相比均明显增加;突变体叶片中的蔗糖含量均显著高于WT,根中的蔗糖含量均显著低于WT,随着胁迫程度的增大,突变体与WT相比,叶片和根中蔗糖含量的差异均变为极显著。这表明逆境抑制了蔗糖从源叶向根的运输和分配,并且AtSUC2和AtSUC4在这个过程中起关键作用。
     6.观察AtSUC3突变体中AtSUC2和AtSUC4基因在高盐、渗透、低温和干旱胁迫下的表达量变化,结果表明AtSUC3基因缺失降低了AtSUC2和AtSUC4表达量的增加,说明AtSUC3可能参与了AtSUC2和AtSUC4基因表达的调节。
     7.利用芯片数据和qRT-PCR技术研究发现外源ABA处理诱导AtSUC2和AtSUC4基因的高表达。进一步的研究发现AtSUC2和AtSUC4基因缺失提高了在种子萌发期和幼苗期植株对ABA的敏感性,例如种子萌发率降低、叶片数和叶面积减少以及主根长度变短;并且外源ABA处理引起叶片中蔗糖的大量积累,根中蔗糖含量显著下降,抑制蔗糖从源向库的运输。此外,AtSUC2和AtSUC4基因突变抑制一些ABA响应基因、ABFs上游及下游基因的表达。这些结果说明AtSUC2和AtSUC4参与了ABA信号传导的调节。
     综上所述,AtSUC2和AtSUC4是拟南芥蔗糖转运蛋白基因家族中响应高盐、渗透、低温、干旱胁迫和外源ABA处理诱导的关键基因。它们的缺失导致源叶片蔗糖的积累、根中蔗糖含量的降低,延迟种子的萌发,抑制幼苗的生长。同时,AtSUC2和AtSUC4缺失还抑制理化逆境和ABA处理诱导的基因表达,以及ABF上下游基因的表达。这些结果表明AtSUC2和AtSUC4是植物适应理化逆境的主要调控因子,并且参与ABA依赖的信号转导途径。此外,AtSUC3基因的缺失突变降低理化逆境和外源ABA处理诱导的AtSUC2和AtSUC4表达量的增加。据推测,AtSUC3是一种蔗糖感受器,在感知细胞蔗糖浓度变化后,调节其它蔗糖转运蛋白的活性。本实验的结果也支持这种观点。
Sucrose is the main transport form of carbohydrate in higher plants. The transport direction and partioning efficiency of sucrose influence the plant growth and even are an important factor limiting grain yield. Sucrose transporters (SUCs or SUTs) in plasmalemma as important carriers are primarily responsible for exporting sucrose from source cells, loading and unloading of phloem, and importing sucrose to sink cells, thereby SUCs impact on transport direction, distributing efficiency and distribution of sucrose; and the expression of SUCs are greatly affected by various factors such as endogenous hormone, biotic stress and physicochemical stress. Thus, the further study on the relationship among expression of SUCs gene, environmental factor and hormone is the key to elucidate regulatory mechanism of photoassimilate transport and partioning under environmental stress.
     Sucrose transporters are encoded by a multi-gene family, which is composed of nine AtSUCs in model plant Arabidopsis. They have been identified and can be classified into three distinct subfamilies:SUT1-clade, SUT2-clade and SUT4-clade. The results of gene knockout indicate that complementary effects are detected between some family members and some knockout mutants lead to phenotype variation only under some certain conditions, suggesting that there are differences in the regulatory mechanism of SUCs expression, thus the gene expression of different members also varies in response to environmental stress. ABA is one of important plant hormones and a critical hormone in response to stress, also called stress hormone. It plays a crucial role in plant stress tolerance, including photoassimilate transport and partioning under environmental stress. However, the further study on relationship between SUCs and ABA has not been reported nearly to date.
     In this research,Arabidopsis was used as material, through microarray data and real-time quantitative reverse transcription PCR(qRT-PCR) analyses, we found that the high affinity/low capacity AtSUC2gene and low affinity/high capacity AtSUC4gene were key genes in response to salt, osmotic, drought, low temperature and exogenous ABA in Arabidopsis. The physicochemical stresses and ABA treatments induced the changes of growth, sucrose contents, ABA responsive genes and ABF-downstream and upstream genes in AtSUC2and AtSUC4homozygous mutants. Furthermore, we further discussed the effect and mechanism of AtSUC2and AtSUC4in response to physicochemical stress. We have also explored interaction of gene expression among AtSUC2, AtSUC4and other AtSUCs, and possible mechanism that ABA is involved in regulating the expression of AtSUCs. The main results are as follows:
     1. By the analysis of microarray data, we found that the expression of AtSUC2and AtSUC4gene almost obviously increased in response to salt, osmotic, drought, low temperature, revealing that AtSUC2and AtSUC4may be positive regulators under physicochemical stresses. The expression of AtSUC1and AtSUC5almost markedly decreased in response to4stresses, indicating that AtSUC1and AtSUC5are possible negative regulators under physicochemical stresses. In addition, the expression of AtSUC3was only induced by the stresses at specific treatment times, whereas hardly significant changes in expression were seen for AtSUC6, AtSUC7, AtSUC8and AtSUC9for any stress treatments, suggesting that these genes might have a minor role in plant stress tolerance. Thus, AtSUC2and AtSUC4may be the key genes that positively respond to physicochemical stress.
     2. We further investigated the expression of AtSUC2and AtSUC4by qRT-PCR in WT under salt, osmotic, drought and cold stresses, and found that the expression of two genes enhanced significantly in WT under physicochemical stresses. With the treatment time increasing, the expression of two genes increased first and reached the maximum, and then decreased; and all expression under physicochemical stresses were higher than control. Thses results indicated that4physicochemical stresses induced the high expression of AtSUC2and AtSUC4.
