用户名: 密码: 验证码:
超高盐榨菜废水微电解—电解预处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高盐榨菜废水具有高盐度、低pH、高有机物和高氮磷的特点,以及存在氮杂环类等难降解有机污染物。目前,榨菜废水主要采用生物法处理,但废水的高盐度和盐度波动,影响生物处理系统的稳定性。因此,考虑通过物化预处理方法,降低盐度、提高pH、去除难降解有机物,利于后续生物处理。开展超高盐榨菜废水物化预处理工艺研究,考察微电解、二维电解和三维电极法物化预处理单元的可行性,进行工艺优化和机理研究,研究“三级微电解-二维电解”物化预处理组合工艺处理效能,进行“三级微电解-生物”物化-生物组合工艺试验研究。
     微电解单因素试验得出,在原水pH、铁水体积比1:1、铁炭体积比1:1和反应时间30min时,去除效果较佳,COD、氨氮、磷酸盐和TN去除率分别为36%-45%、34%-42%、97%-99.9%和34%-53%,盐度去除率为22%-25%,出水pH升高1-2;多级微电解串联试验表明,串联级数为3时去除效果提高显著;正交试验表明,各因子对COD和氨氮去除率影响顺序为:铁水体积比>初始pH>反应时间>铁炭体积比。填料扫描电镜和能谱分析发现,反应后铁炭表面被沉淀物覆盖,自来水冲洗后,沉淀物减少,填料恢复活性;反应后铁炭表面出现Na、P和Cl;沉淀产物XRD结果表明,磷酸盐是以Fe3(PO4)2沉淀形式被去除。
     微电解机理研究表明,在原电池反应、氧化还原、电附集、铁离子絮凝沉淀和氢气气浮等共同作用下,有机污染物被降解转化或去除。GC-MS结果表明,原水中有机污染物大部分含有苯环,其中氮杂环化合物5种,氮硫杂环化合物1种,酚类3种,均为难降解污染物,预处理出水有机物种类去除率53.8%,其中氮杂环化合物种类去除率80%。有机物相对分子量结果表明,微电解可使大分子有机物转化为小分子有机物,并去除部分小分子有机物。因此,微电解法对超高盐榨菜废水中的难降解有机物具有良好的去除效果。
     二维电解单因素试验表明,在原水pH、电流密度156mA/cm2、极板间距1.5cm、极水比0.8dm2/L、电解时间120min时,去除效果较佳,COD、氨氮和磷酸盐去除率分别为55.74%、99.77%和88.71%,pH由5.07升高为9.54,盐度由7.02%下降为6.39%;通过电流密度对氨氮和COD能耗和阳极效果的影响分析,得出氨氮可以采用前期高电流密度,后期低电流密度的运行模式电解,在电流密度156mA/cm2,电解30min时,氨氮能耗最低96kW·h/Kg,阳极效率最高8.47g/h·m2·A;电流密度为156mA/cm2时,COD能耗最低和阳极效率最高。三维电极单因素试验表明,在原水pH、废水600mL、电流8A、活性炭填充量250g、极板间距6.5cm、电解时间150min时,处理效果较佳,COD、TN和磷酸盐去除率分别为76.47%、89.48%和97.81%;电流为8A时,COD能耗较低和阳极效率较高。
     电解机理研究表明有机污染物是在直接氧化和间接氧化共同作用下降解的。通过电解过程中过氧化氢和游离氯检测发现,榨菜废水中过氧化氢和游离氯浓度明显低于氯化钠溶液,表明有机物降解过程中消耗了大量过氧化氢和游离氯,与间接氧化过程有关。GC-MS结果表明,电解出水污染物出峰位置与原水的相比有所变化,多环有机物全部转化为单环或直链结构有机物,说明在电解过程中,难降解有机物被降解转变为易降解中间产物。有机物相对分子量分布表明,二维电解也可使大分子有机物转化为小分子有机物,同时去除部分小分子有机物。三维电极UV-Vis分析认为部分有机物可能被直接氧化为二氧化碳。因此,电解法可转化去除废水中难降解有机污染物。
     在微电解、二维电解和三维电极法三种物化预处理小试试验基础上,进一步开展“三级微电解-二维电解”物化预处理组合工艺小试和中试研究,中试出水COD、氨氮、TN和磷酸盐去除率分别为79.41%、86.08%、81.71%和99.65%,pH由4.37升高为6.87,盐度由6.53%下降为2.09%。可知,该组合工艺出水盐度下降,pH升高,COD和氮磷浓度降低,适宜采用生物法处理。
     由物化-生物组合工艺试验可知,三级微电解预处理对后续厌氧、好氧和厌氧-好氧生物组合处理有利。“三级微电解-厌氧生物膜-接触氧化”组合工艺出水COD浓度为230-420mg/L,达到《污水综合排放标准》(GB8978-1996)三级排放标准,具有良好的应用前景。
The characteristic of the ultrahigh-salt tuber mustard wastewater were ultra-highsalt, low pH, high organic matter, high nitrogen and phosphorus and the heterocyclerefractory organic pollutants. At present, the tuber mustard wastewater was mainlytreated by biological process, but ultrahigh-salt and salinity fluctuation would affect thebiological treatment systemstability. Therefore, it is considered to meet the subsequentbiological treatment requirements through the the physicochemical pretreatment toreduce salinity, increase the pH, removal of refractory organics. Physicochemicaltreatments of ultrahigh-salt tuber mustard wastewater were researched, includingmicro-electrolysis, two-dimensional electrolysis and three-dimensional electrolysis. Thetreatment efficiency of “three micro-electrolysis-two-dimensional electrolysis” and“three micro-electrolysis-biochemical process’ were studied.
