用户名: 密码: 验证码:
高盐含酚废水生物处理及微生物群落结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含酚废水来源广泛、成分复杂,如焦化废水、医药废水、化工及印染废水等,这些废水中既含有高浓度的酚类化合物,又含有大量的盐份(Cl~-、Na~+、Ca~(2+)等),会对微生物的生长产生抑制作用,从而增加生物处理的难度,成为现阶段国内外含酚废水处理技术领域亟待解决的一个难题。为了解决含酚废水中高盐含量对传统生物处理系统的抑制问题,本文以模拟含酚废水为基质,构建既能耐受高盐度、又能高效降解酚类化合物的生物处理体系,并在不同条件下对其降解特性进行详细的分析,同时利用RISA指纹、AFDRA功能基因分析、16S rDNA测序、FISH以及实时荧光定量PCR等分子生物技术对生物处理体系的群落结构进行解析,阐明宏观功能变化与微观结构之间的内在联系,为高盐含酚废水的生物处理提供一定的理论依据和技术支持。
     高盐条件下,构建的活性污泥体系能够处理不同组分的含酚废水,其中邻苯二酚和水杨酸存在时对活性污泥体系的总酚去除速率影响较小,而对甲基酚存在时总酚去除速率明显降低。盐度和pH冲击对活性污泥体系降解性能影响较大,盐度在50g/L NaCl以下时去除速率随盐度的增加而增加,但盐度达100 g/L NaCl以上时,去除速率明显下降。进水pH 7.0~9.0范围内活性污泥去除速率比较稳定。同时利用RISA(核糖体基因间隔序列分析)指纹技术,并借助16S rDNA序列分析对活性污泥体系进行群落动态解析,进而揭示系统微观结构与宏观功能之间的内在联系。结果表明,苯酚单独作为基质时,活性污泥体系的微生物群落多样性明显增加,而混合酚作为基质时,系统微生物群落多样性变化较小。盐度冲击过程中活性污泥体系微生物群落结构发生了剧烈的变化,而pH冲击过程中系统微生物群落结构比较稳定。遗传分析表明,盐度冲击过程中盐单胞菌属Halomonas和海洋杆菌属Marinobacter菌株代谢旺盛,说明这两类菌属菌株具有较强的耐盐能力;而pH和底物浓度冲击使海洋杆菌属Marinobacter和粪产碱菌属Alcaligenes faecalis菌株在处理系统中大量生长,逐渐成为优势菌株。在进化分析中还发现一少部分序列归属于希瓦氏菌属Shewanella和节杆菌属Arthrobacter等。
     本实验还采用扩增功能DNA限制性分析(AFDRA)的方法对不同条件下活性污泥体系苯酚羟化酶基因的变化进行了分析,与RISA指纹分析相互补充,在基因水平上揭示了活性污泥体系微生物群落结构和功能的变化。研究结果表明,活性污泥体系中降酚菌群的苯酚羟化酶功能基因的多样性因处理系统的底物种类、底物浓度、盐度和pH而有明显差异。苯酚羟化酶基因的变化可以反映生物系统内微生物群落的动态变化,而微生物群落的组成又会直接影响功能基因的多样性。
     从活性污泥中分离到三株耐盐苯酚降解菌,经形态观察、生理生化分析以及16SrDNA或26S rDNA分析分别鉴定为Arthrobacter sp.W1、Rodococcus sp.W2和Candidasp.W3,其序列的GenBank登陆序列号分别为EU339930、EU339931和EU349016。考察了3株菌的生长及降解酚类化合物的基本特性,为耐盐酚类降解复合菌体系的构建奠定了基础。3株菌均能在温度20~30℃、pH 5.0~9.0和盐度10~100 g/L NaCl范围内以苯酚为唯一碳源进行生长,能够利用苯甲酸、水杨酸、对甲基酚、氨基酚、对苯二酚等多种芳香化合物。高盐条件下,3株菌能够在细胞内积累相容性物质(主要是四氢嘧啶和甜菜碱)抵御外界高盐环境,并且相容性物质的含量随盐度升高而增加,在培养基中外加相容性物质能够促进菌株的生长,并且增强菌株的耐盐能力。
     通过正交实验确定菌株W1、W2和W3以1:1:2比例混合构建高效的耐盐酚类降解复合菌群,该复合菌与3株单菌相比,对环境的适应能力更强,能在温度10~40℃、pH4.0~12.0和盐度10~150 g/L NaCl范围内以苯酚为唯一碳源进行生长,在最佳降解条件下140 h即可完全降解2000 mg/L苯酚,降解酚类化合物范围更广。模拟SBR工艺对不同条件下复合菌群处理高盐混合酚废水进行了研究,结果表明,在3个月运行期内,复合菌群处理效果稳定,能够耐受一定范围的盐度(10~150 g/L NaCl)、pH(5.0~12.0)和底物浓度(200~1500 mg/L)的冲击。与活性污泥体系相比,复合菌体系抗冲击能力更强,去除速率更高。
     采用荧光原位杂交技术(HSH)对复合菌群内W1、W2和W3菌株的变化进行分析,结果表明,复合菌群中的W1菌株具有较强的抗盐度和底物浓度冲击的能力,而3株菌对pH冲击均有较好的耐受性。进一步采用实时荧光定量PCR技术对复合菌群中的优势菌株W1进行定量分析,结果表明,NaCl浓度由10 g/L增加到100 g/LNaCl时,细胞数量由1.16×10~(13)增加到5.71×10×~(13)细胞/每克干重;底物浓度冲击过程中细胞数量变化与盐度冲击过程细胞数量呈现相同的变化趋势,细胞数量在1.47×10~(13)和5.53×10~(13)细胞/每克干重之间变化;而在pH冲击条件下,整个过程中细胞数量基本保持在一个稳定水平。由此推断,W1菌株可能是复合菌群处理高盐混合酚废水的重要的功能菌,在环境条件波动时稳定存在,并且保持较高的代谢活性。