     3. The homozygous mutants of Atsuc2-1, Atsuc2-3, Atsuc3, Atsuc4-1and Atsuc4-2were identified precisely by three primers PCR and reverse transcription PCR (RT-PCR), and5mutants were used as experimental materials of our subsequent investigations.
     4. In the control condition, there was obviously different performance between mutants and WT, for example, lower germination, fewer leaves, shorter roots, and smaller leaf area. Under salt, osmotic and cold stresses, the difference of germination between WT and mutants was more obvious. With the increase of treatment time, the difference of germination reduced gradually. Physicochemical stresses only delayed but not inhibited the germination of seed, thus3stresses had no effect on the final germination percentage of seeds. During seedling stage, these phenotypic differences became more significant with the increase of stress strength, suggesting that the disruption of the AtSUC2and AtSUC4genes led to hypersensitivity to physicochemical stresses.
     5. In the control condition, we found sucrose contents in the mutant shoots closed to each other and were higher than in WT shoots, whereas sucrose contents for the mutant roots were similar and lower than for WT roots. Exposure to salt, osmotic and cold stresses resulted much higher sucrose contents in shoots and roots of WT and mutants compared with sucrose contents in the control condition, much higher sucrose contents in mutant shoots than in WT shoots, and much lower sucrose contents in mutant roots than in WT roots, and the difference was statistically significant. The results indicate that physicochemical stresses inhibit the transport and partioning of sucrose from source leaves to roots, and AtSUC2and AtSUC4play a critical role in the process.
     6. By investigating AtSUC2and AtSUC4expression in Atsuc3under normal and physicochemical stress conditions, we found that disruption of AtSUC3weakened the increase in AtSUC2and AtSUC4expression induced by salt, osmotic, drought and cold stresses, indicating that AtSUC3may be involved in modulating the expression of AtSUC2and AtSUC4under physicochemical stress.
     7. We investigated the expression of AtSUC2and AtSUC4by microarray data and qRT-PCR in WT under exogenous ABA treatment, the results showed that exogenous ABA induced the high expression of AtSUC2and AtSUC4. We found that loss-of-function mutants of AtSUC2and AtSUC4showed hypersensitivity to exogenous ABA during seed germination and seedling growth, such as lower germination, fewer leaves, shorter roots, and smaller leaf area. Exogenous ABA treatments induced higher sucrose content in shoots and lower sucrose content in roots of these mutants compared with WT, revealing that the disruption of the AtSUC2and AtSUC4inhibit the transport of sucrose from source leaves to roots. In addition, disruption of the AtSUC2and AtSUC4also inhibited the ABA-induced expression of many stressES and ABA responsive genes, especially ABFs and ABF-downstream and upstream genes. The results show that AtSUC2and AtSUC4are involved in ABA signal transduction.
     In sum, AtSUC2and AtSUC4are key genes in AtSUC gene family in response to salt, osmotic, drought, cold stresses and exogenous ABA. The loss-of-function mutants of AtSUC2and AtSUC4resulted in accumulation of sucrose in source leaves, decreasing of sucrose contents in roots, the delay of seed germination and inhibition of seeding growth. Furthermore, disruption of the AtSUC2and AtSUC4also inhibited the ABA responsive genes and ABF-downstream and upstream genes. These findings confirmed that AtSUC2and AtSUC4are important regulators in plant physicochemical stress tolerance and operate an ABA-dependent signalling pathway. In addition, disruption of AtSUC3weakened the increase in AtSUC2and AtSUC4expression induced by physicochemical stresses and exogenous ABA. Presumably, AtSUC3is a sucrose sensor, sensing the changes of sucrose concentration in cell and regulating the activity of other AtSUCs; the results in this research also support this opinion.
引文
1.安霞,库来宝,米国华,陈范骏,顾日良,袁力行.2010.玉米根系发育突变体及相关基因研究进.植物营养与肥料学报,16(4):1006-1012.
    2.白宝璋,田纪春,王清连.1996.植物生理学.北京:中国农业科技出版社出版,276.
    3. 白雪梅,张立军,吴晓丹,胡凯,阮燕哗.2006.植物蔗糖转运蛋白.植物生理学通讯,42(6):195-202.
    4.曹仪植,吕忠恕.1983.天然抑制物质的积累与植物不良环境适应性的关系.植物生理学报,25:123-131.
    5.陈贵,胡文玉,谢甫娣,张立军.1991.提取植物体内MDA的溶剂及MDA作为衰老指标探讨.植物生理学通讯,27(1):44-46.
    6. 陈珈,朱美君.1996.玉米根微粒体ABA结合蛋白的性质及逆境胁迫的影响.植物生理学报,22(1):63-68.
    7.陈俊伟,张上隆,张良诚.2002.糖对源库关系的调控与植物信号转导途径.细胞生物学杂志,24:266-270.
    8.陈其军,肖玉梅,王学臣,周海梦.2004.植物功能组研究中的基因敲除技术.植物生理学通讯,40(1):121-126.
    9.陈强.2012.ABA、SA预处理对水分和盐胁迫下水稻DNA甲基化水平的影响.沈阳师范大学.
    10.高蕾,肖文芳,李文燕,彭昌操.2011.拟南芥蔗糖转运蛋(SUTs)的功能研究进展.分子植物育种,9(2):251-255.
    11.龚明.1990.脱落酸对大麦和小麦抗盐性的效应.植物生理学通讯,(3):14-18.
    12.郭建军,胃志文,刘莲蓉.1994.冬小麦灌浆期渗透调节能力的研究.西北农业学报,3:23-26.