     The micro-electrolysis experiments found that under the condition of raw water pH,Fe/C volume ratio of1:1, Fe/H2O volume ratio of1:1and reaction time of30min,removals of COD, ammonia, phosphate, TN and salinity were36%-45%,34%-42%,97%-99.9%,34%-53%and22%-25%, meanwhile, the effluent pH increased1-2. Theseries of multi-level micro-electrolysis experiments showed that the removal efficiencyincreased significantly at the level of three. The orthogonal tests showed that each factoron the order of COD and ammonia removal rates were as follow: Fe/H2O volume ratio>initial pH>reaction time>Fe/C volume ratio. The SEM analysis showed that thesurface of iron and carbon after reaction were covered by lots of sediment, after waterbackwash, the sediment decreased, the activity of iron and carbon recovered. The SEManalysis showed that the surface of iron and carbon after reaction increased Na, P and Cl.The XRD result of precipitation product indicated that phosphate was removed byFe3(PO4)2.
     The mechanism of micro-electrolysis had shown that organic pollutants weredegraded by the combined effects of chemical battery reaction, oxidation-reduction,filtration-adsorption, flocculation-precipitation and air floatation. The GC-MS resultsshowed that the organic pollutants of raw wastewater containing benzene ring werebiodegradable pollutants, including five kinds of heterocyclic compounds, one kind ofnitrogen and sulfur heterocyclic compounds, three kinds of phenols. The removal rate oforganic matter was53.8%by micro-electrolysis pretreatment, with heterocyclic compounds removal efficiency of80%. The organic molecular weight distributionexplained that the micro-electrolysis could convert macromolecular organics into smallorganic molecules, with the removal of some small organic molecules. Refractoryorganics in ultrahigh-salt tuber mustard wastewater were effectively removed bymicro-electrolysis.
     The two-dimensional electrolysis experiments found that under the optimalconditions of raw water pH, current density of156mA/cm2, electrode distance of1.5cm and electrode plate area/water volume ratio of0.8dm2/L, removals of COD,ammonia and phosphate were55.74%,99.77%and88.71%within120min. In addition,pH increased from5.07to9.54, the salinity decreased from7.02%to6.39%. Theanalysis of the current density on energy consumption and anode efficiency indicatedthat ammonia can use the electrolysis mode of pre-high and late-low current density.Under current density of156mA/cm2and electrolysis of30min, the ammonia energyconsumption was lowest96kW·h/Kg, the ammonia anode efficiency was highest8.47g/h·m2·A. Under current density156mA/cm2, the COD energy consumption was thelowest and the COD anode efficiency was the highest. The three-dimensionalelectrolysis tests found that under the condition of wastewater volume of600mL, rawwater pH, electrolysis current of8A, amount of activated carbon filling quantity of250g, distance between main electrode plates of6.5cm, electrolysis time of150min,removals of COD,TN and phosphate were76.47%,89.48%and97.81%. Under current8A, the COD energy consumption was lower and the COD anode efficiency was higher.