The source of phenolic wastewater is extensive and the compositions are complicated, such as coking,pharmaceutical,chemical and dying wastewatwer.The existence of high concentration of phenolics and salts in wastewater will inhibit the growth of the microorganism and brings more difficulty in biological treatment,which has become a difficult problem in domestic and international wastewater treatment field and is urgent to be solved currently.To solve the problem of inhibitory effect of high salt on traditional biological treatment system,the objectives of this paper are to explore of salt-tolerant biological treatment systems,which are also capable of degrading phenolics,study on the characteristics of treatment systems under different conditions and analyze the community structure during treatment process by molecular biology technology,such as RISA(Ribosomal intergenic sequence analysis),AFDRA(Amplified functional DNA restriction analysis) and 16S rDNA sequencing analysis.The experimental results will clarify the relationship between the microstructure and macrofunction of treatment system and provide a theoretical and technical supports for the biological treatment of phenolic hyper-saline wastewater.
     The activated sludge could degrade different phenolic mixtures under high salt conditions. Inhibitory effect of catchol and salicylate on phenol degradation was not obvious,but the removal rate was decreased in the presence of p-cresol.Salinity and pH fluctuation would affact the removal effeciency of activated sludge.When the content of NaCl was lower than 50 g/L, the removal rate of phenolics was increased with the NaCl concentration increasing,but decreased in the presence of more than 100 g/L NaCl.The efficiency of degradation was stable under neutral conditions(pH 7.0-9.0).At the same time,the microbial community structure of activated sludge was analyzed by RISA and 16S rDNA sequencing to clarify the relationship between the microstructure and macrofunction of treatment system.The RISA patterns revealed that the diversity of microorganism was increased in single substrate system,but was little change in binary substrates system.The community structure was drastically change during salt fluctuation process,but remained stable during pH fluctuation.16S rDNA sequence analysis showed that Halomonas sp.and Marinobactergenus sp.were predominant species during salt fluctuation process,which have better ability of salt tolerant.Marinobacter sp.and Alcaligenes faecalis sp.were the main species during the pH and substrate concentration fluctuation process.It was also found that Shewanella sp.and Arthrobacter sp.were existence in treatment system.