    13.郭确,潘瑞炽.1984.脱落酸对水稻幼苗抗冷性的影响.植物生理学报,10(4):295-303.
    14.贺军民,佘小平,张健.2000.番茄种子吸湿-回干处理对盐胁迫伤害的缓解效应.园艺学报,27(2):123-126.
    15.黄德宝,唐朝荣.2010.高等植物蔗糖转运的分子调控.生物技术通报,4:1-5.
    16.黄益洪,汤日圣,叶晓青,童红玉.2009.脱落酸(ABA)对白粒小麦种子萌发及幼苗生 长的影响.麦类作物学报,29(3):503-507.
    17.蒋玲艳,王林果.2006.反向遗传学技术及其应用.医学综述,12(6):323-325.
    18.李建英,郑殿峰,冯乃杰.2003.植物激素与逆境的关系.黑龙江八一农垦大学学报,15(4):35-39.
    19.李莉,韦翔华,王华芳.2007.盐胁迫对烟草幼苗生理活性的影响.种子,26(5):79-83.
    20.李天红,李绍华,张晶.2005.水分胁迫对苹果组培苗14C-光合产物运输和分配的影响.中国农业大学学报,10(5):44-48.
    21.李鑫,章涛.2004.新基因的克隆策略和方法.海峡药学,16(3):16-20.
    22.李智念,王光明,曾之文.2003.植物干旱胁迫中的ABA研究.干旱地区农业研究,21(2):99-104.
    23.李姝睿.2003.盐胁迫对芸豆体内可溶性糖含量的影响.青海师范大学学报,2:65-67.
    24.刘璞,陈珈.2000.植物激素脱落酸的信号转导.植物生理学通讯,36(2):165-169.
    25.刘峙,刘莉,付月灵,张文蔚,简桂良,齐放军.2011.Plant MetGenMAP数据库分析水稻表达谱芯片数据的方法初探.植物保护,3:104-108.
    26.刘祖淇,林定波.1993.ABA/GAS调控特异蛋白质与柑橘的抗寒性.南京农业大学学报,16(1):113-120.
    27.马振东,石艳霞.2010.植物抗寒性的研究进展.林业科技情报,42(1):1-3.
    28.彭金光,孙玉宏,师瑞红,谢国生.2006.低温胁迫对西瓜幼苗耐性生理指标的影响.安徽农业科学,12(10):42-45.
    29.戚继艳,阳江华,唐朝荣.2007.植物蔗糖转运蛋白的基因与功能.植物学通报,24(4):532-543.
    30.秦景,贺康宁,谭国栋,王占林,陈静.2009.NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响.应用生态学报,20(4):791-797.
    31.秦忠彬,赵守仁,张月平.1989.耐盐水稻80-85不同生育期耐盐性的研究.中国农学会、中国农业科学院作物品种资源研究所编.作物抗逆性的原理与技术.北京:北京农业大学出版社,279-281.
    32.尚忠林,傅晓瑞,李云荫.2001.干旱和ABA对同核异质冬小麦叶片蛋白的影响.西北植物学报.21(6):1147-1511.
    33.邵凯.2012.盐胁迫对小麦种子萌发的影响.科学教育,4(18):66-68.
    34.苏维埃.1998.植物对温度逆境的适应.植物生理与分子生物学.北京:科学出版社. 721-738.
    35.孙小芳,郑青松,刘友良.2000. NaCl胁迫对棉花种子萌发和幼苗生长的伤害.植物资源与环境学报,9(3):22-25.
    36.汤日圣,王节萍,童红玉.2003.脱落酸对水稻种子萌发和秧苗生长的调控作用.江苏农业学报,19(2):75
    37.夏凯.1996.脱落酸结合蛋白的纯化与抗体的制备.南京农业大学学报,19:3-8.
    38.肖媛.2006.不同小麦品种种子萌发期耐盐性的研究.安徽农业科学,34(22):5786-5787.
    39.徐福乐,罗立津.2007.ABA对作物种子萌发和幼苗生长的影响.福建农业科学,6:69-71.
    40.王家民,王连君.1996.白根葡萄栽培根系抗寒生理指标的测定分析.葡萄酿酒与栽培,3:8-10.
    41.王利芬,张虎平,张绍铃.2012.植物蔗糖转运蛋白及其功能调节研究进展.植物研究,32(4):501-507.
    42.王玮,李德全,邹琦,李春香.2000.水分胁迫下外源ABA对玉米幼苗根叶渗透调节的影响.植物生理学通讯,36(6):523-526.
    43.王业遴,汪良驹,刘友良.1990.脱落酸提高无花果耐盐性效应(简报).植物生理学通讯,5:21-23.
    44.吴炳江,阎鹏磊,刘东篱,郑成超,杨国栋.2010.拟南芥盐胁迫响应启动子的生物信息学分析.山东农业大学学报(自然科学版),41(2):164-168.
    45.解涛,梁卫平,丁达夫.2000.后基因组时代的基因组功能注释.生物化学与生物物理进展,27:166-170.
    46.杨彩菊,郝大海,杨素祥,王芳,李灿辉,陈善娜.2006.高等植物中的蔗糖载体.植物生理学通讯,42(4):767-776.
    47.杨继涛.2003.植物耐盐性研究进展.中国农学通报,19(6):46-48,51.
    48.张景云,吴风芝.2007.盐胁迫对黄瓜不同耐盐品种膜脂过氧化及脯氨酸含量的影响.中国蔬菜,(7):12-15.
    49.张立军,李晓宇,阮燕晔.2008.双子叶与单子叶植物蔗糖转运蛋白的研究进展.沈阳农业大学学报,39(3):259-264.