     The mechanism of electrolysis had shown that organic pollutants were degradedtogether in the direct oxidation and indirect oxidation. Through hydrogen peroxide andfree chlorine tests in the electrolysis process, found that hydrogen peroxide and freechlorine concentrations in ultrahigh-salt tuber mustard wastewater were significantlylower than in the sodium chloride solution, during the organic degradation processconsumed a lot of hydrogen peroxide and free chlorine, relating to the indirect oxidationprocess. The GC-MS results showed that the pollutants peak position of electrolyticeffluent were different of the raw water’s. The polycyclic organic matters werecompletely converted to organic compounds of a single ring or straight-chain structure.In the electrolysis process, biodegradable organic matters were changed into easilydegradable middleproduct. The organic molecular weight distribution showed that thetwo-dimensional electrolysis could convert macromolecular organics into small organicmolecules, with the removal of some small organic molecules. The wavelength scan of three-dimensional electrode indicated that a part of the organic matters were directlyoxidized to carbon dioxide. Refractory organics in ultrahigh-salt tuber mustardwastewater were also effectively removed by electrolysis.
     On the basis of micro-electrolysis, two-dimensional electrolysis andthree-dimensional electrode tests, the physicochemical combined process "threemicro-electrolysis-two-dimensional electrolysis" were further studied. The pilot testsof combined process showed that the removals of COD, ammonia, TN and phosphatewere79.41%,86.08%,81.71%and99.65%, pH increased from4.37to6.87, salinitydecreased from6.53%to2.09%. The effluent of physicochemical combined processwas suitable for biological treatment.
     The combination of physicochemical and biological tests showed that the threemicro-electrolytic pretreatment of water was conducive to the following anaerobic,aerobic and anaerobic-aerobic biological combination treatment.The effluent COD of“three micro-electrolysis-anaerobic biofilm-contact oxidation” combined process was230-420mg/L, achieved the three emission standard of “integrated WastewaterDischarge Standard”(GB8978-1996). The “micro-electrolysis-anaerobic biofilm-contact oxidation” combined process had a good prospect.
引文
[1] Lawton G W. Effect of high sodium chloride concentration trickling filter slimes[J]. Sewage andIndustrial Wasters,1957,29(11):1228-1236.
    [2]武周虎,张国辉,武桂芝.香港利用海水冲厕的实践[J].中国给水排水,2000,16(11):49-50.
    [3]陈长兴,付天华.油气田含盐水淡化和污水除盐现状及发展[J].油气田环境保护,1997,7(2):41-43.
    [4] C. Dahl C. Sund, G.H. Kristensen, etal. Combined biological nitrification and denitrificationof High-salinity wastewater[J]. Wat. Sci. Tech.,1997,6(2):345-352
    [5]何炳光.我国海水利用现状、问题及对策建议[J].节能与环保,2004,4:15-17,18.
    [6]曾朝银.高盐高氮高有机浓度榨菜废水脱氮除磷技术试验研究[D].重庆:重庆大学,2005.
    [7]雷中方.高浓度钠盐对废水生物处理系统的失稳影响综述[J].工业水处理,2000,20(4):6-10.
    [8]韩墨菲,杨景亮.高含盐有机废水生物处理技术现状及进展[J].环保与安全,2007,30(11):59.
    [9] Ingram M S. The influence of sodium chloride and temperature on the endogenous respirationof bacilluscereus[J]. Journ. Bacter.,1939,38:613-618.
    [10]李玲玲,郑西来,李梅.盐度对活性污泥驯化前后生物活性的影响[J].城市环境与城市生态,2007,12(6):36-38.
    [11] Karg F. Empirical models for biological treatment of saline wastewater in rotating biodisccontactor[J]. Process Biochemistry,2002,38(3):399-403.
    [12] Windey K, Boid, Verstraete W. Oxygen-limited autotrophicnitrification-denitrification(OLAND) in a rotating biological contactor treating high-salinitywastewater[J]. Water Research,2005,39(18):4512-4520.