     The changes of phenol hydroxylase gone of activated sludge was analyzed by AFDRA under different conditions,which revealed the change of microbial community structure and function of activated sludge in molecular level.AFDRA on phenol hydroxylase genes show that the diversity of phenol hydroxylase genes was substantially different in various conditions, such as different substrate,concentration,salinity and pH,and the changes are consistent to that of microbial community.Thus,it was concluded that the changes of functional genes could reflect the dynamics of microbial community,and the microbial community structure could affect the diversity of functional genes.
     Arthrobacter sp.W1,Rodococcus sp.W2 and Candida sp.W3 was isolated from the activated sludge and could utilize phenol as sole carbon source under high salt conditions, which was identified on the basis of physiological and biochemical tests and 16S rDNA and 26S rDNA sequence analysis.The sequence of strains were submitted to GenBank with the number EU339930,EU339931 and EU349016.The degradation and growth conditions of three strains were as follows:temperature 20-30℃,pH 5.0-9.0 and salinity 10-100 g/L NaCl. They could utilize benzoic,salicylate,p-cresol,aminophenol and hydroquinone as the carbone source.Under high salt conditions,strains were mainly accumulated compatible solutes(ectoine and betaine) in cells to resist the extracellular hyper-saline environment. Adding compatible solutes such as ectoine,betaine and glutamic acid could improve the growth of strains under high salt conditions and enhance the salt-tolerance ability.
     A defined microbial consortium was constructed through orthogonal experiments by using of strain W1,W2 and W3.The adamptation conditons for the phenol degradation by the consortium were as followed:temperature 10-40℃,pH 4.0-12.0,salinity 10-150 g/L NaCl. Compared to other three pure strains,the consortium could degrade phenol under severe conditions and had a wider substrates range.During degradation of mixed phenolics by the consortium in SBR,the treatment efficiency was stable under different conditions in 3 monthes.Compared with the activated sludge system,the consortium showed higher removal efficiency and resistant ability of environmental fluctuation more powerful.
     Fluorescence in situ hybridization(FISH) analysis indicates that the abundance and intesnsity of specific probe of Arthrobacter sp.W1 was more than other two strains when salinity and substrate concentration fluctuation.During pH fluctuation process,there was lilltle differences of abundance and intensity of specific probe among three strains.It means that Arthrobacter sp.W1 has resistant ability of salinity and substrate concentration fluctuation more powerful,and three strains are insensitive to pH fluctuation.The results of real-time quantitative PCR showed that the cell numbers of Arthrobacter sp.W1 was increased fromel.16×10~(13) to 5.71×10~(13) cell per g of dry weight when NaCl concentration raised from 10 to 100 g/L.The cell number was change between 1.47×10~(13) to 5.53×10~(13) cell per g of dry weight when substrated concentration fluctuation process,but the cell numbers always remained stable during pH fluctuation process.Thus,it was concluded that W1 was the most important microorganism of the consortium during degradation phenolic hyper-saline wastewater process,which maintained higher metabolic activity under fluctuate conditions.
引文
[1]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理,2002,22(11):1-4.
    [2]Panswad T,Anan C.Impact of high chloride wastewater on anaerobic/anoxic/aerobic process without inoculation of chloride acclimated seeds[J].Water Research,1999,33(5):1165-1172.
    [3]沈耀良,黄勇,赵丹等.固定化微生物污水处理技术[M].北京:化学工业出版社,2002.
    [4]Liesack W,Stackbrandt E.Occurrence of novel groups of the do main bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment[J].Journal of Bacteriology,1992,174:5072-5078.
    [5]Lefebvre O,Vasudevan N,Torrijos M et al.Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor[J].Water Research,2005,39(8):1471-1480.
    [6]Kaul S N,Nandy T,Deshpande C V et al.Application of Full-scale Evaporation-incineration Technology for Hazardous Wastewater[J].Water Science and Technology,1998,38(4-5):363-372.
    [7]Winslow C E A,Haywood E T.The specific potency of certain canons with reference to their effect on bacterial viability[J].Journal of Bacteriology,1931,22:49-69.
    [8]Zobell C E,Anderson D Q,Smith W W.The bacteriostatic and bactericidal action of great salt lake water.Journal of Bacteriology,1937,33(3):253-262.