    50.张石城,刘祖祺.1999.植物化学调控原理与技术.北京:中国农业出版社出 版.125-130.
    51.张宪政,陈凤玉.1996.植物生理学.吉林科学出版社.164-165.
    52.张晓生.2002.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系.中国农业科学,35(5):498-501.
    53.赵可夫,范海,Harris PJC.1995.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报,37(4):295-300.
    54.赵可夫,刘爱荣.2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,31(4):389-392.
    55.赵旭,王林权,周春菊,尚浩博.2005.盐胁迫对不同基因型冬小麦发芽和出苗的影响.干旱地区农业研究,23(4):108-112.
    56.赵屹,谷瑞升,杜生明.2012.生物信息学研究现状及发展趋势.医学信息学杂志,33(5):2-6.
    57.周桂莲.1998.麦类作物耐盐机制研究进展,西北农业学报,(4):97-101.
    58.朱维琴,吴良欢,陶勤南.2003.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤通报,34(1):25-28.
    59. Aarati P, Krishnaprasad BT, Graneshkumar M, Savitha R, Gopalakrishna, Ramamohan G, Udayakumar M.2003. Expression of an ABA responsive 21 KDa protein in finger millet (Eleusine coracana Gaertn.) under stress and its relevance in stress. Plant Sci.164:25-34.
    60. Abdeen A, Schnell J, Miki B.2010. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3._BMC Genomics,11:69.
    61. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signaling. Plant Cell,15:63-78.
    62. Akihiro T, Mizuno K, Fujimura T.2005. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol,46:937-946.
    63. Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT.2003. The sucrose transporter gene family in rice. Plant Cell Physiol,44:223-232.
    64. Aoki N, Scofield GN, Wang XD, Patrick JW, Offler CE, Furbank RT.2004. Expression and localization analysis of the wheat sucrose transporter TaSUTl in vegetative tissues. Planta, 219:176-184.
    65. Aoki N, Scofield GN, Wang XD, Offler CE, Patrick JW, Furbank RT.2006. Pathway of sugar transport in germinating wheat seeds. Plant Physiol,141:1255-1263.
    66. Aoki N, Hirose T, Furbank RT.2012. Sucrose transport in higher plants:from source to sink. Advances in Photosynthesis and Respiration,34:703-729.
    67. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P.2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gene Dev,14:2085-2096.
    68. Arroyo A, Bossi F, Finkelstein RR, Leon P.2003. Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol,133:231-242.
    69. Assmann SM.2003. OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci,8:151-153.
    70. Barker L, Kiihn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB.2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell,12:1153-1164.
    71. Barth I, Meyer S, Sauer N.2003. PmSUC3:characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. Plant Cell,15:1375-1385.
    72. Baud S, Vaultier MN, Rochat C.2004. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot,55:397-409.
    73. Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, kasuga M, Yamaguchi-Shinozki K, Watanabe KN.2006. The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnol J,23:169-177.
    74. Berg P.1993. Co-chairman' remarkers:reverse genetics:directed modification of DNA for functional analysis. Gene,135:261-264.
    75. Beruter J.1983. Effect of abscisic acid on sorbitol uptake in growing apple fruits. J Exp Bot, 34:737-743.
    76. Bohnert HJ, Jensen RG.1996. Metabolic engineering for increased salt tolerance:the next step. Aust J Plant Physiol,23:661-667.
    77. Boudsocq M, Barbier-Brygoo H, Lauriere C.2004. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem,279:41758-41766.
    78. Buchanan BB, Gruissem W, Jones RL.2000. Biochemistry&Molecular Biology of Plants. Rockville:American Society of Plant Physiologists,25:748-776.
    79. Bush DR.1989. Proton-coupled sucrose transport in plasmalemma vesicles isolated from sugar beet (Beta vulgaris L. cv Great Western) leaves. Plant Physio 1,89:1318-1323.
    80. Bush DR.1993. Inhibitors of the proton-sucrose symport. Arch Biochem Biophys,307(2): 355-360.
    81. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT.2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem,55(4):611-22.
    82. Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R.2003. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell,15:2165-2180.
    83. CamPbell JL, Klueva NY, Zheng HG, Nieto-Sotelo J, Ho THD, Nguyen HT.2001. Cloning of new members of heat shock Protein HSP101 gene family in wheat [Triticum aestivum(L.) Moench] indueible by heat, dehydration, and ABA. Biochim Biophys Acta,1517: 270-277.
    84. Chinnusamy V, Jagendorf A, Zhu JK.2005. Understanding and improving salt tolerance in plants. Crop Sci,45:437-448.
    85. Chen CW, Yang YW, Lur HS, Tski YG, Chang MC.2006. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol, 47:1-13.
    86. Chen H, Zhang JY, Neff MM, Hong SW, Zhang HY, Deng XW, Xiong LM 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci,105:4495-4500.
    87. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB.2012. Sucrose efflux mediated by SWEET Proteins as a key step for phloem transport. Science,335: 207-211.
    88. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J.2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell,14: 2723-2743.
    89. Chiou TJ, Bush DR.1998. Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA,95:4784-4788.
    90. Choi H, Hong J, Ha J, Kang J, Kim S Y.2000. ABFs, a family of ABA-responsive element binding factors. J Biol Chem,275:1723-1730.
    91. Christensen AH, Sharrock RA, Quail PH.1992. Maize polyubiquitin genes:structure thermal perturbation of expression and transcript splicing and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol,18(4):675-689.
    92. Coello P, Hirano E, Hey SJ, Muttucumaru N, Martinez-Barajas E, Parry MAJ, Halford NG. 2012. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. J Exp Bot,63: 913-924.