    [13]周健,曾朝银,龙腾锐等.高盐高氮榨菜废水生物脱氮试验研究[J].环境科学学报,2005,25(12):1636-1640.
    [14] Juang R S, WU C Y. Microbial degradation of phenol in high-salinity solutions in suspensionsand hollow fiber membrane contracts[J]. Chemosphere,2007,66(1):191-198.
    [15]文守成,马文臣,许健民.油田高盐浓度废水对其生化处理的影响[J].油气田环境保护,2005,15(2):17-19.
    [16] Arjen Rinzema. Sodium inhibition of acetoclastic methanogens in granular sludge from aUASB reactor[J]. Enzyme and Microb.Technol,1988,10(1):24-32.
    [17] Lawton G W et al. Effect of high sodium chloride concentration on trickling filter slimes.sewage and industrial wastes,2001,29(11):1228-1236.
    [18] Dincer A R, Kargi F. Performance of rotating biological dise system treating salinewastewater[J]. Process Biochemistry,2001,36(8-9):901-906.
    [19] Kargi F, Uygur A. Salt inhibition on biological nutrient removal from saline wastewater in asequencing batch reactor[J]. Enzyme and Microbial Technology,2004,34(3-4):313-318.
    [20]何健,李顺鹏,崔中利,等.含盐工业废水生化处理耐盐污泥驯化及其机制[J].中国环境科学,2002,22(6):546-550.
    [21] Thonchai Panswad, Chadarut Anan. Impact of high chloride wastewater on ananaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J].Wat.Sci.Tech,1999,33(5):1165-1172.
    [22]武桂芝,武周虎,沈晓南.生物接触氧化法处理含海水城市污水试验研究[J].青岛建筑工程学院学报,2004,25(4):53-55.
    [23]王菊思,赵丽辉,贾智萍,等.锌对厌氧体系的影响及5种重金属离子抑制作用的比较[J].环境科学,1996,15(2):20-23.
    [24]柴宏祥.常温ASBBR反应器处理高盐高浓度有机榨菜废水效能研究[D].重庆:重庆大学,2005.
    [25] Afonso, M.D., Borquez R. Review of the treatment of seefood Processing wastewaters andrecovery of proteins therein by membrane separation processes–prospects of theultra-filtration of wastewater from the fish meal industry[J]. Desalination,2002,142(l):29-45.
    [26]金可勇,周勇,金水玉等.高盐度废水的新型膜法处理研究[J].水处理技术,2009,35(2):50-52.
    [27]刘贤杰,陈福明.电渗析技术在酱油脱盐中的应用[J].中国调味品,2004,4(4):17-21.
    [28]李仲民,张法.超滤法处理糖蜜酒精废液的研究[J].广西大学学报,2001,3:171-173.
    [29]王淑琴,李坤.反渗透处理土霉素结晶母液研究[J].城市环境与城市生态,1999,12(1):25-26.
    [30] Montiel V, Gonzate-Garcia T. A recovery by means of electrodialysis of an aromatic acid andan inorganic salt by electro dialysis charge-mosaic membranes[J]. J.Membrane Sci.,1995,100(3):209.
    [31]张志刚,苏永渤等.化学絮凝-SBR法处理味精废水的研究[J].环境保护科学,2000,27(107):7-8.
    [32]封享华,朱明雄等.研究Fenton氧化去除榨菜生产废水COD[J].水处理技术,2008,12:68-69.
    [33] Peishi Qi, Zhanli Chen, et al. Pre-treatment of organic-high refractory dyestuff wastewaterwith electrolysis processes.2nd International Conference on Bioinformatics and BiomedicalEngineering, ICBBE2008,3700-3703.
    [34]李辉.铁炭微电解-Fenton氧化联合处理染料废水研究[D].哈尔滨工业大学.2006,6.
    [35] Yang D, James D E. Electrochemical oxidation for landfill leachate treatment[J]. WasteManagement,2007,27(3):380-388.
    [36] Feki F, Aloui F, Feki M, et al. Electrochemical oxidation post-treatment of landfill leachatestreated with membrane bioreactor[J]. Chemosphere,2009,75(2):256-260.
    [37]杨云军,李庭刚,堵国成等.电解氧化法预处理垃圾渗滤液[J].环境科学研究,2003,16(6):53-56.