    93. Davies WJ, Zhang J.1991. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol,42:55-76.
    94. Decourteix M, Alves G, Brtmel N, Ameglio T, Guiliiot A, Lemoine R, Petei G, Sakr S.2006. JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree(Juglans regia L.) Plant Cell Environ, (29):36-47.
    95. Dekkers BJW, Schuurmans JA, Smeekens SC.2008. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol, 67:151-167.
    96. Deol K.2012. Molecular cloning and functional characterization of a new Sucrose transporter in hexaploid wheat (Triticum aestivum L.). http://hdl.handle.net/1993/8128.
    97. Diedhiou CJ, Popova OV, Dietz KJ, Golldack D.2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol, 8:49.
    98. Doidy J, Grace E, Kiihn C, Simon-Plas F, Casieri L, Wipf D.2012. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci,17:413-422.
    99. Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG.2006. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol,141: 196-207.
    100.Farrar J, Pollock C, Gallagher J.2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci,154(1):1-11.
    101.Frost CJ, Nyamdari B, Tsai CJ, Harding SA.2012. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PloS One,7(8):e44467.
    102.Fujii H, Verslues PE, Zhu JK.2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis, Plant Cell,19(2):485-494.
    103.Fujii H, Zhu JK.2012. Osmotic stress signaling via protein kinases. Cell Mol Life Sci,69: 3165-3173.
    104.Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Iran LS, Yamaguchi-Shinozaki K, Shinozaki K.2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J,39:863-876.
    105.Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K.2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell,17:3470-3488.
    106.Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K.2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res,124:509-525.
    107.Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.2006. ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci,103:1988-1993.
    108.Gahrtz M, Schmelzer E, Stolz J, Saner N.1996. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development. Plant J,9(1):93-100.
    109.Gibson SI, Laby RJ, Kim D.2001. The sugar-insensitive 1 (sisl) mutant of Arabidopsis is allelic to ctrl. Biochem Biophys Res Commun,280:196-203.
    PJ, Young JC, Evert RF, Sussman MR.2000. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA,97:13979-13984.
    111.Gould N, Thorpe MR, Pritchard J, Christeller JT, Williams LE, Roeb G, Schurr U, Minchin PEH.2012. AtSUC2 has a role for sucrose retrieval along the phloem pathway:Evidence from carbon-11 tracer studies. Plant Sci,188-189:97-101.
    112.Grieve CM, Francois LE, Maas EV.1994. Salinity affects the timing of phasic development in spring wheat. Crop Sci,34(6):1544-1549.
    113. Grieve CM, Lesch SM, Maas EV, Francois LE.1993. Leaf and spikelet primordia initiation in salt-stressed wheat. Crop Sci,33(6):1286-1294.
    114.Gupta AK, Kaur N.2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci,30:761-776.
    115.Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, Zhang JZ.2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol,130: 639-648.
    116.Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kuhn C.2006. Sucrose transporter LeSUTl and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J, 45:180-192.
    117.Hanson J, Smeekens S.2009. Sugar perception and signaling-an update. Curr Opin Plant Biol,12:562-567.
    118.Harrington, Gregory N.2002. Cloning of AtSUT6/AtSUC6, a member of a new sub-class of sucrose transporter from Arabidopsis thaliana. http://www.aspb.org/.
    119.Hellebust J A.1976. Osmoregulation. Asn Rev. Plant Physiol,27:485-505.
    120.Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB.2010. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol,167:1512-1520.
    121.Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT.2010. A tomato bZIP transcription factor, S1AREB, is involved in water deficit and salt stress response. Planta, 231:1459-1473.
    122.Huang XS, Liu JH, Chen XJ.2010. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol,10:230.
    123.Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S.2000. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J,23:577-585.
    124.Ibraheem O, Dealtry G, Roux S, Bradley G. 2011. The effect of drought and salinity on the expressional levels of sucrose transporters in rice(Oryza sativa Nipponbare) cultivar plants. Plant Omics Journal,4(2):68-74.
    125.Ikegami K, Okamoto M, Seo M, Koshiba T.2009. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res,122(2): 235-243.
    126.Jin XF, Xiong AS, Peng RH, Liu JG, Gao F, Chen JM, Yao QH.2010. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep,43:34-39.
    127.Kabir MH, Qadir SA, Hassan SHA, Ahn J, Wang M-H.2008. RNAi:An emerging field of molecular research. Afr J Biotechnol,7(25):4784-4788.
    128.Kang JY, Choi HI, Im MY, Kim SY.2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell,14:343-357.
    129.Kang Y, Outlaw WH, Fiore GB, Riddle KA.2007. Guard cell apoplastic photosynthate accumulation coresponds to a phloem-loading mechanism. J Exp Bot,58:4061-4070.
    130.Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S.2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell,15:411-423.
    131.Kim S, Kang JY, Cho DI, Park JH, Kim SY.2004. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J,40:75-87.
    132.Kim SY.2006. The role of ABF family bZIP class transcription factors in stress response. Physiol Plant,126:519-527.
    133.Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K.1994. Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol,35:225-231.
    134.Knop C, Stadler R, Sauer N, Lohaus G.2004. AmSUT1, a sucrose transporter in collection and transport phloem of the putative symplastic phloem loader A lonsoa meridionalis. Plant Physio,134(1):204-214.
    135.Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T.2004. Differential activation-of the rice sucrose nonfermentingl-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell,16:1163-1177.
    136.Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR.2004. Abscisic Acid Induces CBF Gene Transcription and Subsequent Induction of Cold-Regulated Genes via the CRT Promoter Element. Plant Physiol,135:1710-1717.
    137.Kuhn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB.1997. Macromoleeular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science,275:1298-1300.