    [38]张国芳,肖书虎,肖宏康等.黄连素制药废水的电化学预处理试验[J].环境科学研究,2011,24(1):79-84.
    [39] Radha K V, Sridevi V, Kalaivani K. Electrochemical oxidation for the treatment of textileindustry wastewater[J]. Bioresource Technology,2009,100(2):987-990.
    [40] Raju G B, Karuppiah M T, Latha S S, et al. Electrochemical pretreatment of textile effluentsand effect of electrode materials on the removal of organics[J]. Desalination,2009,249(1):167-174.
    [41] Kim T H, Park C, Shin E B, et al. Effects of Cl-based chemical coagulants on electrochemicaloxidation of textile wastewater[J]. Desalination,2003,155(1):59-65.
    [42] Chatzisymeon E, Dimou A, Mantzavinos D, et al. Electrochemical oxidation of modelcompounds and olive mill wastewater over DSA electrodes:1. The case of Ti/IrO2anode[J].Journal of Hazardous Materials,2009,167(1-3):268-274.
    [43] Un Ut, Altay U, Koparal A S, et al. Complete treatment of olive mill wastewaters byelectrooxidation[J]. Chemical Engineering Journal,2008,139(3):445-452.
    [44] GOSTI M, NICOLAS K, PSILLAKIS E, et al. Electrochemical oxidation of olive oil millwastewaters[J]. Water Research,2005,39(17):4177-4187.
    [45] Szpyrkowicz L, Kaul S N, Neti R N, et al. Influence of anode material on electrochemicaloxidation for the treatment of tannery wastewater[J]. Water Research,2005,39(8):1601-1613.
    [46] ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater byelectrochemical oxidation using boron-doped diamond electrodes[J]. water research,2009,43(17):4347-4355.
    [47] Raghu S, Lee C W, Chellammal S, et al. Evaluation of electrochemical oxidation techniquesfor degradation of dye effluents—A comparative approach[J]. Journal of Hazardous Materials,2009,171(1-3):748-754.
    [48] Panizza M, Cerisola G. Removal of color and COD from wastewater containing acid blue22by electrochemical oxidation[J]. Journal of Hazardous Materials,2008,153(1-2):83-88.
    [49] Vlyssides A G, Karlis P K, Rori, et al. Electrochemical treatment in relation to pH of domesticwastewater using Ti/Pt electrodes[J]. Journal of Hazardous Materials,2002,95(1-2):215-226.
    [50] Guven G, Perendeci A, Tanyolac A. Electrochemical treatment of simulated beet sugar factorywastewater[J]. Chemical Engineering Journal,2009,151(1-3):149-159.
    [51] Ihara I, Umetsu K, Kanamura K, et al. Electrochemical oxidation of the effluent fromanaerobic digestion of dairy manure[J]. Bioresource Technology,2006,97(12):1360-1364.
    [52] Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater[J]. Journal ofHazardous Materials,2004, B113(1-3):123-129.
    [53] Saracco G, Solarino L, Aigotti R, et al. Electrochemical oxidation of organic pollutants at lowelectrolyte concentrations[J]. Electrochimica Acta,2000,46(2-3):373-380.
    [54]杨润昌,周书天.复合电化学法处理含盐有机废水[J].环境污染与防治,2002,24(3):162-164.
    [55] Lin S H, Shyu C T, Sun M C. Saline wastewater treatment by electrochemical method[J]. WatRes.1998,32:1059-1066.
    [56]王宏,郑一新,钱彪,等.电解凝絮法处理高盐度有机废水的实验研究[J].环境科学研究,2001,14(5):51-53.
    [57]王慧,王建龙,占新民等.电化学法处理含盐染料废水[J].中国环境科学,1999,19(5):441-444.
    [58]杨润昌,周书天.复合电化学法处理含盐有机废水[J].环境污染与防治,2002,24(3):162-164.
    [59]包勇.高浓度含盐染料废水电混凝处理研究[J].工业水处理,2006,7:33-35.
    [60] Piya-areetham P, Shenchunthichai k, Hunsom M. Application of electrooxidation process fortreating concentrated wastewater from distillery industry with a voluminous electrode[J].Water Research,2006(40):2857-2864.
    [61]时文中,华杰,朱国才等.电化学法处理高盐苯酚废水的研究[J].化工环保,2003,23(3):129-133.