    138.Kuhn C, Barker L, Biirkle L, Frommer WB.1999. Update on sucrose transport in higher plants. J Exp Bot,50:935-953.
    139.Kuhn C, Grof CP.2010. Sucrose transporters of higher plants. Curr Opin Plant Biol,13: 288-298.
    140.Kurkela S, Borg-Franck M.1992. Structure and expression of KIN2, one of two cold-and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol,19:689-692.
    141.Krasensky J, Jonak C.2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot,63 (4):1593-1608.
    142.Laby RJ, Kincaid MS, Kim D, Gibson SI.2000. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J,23:587-596.
    143.Lalonde S, Wipf D, Frommer WB.2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Ann Rev Plant Biol,55:341-372.
    144.Levitt J.1980. Responses of plant to environmental stress. Academic Press. New York, 131-134.
    145.Lemoine R, Kuhn C, Thiele N, Delrot S, Frommer WB.1996. Antisense inhibition of the sucrose transporter in potato:effects on atnount and activity. Plant Cell Environ,19: 1124-1131.
    146.Lemoine R.2000. Sucrose transporters in plants:update on function and structure. Biochim Biophys Acta,1465(1-2):246-262.
    147.Leung J, Merlot S, Giraudat J.1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell,9:759-771.
    148.Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S.2011. Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci USA,108:3436-3441.
    149.Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Shinozaki YS, Shinozaki K.1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell,10: 1391-1406.
    150.Lorenzo O, Chico JM, Serrano JJ, Solano R.2004. JASMONATE-INSENSITIVE I encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell,16:1938-1950.
    151.50. Ludwig A, Stolz J, Sauer N.2000. Plant sucrose-H+ symporters mediate the transport of vitamin H. Plant J,24(4):503-509.
    152.Lundmark M, Cavaco AM, Trevanion S, Hurry V.2006. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature:a role for metabolite transporters. Plant Cell Environ,29:1703-1714.
    153.Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E.2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science,324:1064-1068.
    154.Magome H, Yamaguch S, Hanada A, kamiya Y, Oda k.2004. dwarf and delayedflower ing 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J,37:720-729.
    155.Mao X, Zhang H, Tian S, Chang X, Jing R.2010. TaSnRK2.4, an SNFl-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot,61(3):683-396.
    156.Martens HJ, Roberts AG, Oparka KJ, Schulz A.2006. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol,142:471-480.
    157.Matsuil A, Ishidal J, Morosawal T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M.2008. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol,49: 1135-1149.
    158.Matsukura CA, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J.2000. Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol,124:85-93.
    159.McElroy D, Blowers AD, Jenes B, Wu R.1991 Construction of expression vectors-based-on the rice actin 1(Act1) 5'region for use in monocot transformation. Mol Gen Genet, 231(1):150-160
    160.Meng FZ, Hu LP, Wang SH, Sui XL, Wei L, Wei YX, Sun JL, Zhang ZX.2008. Effects of exogenous abscisic acid (ABA) on cucumber seedling leaf carbohydrate metabolism under low temperature. Plant Growth Regul,56:233-244.
    161.Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund RD, Sauer N.2004. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiol,134:684-693.
    162.Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J.2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science,300:332-336.
    163.Munns R.1993. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses. Plant Cell Environ,16:15-24.
    164.Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J.2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell,14:3089-3099.
    165.Napoli C, Lemieux C, Joregnsen R.1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell,2:279-289.
    166.Nakashima K, Ito Y, Yamaguchi-Shinozaki K.2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol,149:88-95.
    167.Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaka K.2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J,34:137-148.
    168.Noiraud N, Delrot S, Lemoine R.2000. The sucrose transporter of celery. Identification and expression during salt stress. Plant Physiol,122:1447-1455.
    169.Odell J T, Nagy F, Chua N H.1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature,3(13):810-812.
    170.Oliver AW, Jones SA, Roe SM, Matthews S, Goodwin GH, Pearl LH.2005. Crystal structure of the proximal BAH domain of the polybromo protein. Biochem J,389:657-664.
    171.Oliver SN, Dennis ES, Dolferus R.2007. ABA Regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol,48: 1319-1330.
    172.Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, RuizLara S, Casaretto JA.2010. The transcription factor S1AREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ,33:2191-2208.
    173.Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S.2004. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell,16:1912-1924.
    174.Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S.2005. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol,139:1185-1193.
    175.Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM.2011. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol,2011,156(2):537-549.
    176.Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutlerl SR.2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science,324:1068-1071.
    177.Peng CC, Xu YH, Xi RC, Zhao XL.2011. Expression, subcellular localization and phytohormone stimulation of a functional sucrose transporter (MdSUTl) in apple fruit. Scientia Horticulturae,128:206-212.
    178.Pommerrenig B, Papini-Terzi FS, Sauer N.2007. Differential regulation of sorbitol and sucrose loading into the phloem of plant ago major in response to salt stress. Plant Physiol, 144:1029-1038.
    179.Pommerrenig B, Popko J, Heilmann M, Schulmeister S, Dietel K, Schmitt B, Stadler R, Feussner I, Sauer N.2013. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation. Plant J,73(3):392-404.
    180.Pontier D, Miao ZH, Lam ET.2001. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J,27(6):529-538.
    181.Ramakers C, Ruijter J.M, Deprez R.H, Moorman AF.2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett,339:62-66.
    182.Raghavendra AS, Gonugunta VK, Christmann A, Grill E.2010. ABA perception and signalling. Trends Plant Sci,15:395-401.
    183.Reinders A, Schulze W, Kiihn C, Barker L, Schulz A, Ward JM, Frommer WB.2002. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. Plant Cell,14:1567-1577.
    184.Reinders A, Sivitz A, Starker CG, Gantt JS, Ward JM.2008. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol Biol,68:289-299.
    185.Riesmeier JW, Willmitzer L, Frommer WB.1992. Isolation andcharacterization of a sucrose carrier cDNA from spinach byfunctional expression in yeast. EMBO J,11: 4705-4713.
    186.Riesmeier JW, Hirner B, Frommer WB.1993. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell,5:1591-159.
    187.Riesmeier JW, Willmitzer L, Frommer WB.1994. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J,13:1-7.
    188.Rikin A, Atsmon D, Gitter C.1979. Chilling injury in cotton:Pervention of abscisic acid. Plant Phsiol,20:1537-1546.
    189.Rolland F, Baena-Gonzalez E, Sheen J.2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. The Annu Rev Plant Biol,57:675-709.
    190.Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW.2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J,26:421-433.
    191.Rook F, Hadingham S.A, Li Y, Bevan M.W.2006. Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ,29:426-434.
    192.Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS.2010. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat. Mol Plant,3:942-955.
    193.Sahrawy M, Avila C, Chueca A, Canovas FM, Lopez-Gorge J.2004. Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J Exp Bot,55:2495-2503.
    194.Sakuma Y, Liu Q. Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K.2002. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration-and Cold-Inducible Gene Expression. Biochem Biophys Res Commun,290:998-1009.
    195.Samy B, Arnon R, Richmond AF.1975. The role of abscisic acid in gross adaptation of tobacco plants. Plnat Physiol,56:337-339.
    196.Sauer N, Stolz J.1994. SUC1 and SUC2:two sucrose transporters from Arabidopsis thaliana:expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant J,6:67-77.
    197.Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Klebl F.2004. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J,40: 120-130.
    198.Sauter A, Davies WJ, Hartung W.2001. The long-distance abscisic acid signal in the droughted plant:the fate of the hormone on its way from root to shoot. J Exp Bot,52: 1991-1997.
    199.Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU.2005. A gene expression map of Arabidopsis thaliana development. Nat Genet,37:501-506.
    200.Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Biittner M, Schneider S, Sauer N, Hedrich R.2011. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J,68:129-136.
    201.Schulze W, Weise A, Frommer WB, Ward JM.2000. Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity. FEBS Letters,485:189-194.
    202.Schulze WX, Reinders A, Ward J, Lalonde S, Frommer WB.2003. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochem,4:3.
    203.Schussler JR, Brenner ML, Brun WA.1984. Abscisic acid and its relationship to seed filling in soybeans. Plant Physiol,76:301-306.
    204.Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CD, Furbank RT.2007. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot,58:483-495.
    205.Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT.2012. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol,160:556-568.
    206.Shakya R, Sturm A.1998. Characterization of source-and sink-specific sucrose/H+ symporters from carrot. Plant Physiol,118(4):1473-1480.
    207.Shen Q, Zhang P, Ho THD.1996. Modular nature of abscisic acid (ABA) response complexes:composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell,8:1107-1119.
    208.Shin R, Alvarez S, Burch A.Y, Jez JM, Schachtman DP.2007. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA,104(15): 6460-6465.
    209.Shinozaki K, Yamaguchi-Shinozaki K.2000. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,3:217-223.
    210.Shinozaki K, Yamaguchi-Shinozaki K, Seki M.2003. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,6:410-417.
    211.Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CP, Perroux JM, Ward JM.2007. Arabidopsis sucrose transporter AtSUC9, high-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol,143:188-198.
    212.Sivitz AB, Reinders A, Ward JM.2008. Arabidopsis sucrose transporter AtSUC 1 is important for pollen germination and sucrose-induced a anthocyanin accumulation. Plant Physiol,147:92-100.
    213.Slewinski TL, Meeley R, Braun DM.2009. Sucrose transporter functions in phloem loading in maize leaves. J Exp Bot,60(3):881-892.
    214.Smeekens S, Rook F.1997. Sugar sensing and sugar mediated signal transduction in plants. Plant Physiol,115(3):7-13.
    215.Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P.2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol,140:637-646.
    216.Sowinski P, Dalbiak A, Tadeusiak J, Ochodzki P.1999. Relations between carbohydrate accumulation in leaves, sucrose phosphate synthase activity and photoassimilate transport in chilling treated maize seedlings. Acta Physiol Plant,21:375-381.
    217.Sowinski P, Richner W, Soldati A, Stamp P.1998. Assimilate transport in maize (Zea mays L.) seedlings at vertical low temperature gradients in the root zone. J Exp Bot,49:747-752.
    218.Sowinski P, Rudzinska-Langwald A, Dalbiak A, Sowinska A.2001. Assimilate export from leaves of chillingtreated seedlings of maize. Plant Physiol Bioch,39:881-889.
    219.Spollen WG, Lenoble ME, Samuels TD, Bemstein N, Sharp RE.2000. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol,122:967-976.
    220.Srivastava AC, Ganesan S, Ismail IO, Ayre BG.2008. Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol,148: 200-211.
    221.Srivastava AC, Ganesan S, Ismail IO, Ayre BG.2009a. Effective carbon partitioning driven by exotic phloem-specific regulatory elements fused to the Arabidopsis thaliana AtSUC2 sucrose-proton symporter gene. BMC Plant Biol,9:7.
    222.Srivastava AC, Dasgupta K, Ajieren E, Costilla G, McGarry RC, Ayre BG.2009b. Arabidopsis plants harbouring a mutation in AtSUC2, encoding the predominant sucrose/proton symporter necessary for efficient phloem transport, are able to complete their life cycle and produce viable seed. Ann Bot,104:1121-1128
    223.Stadler R, Brandner J, Schulz A.1995. Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell,7:1545-1554.