    [62]杨蕴哲,杨卫身,杨凤林等.电化学法处理高含盐活性艳蓝KN-R废水的研究[J].化工环保,2005,25(3):178-181.
    [63]韩伟,何业东.阳极等离子体电解处理高盐废水中的苯酚[J].北京科技大学学报,2005,27(6):662-664.
    [64]刘占孟,鲍东杰,李静.高盐度染料中间体废水电化学处理研究[J].邢台职业技术学院学报,2004,21(3):43-44,61.
    [65]熊英键,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [66]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报,2002,29(5):1-5.
    [67]申哲民,王文华,贾金平等.不同形式电极与染料溶液的反应及其能耗[J].环境污染治理技术与设备,2000,1(2):21-25.
    [68]曹志斌,王玲,薛建军等.超声协同三维电极处理染料废水[J].水处理技术,2008,34(11):57-60.
    [69]魏毅,汤亚飞,明勇.活性炭载Fe2+三维电极法处理染料废水[J].武汉工程大学学报,2009,31(9):35-41.
    [70]吴薇,程爱华,叶向德等.复极性三维电极电解法去除表面活性剂的研究[J].环境科学与技术,2008,31(10):122-127
    [71]乔启成,王立章,邓霞等.三维电极法处理垃圾渗滤液的实验研究[J].苏州科技学院学报(工程技术版),2007,20(1):39-42
    [72]赵文生,邓锡斌,赵勇胜等.三维电极法预处理山梨酸废水[J].吉林大学学报(地球科学版),2008,38(2):309-312,318.
    [73] Fockedey E, Lierde A Van. Coupling of anodic and cathodic reaction for phenolelectro-oxidation using three-dimensional electrodes[J]. Water Research,2002,36:4169-4175.
    [74] Shen Z, Wang W, Jia J, et al. Catalytically assisted elelctrochemical oxidation of dye acid redB. Water Environment Research,2002,74(17):117-121.
    [75] Xiong Y, Strunk, Peter J, et al. Treatment of dye wastewater containing acid orange II using acell with three-phase three-dimensional electrode[J]. Water Research,2001,35(17):4226-4230.
    [76] Xu L, Zhao HZ, Shi SY, et al. Electrolytic treatment of C.I. Acid Orange7in aqueous solutionusing a three-dimensional electrode reactor[J]. Dyes and Pigments,2008,77(1):158-164.
    [77] Wang B, Kong WP, Ma HZ, et al. Electrochemical treatment of paper mill wastewater usingthree-dimensional electrodes with Ti/Co/SnO2-Sb2O5anode[J]. Journal of HazardousMaterials,2007,146(1-2):295-301.
    [78] Kong WP, Wang B, Ma HZ, et al. Electrochemical treatment of anionic surfactants insynthetic wastewater with three-dimensional electrodes[J]. Journal of Hazardous Materials,2006,137(3):1532-1537.
    [79] Zhao H. Z, Sun Y, Xu LN, et al. Removal of Acid Orange7in simulated wastewater using athree-dimensional electrode reactor: Removal mechanisms and dye degradation pathway[J].Chemosphere,2010,78(1):46-51.
    [80] Wei LY, Guo SH, Yan GX, et al. Electrochemical pretreatment of heavy oil refinerywastewater using a three-dimensional electrode reactor[J]. Electrochimica Acta,2010,55(28):8615-8620.
    [81]郭玉风,催建升,韩忠霄等.三维电极电解法处理生活污水的研究[J].河北科技大学学报,2003,24(2):27-30.
    [82]许海梁,杨卫身,周集体等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-36.
    [83]杨庆,丁昀.三维电极电解含酚废水研究[J].甘肃科技,2002,18(10):23.
    [84]杨庆,王三反,王越.三维电极加入氯化钠电解含酚废水的研究[J].兰州铁道学院学报(自然科学版),2003,22(1):133-136.
    [85] Panizza M, Bocca C, Cerisola G. Electrochemical treatment of wastewater containingpolyaromatic organic pollutants[J]. Water Research,2000,34(9):26.
    [86]何春,安太成,熊亚,等.三维电极电化学反应器对有机废水的降解研究[J].电化学,2002,8(3):327-332.