    224.Stadler R, Sauer N.1996. The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot Acta,109:299-306.
    225.Stadler R, Truernit E, Gahrtz M, Sauer N.1999. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J,19:269-278.
    226.Stockinger EJ, Gilmour SJ, Thomashow MF.1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,94:1035-1040.
    227.Sylvie L, Eckhard B, Hanjo H.1999. The dual function of sugar carriers:transport and sugar sensing. Plant Cell,11:707-726.
    228.Tanner W.1980. On the possible role of ABA on phloem unloading. Berichte der Deutschen botanischen Gesellschaft,93:349-351.
    229.Trouverie J, Chateau-Joubert S, Thevenot C, Jacquemot MP, Prioul JL.2004. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots of maize plantlets. Planta, 219(5):894-905.
    230.Truernit E, Sauer N.1995. The promoter of the Arabidopsis thaliana SUC2 sucrose/H+ symporter gene directs expression of beta-glucuronidase to the phloem:evidence for phloem loading and unloading by SUC2. Planta,196:564-570.
    231.Turner N C.1979. Drought resistance and adaptation to water deficits in crop plants. New York:John Wiley and Sons,343-372.
    232.Umezawa T, Yoshida R,Maruyama K, Yamaguchi-Shinozaki K, and Shinozaki K.2004. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 101(49):17306-17311.
    233.Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K.2010. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport. Plant Cell Physiol,51:1821-1839.
    234.Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA,97:11632-11637.
    235.Urano K, Kurihara Y, Seki M, Shinozaki K.2010.'Omics'analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol,13:132-138.
    236.van der Graaff E, Hooykaas PJ, Keller B.2002. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J,32(5): 819-830.
    237.Velculescu VE, Zhang L, Vogelstein B.1995. Serial analysis of gene expression. Science, 270(5235):484-487.
    238.Velculescu VE.1997. Characterization of the yeast transcriptome. Cell,88:243-251.
    239.Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C, Merlot S.2009. Protein phosphatases 2C regulate the activation of the Snfl-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell,21:3170-3184.
    240.Vreugdenhil D.1983. Abscisic acid inhibits phloem loading of sucrose. Physiol Plant,57: 463-467.
    241.Wang Q.2003. Analysis of sugar transport-related gene products expressed in developing seeds of Vicia faba and Hordeum vulgare. Halle-Wittenberg:Martin-Luther-Universitat.
    242. Ward JM, Kiihn C, Tegeder M, Frommer WB.1998. Sucrose transport in higher plants. Int Rev Cytol,178:41-71.
    243.Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I.1995. Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium. Electrophoresis,16(7):1090-1094.
    244.Weatherwax SC, Ong MS, Degenhardt J, Bray EA, Tobin EM.1996. The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol,111: 363-370.
    245.Weber H, Borisjuk L, Heim U, Sauer N, Wobus U.1997. Arole for sugar transporters during seed development:molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell,9:895-908.
    246.Weig A, Komor E.1996. An active sucrose carrier (Scr1) that is predominantly expressed in the seedling of Ricinus communis L. J Plant Physiol,147:685-690.
    247.Weise A, Barker L, Kiihn C, Lalonde S, Buschmann H, Frommer W.B, Ward J.M.2000. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell,12:1345-1355.
    248.Weise A, Lalonde S, Kuhn C, Frommer WB, Ward JM.2008. Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol,68(3):251-262.
    249.Wilkinson S, Davies WJ.2002. ABA-based chemical signalling:the co-ordination of responses to stress in plants. Plant Cell Environ,25:195-210.
    250.Williams LE, Lemoine R, Sauer N.2000. Sugar transporters in higher plants:a diversity of roles and complex regulation. Trends Plant Sci,5:283-290.
    251.Wohlbach DJ, Quirino BF, Sussmand MR.2008. Analysis of the Arabidopsis Histidine Kinase ATHK1 Reveals a Connection between Vegetative Osmotic Stress Sensing and Seed Maturation. Plant Cell,4 (20):1101-1117.
    252.Wyse R.E, Daie J, Saftner R.1980. Hormonal control of sink activity in sugar beet. Plant Physiol,65(Suppl):662.
    253.Xiong L, Schumaker KS, and Zhu JK.2002. Cell signaling during cold, drought, and salt stress. Plant Cell, (Suppl):S165-S183.
    254.Xin L, Li PH.1992. Abscisic acid-indueed chilling tolerance in maize suspension cultured cells. Plant Physiol,99:707-711.
    255.Xue GP, McIntyre CL, Glassop D, Shorter R.2008. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol,67:197-214.
    256.Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S.2005. A Basic helix-loophelix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell,17:1953-1966.
    257.Yamaguchi-Shinozaki K, Shinozaki K.1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,6:251-264.
    258.Yamaguchi-Shinozaki K, Shinozaki K.2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci,10:88-94.
    259.Yamaguchi-Shinozaki K, Shinozaki K.2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,57: 781-803.
    260. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J.R, Shinozaki K.2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol,43:1473-1483.
    261.Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K.2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem,281:5310-5318.
    262.Yu H, Kumar PP.2003. Post-transcriptional gene silencing in plants by RNA. Plant Cell, 22(3):167-17.
    263. Yu SM.1999. Cellular and genetic responses of plants to sugar starvation. Plant Physiol, 121:687-693.
    264.Zhang HY, Mao XG, Jing RL.2011. SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat. Plant Signal Behav,6:652-654.
    265.Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW. 2010. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol,153:99-113.
    266.Zhou L, Jang JC, Jones TL, Sheen J.1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA, 95:10294-10299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700