    [87]赵春霞,张春辉,赵旭涛等.铁炭法处理高浓度难降解表面活性剂废水的研究[J].环境污染治理技术与设备,2006,7(8):60-63.
    [88]史敬伟,杨晓东.铁炭微电解法预处理制药废水的研究[J].辽宁化工,2006,35(4):211-213.
    [89]张凤娥,谢琦,李宏等.内电解法处理餐饮废水的试验研究[J].中国给水排水,2007,23(13):83-86.
    [90]邱忠平,韩术鑫,刘源月等.微电解法去除老龄渗滤液中有机污染物的特性[J].西南交通大学学报,2009,44(3):461-465.
    [91] Oh S Y, Chiu P C, Kim B J, et al. Zero-valent iron pretreatment for enhancing thebiodegradability of hexahydro-1,3,5-trinitro-1,3,5triazine (RDX)[J]. Water Res,2005,39:5027-5032.
    [92] Zhang X, Lin Y M, Shan X Q, et al. Degradation of2,4,6-trinitrotoluene (TNT) fromexplosive wastewater using nanoscale zero-valent iron[J]. Chemical Engineering Journal,2010,158:566-570.
    [93] Chatterjee S, Lim S R, Woo S H. Removal of reactive black5by zero-valent iron modifiedwith various surfactants[J]. Chemical Engineering Journal,2010,160:27-32.
    [94]石金晔,王三反,高晓东.铁碳微电解法预处理炸药生产废水[J].中国给水排水,2009,25(7):59-61.
    [95]黄健,汤利华,张华.铁屑微电解法预处理环氧树脂废水的研究[J].安全与环境工程,2007,14(2):49-52.
    [96] Lai P, Zhao H Z, Wang C. Advanced treatment of coking wastewater by coagulation andzero-valent iron processes[J]. Journal of Hazardous Materials,2007,147:232-239.
    [97]吴炳智,徐卫东,陈建中等.微电解-催化氧化处理染料废水的试验研究[J].昆明理工大学学报(理工版),2006,31(6):72-75.
    [98] Chang M C, Shu H Y, Yu H H. An integrated technique using zero-valent iron and UV/H2O2sequential process for complete decolorization and mineralization of C.I. Acid Black24wastewater[J]. Journal of Hazardous Materials,2006, B138:574-581.
    [99] Kallel M, Belaid C, Boussahel R, et al. Olive mill wastewater degradation by Fentonoxidation with zero-valent iron and hydrogen peroxide[J]. Journal of Hazardous Materials,2009,163:550-554.
    [100] Lai P, Zhao H Z, Zeng M, et al. Study on treatment of coking wastewater by biofilm reactorscombined with zero-valent iron process[J]. Journal of Hazardous Materials,2009,162:1423-1429.
    [101]储金宇,光建新.铁屑还原法降解高浓度印染废水[J].印染,2007,4:26-28.
    [102]张春永,沈讯伟,张静等.铁炭微电解法处理混合农药废水的研究[J].江苏化工,2003,31(4):47-51.
    [103]胡玉洁,华兆哲,王璋等.黄姜废水的铁炭微电解-混凝预处理研究[J].环境污染治理技术与设备,2004,5(9):44-47.
    [104]张树艳,程丽华,曹为祥.铁炭微电解处理农药废水的研究[J].化学工程师,2004,108(9):35-37.
    [105]雍文彬.铁屑微电解法处理农药废水的研究[J].环境污染治理技术与设备,2002,3(3):86-87.
    [106]赵春霞,邱熔处,赵旭涛等.铁炭微电解法处理拉开粉废水的研究[J].环境污染治理技术与设备,2004,5(4):73-75.
    [107]张文艺,王健.微电解法预处理焦化废水试验[J].煤炭科学技术,2003,31(9):11-14.
    [108]王庆生,郭春禹,李靖等.微电解一膜生物反应器组合工艺处理焦化废水[J].环境工程,2006,23(3):26-29.
    [109] Lai P, Zhao HZ, Wang C, etal. Advanced treatment of coking wastewater by coagulation andzero-valent iron processes[J]. J. Hazard. Mater.,2007,147(l-2):232-239.
    [110]曾常华,林波,周百林.内电解一两级生化法处理医药化工废水[J].工业水处理,2007,27(2):84-85.
    [111]刘剑,马鲁铭,赖世华.催化铁内点解/生物膜法处理化工废水[J].中国给水排水,2004,20(11):55-57.
    [112]迟娟,黄全辉,李敏哲等.内电解-MBR工艺处理制药废水的研究[J].工业水处理,2006,26(1):27-29.
    [113]卢平,唐秀洁,李志春.内电解-接触氧化法处理松香及樟脑生产废水[J].工业水处理,2003,23(2):25-27.
    [114]王永广,杨剑锋.微电解-水解-好氧工艺处理硝基苯废水[J].扬州大学学报(自然科学版),2002,5(4):74-79.
    [115]宋勇,于海涛.微电解/水解酸化/SBR工艺处理化学制药废水[J].中国给水排水,2009,25(23):102-107.
    [116]王卓,纪逸之.物化-生化组合工艺在含高盐量、高氨氮量有机废水处理中的应用[J].江苏境科技,2000,13(2):10-13.
    [117]王宏,周旭.一体式膜-生物活性炭法处理高盐度有机废水[J].环境污染与治,2001,23(5):232-234.
    [118]禹耀萍,周大军.含高盐量、高氨氮量有机废水处理工艺探讨[J].怀化学院学报,2005,24(2):60-63.
    [119] Liu W, Howell J A, Arnot TC, Scott J A. A novel extractive membrane bioreactor for treatingbiorefractory organic pollutants in the presence of high concentrations of inorganics:application to a synthetic acidic effluent containing high concentrations of chlorophenol andsalt[J]. Journal of Membrane Science,2001,181:127-140.
    [120]国家环境保护总局, HJ/T70-2001,高氯废水化学需氧量的测定—氯气校正法[S].2001,12,1实施.
    [121]刘真.高氯废水中有机物污染指标CODcr测定方法研究[J].中国环境监测,2000,16(4):39-40.
    [122]罗平,邹家庆,陆雪梅.高浓度含盐废水COD测定中Cl-的影响及消除[J].南京化工大学学报,1999,21(6):76-78.
    [123]闫敏,商连,朱浚黄. COD测定中消除氯离子干扰的方法[J].中国给水排水,1998,14:38-40.
    [124]王泾阳,孙丽亚.标准曲线扣除法测定化学需氧量的研究[J].工业水处理,2003,23(7):44-47.
    [125]徐丰果,罗建中.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):56-58.
    [126] Gaspar D.J, Lea A.S, Engelhard M.H, et al. Evidence for localization of reaction uponreduction of carbon tetrachloride by granular iron[J]. Langmuir,2002,18(20):7688-7693.
    [127] Darsa P S, Cindy G S, Chou C S, et al. Treatment of1,2-dibromo-3-chloropropane andNiprate-containated Water with Zero-valent Iron or Hydrogen/Palladium Catalysts[J]. Wat.Res.1996,30(10):2315-2322.
    [128] ChinPao-huang, Huang Wen-wang, Chiu Pei-chun. Nitrate Reduction byMetallicRron[J]. Wat.Res.1998,32(8):2257-2264.
    [129]祁梦兰.铁屑过滤-混凝组合工艺处理印染废水[J].环境工程,1993,11(3):3-6.
    [130]曹曼.铁屑固定床及其在废水处理中的应用[J].上海环境科学,1994,13(2):42-43.
    [131]陈武,杨昌柱,梅平等.三维电极电化学方法处理印染废水实验研究[J].工业水处理,2004,24(8):43-45.
    [132] Czarnetzki LR, Janssen LJ. Formation of hypochlorite, chlorate and oxygen during NaClelectrolysis from alkaline solutions at an RuO2/TiO2anode[J]. Appl. Electrochem,1992,22(4):315-324.
    [133]邝生鲁,奚强.洁净环境中的电化学[J].化学进展,1999,4(11):430-439.
    [134] Jackson V C, Mickelson J K, Stringer K, et al. Electrosis induced myocardial dysfunction[J].Journal of Pharmacological Methods,1986,15:305-320.
    [135]张宏忠,方少明,松全元等.吸收光谱法在垃圾渗滤液膜处理技术中的应用研究[J].光谱与光谱学,2006,26(8):1449-1453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700