    [9]Stewart M J,Ludwig H F,Kearns W H.Effects of varying salinity on the extended aeration process[J].Water Pollution Control Federation,1962,34:1161-1177.
    [10]Kincannon D F,Gaudy A F.Response of biological waste treatment systems to changes in salt concentration[J].Biotechnology and Bioengineering,1968,10:483-496.
    [11]Burnett W E.The effect of salinity variations on the activated sludge process[J].Water and Sewage Works,1974,121:37-38
    [12]Ludzack F J,Noran P K.Tolerance of high salinities by conventional wastewater treatment process[J].Water Pollution Control Federation,1965,37:1404-1416.
    [13]Kugelman I J,McCarty P L.Cation toxicity and stimulation in anaerobic waste treatment[J].Water Pollution Control Federation,1965,37:97.
    [14]崔有为,张国辉,计立平等.海水冲厕所污水生物处理可行性研究[J].工业水处理,2003,23(12):33-36.
    [15]Yucel T R.The effect of inorganic salts on the activated sludge process performance[J].Water Research,1989,23:99-104.
    [16]Estrella A M,Cristina M,Marlene R.Anaerobic treatment of fishery wastewater using a marine sediment inoculums[J].Water Research,1997,31(9):2147-2160.
    [17]Ludzack F J,Noran D K.Tolerance of high salinities by conventional wastewater treatment process[J].Water Pollution Control Federation,1962,34(11):1404-1412.
    [18]Boushy A R,Klaassen G J,Ketelaars E H.Biological Poultry conversion of poultry and animal waste to a feed stuff for Poultry[J].Poultry Advisor,1986,19(7):112-142.
    [19]Balslev-Olesen P.Pilot-scale experiments on anaerobic treatment of wastewater from a fish processing plant[J].Water Science and Technology,1990,22(1):463-474.
    [20]顾晓梧.高含盐废水生物处理技术研究.工业用水与废水、1993,30(1):6-8.
    [21]Hamoda M F,Al-Atlar M S.Effects of high sodium chloride concentration on activated sludge treatment[J].Water Science and Technology,1995,31(9):61-72.
    [22]Kargi F,Dincer A R,Pala A.Characterization and biological treatment of pickling industry wastewater[J].Bioprocess Engineering,2000,23(4):371-374.
    [23]Dincer A R,Kargi F.Performance of rotating biological dise system treating saline wastewater[J].Process Biochemistry,2001,36(13):901-906.
    [24]Uygru A,Kargi F.Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor[J].Enzyme and Microbial Technology,2004,34(3-4):313-318.
    [25]Mendez R.Pilot plant studies on the anaerobic treatment wastewater from a fish-canning factory[J].Water Science and Technology,1992,25(1):37-44.
    [26]An L,Gu G W.The treatment of saline wastewater using a two-stage contact oxidation method[J].Water Science and Technology,28(7):31-37.
    [27]Gumersindo F,Manust S.Sodium inhibiton in the anaerobic digestion process:antagonism and adaptation phenomena[J].Enzyme and Microbial Technology,1995,17:180-188.
    [28]杨健,王士芬,郭长虹等.驯化活性污泥处理高含盐量有机废水[J].上海环境科学,1998,(9):8-10.
    [29]杨健,王士芬.高含盐量石油发酵工业废水处理研究[J].给水排水,1999,25(3):35-38.
    [30]何健,陈利伟,李顺鹏.高盐度难降解工业废水生化处理研究[J].中国沼气,2000,18(2):12-16.
    [31]刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,27(11):54-56.
    [32]刘祥凤,李青山,乌锡康.驯化活性污泥处理高含盐量有机废水的研究[J].工业用水与废水,2002,33(4):43-45.
    [33]Kargi F,Uygur A.Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria[J].Environment Technology,1996,17:325-330.
    [34]Thongchai P,Chadarut A.Impact of high chloride wastewater on an anaerobic/anoxic/aerobic with and without inoculation of chloride acclimated[J].Water Research,1999,33(5):1165-1172.
    [35]Krongthamchat K.Anaerobic degradation of organic pollutants in high saline wastewater with the aid of halophilic methanogens[D].George Washington University,2001.
    [36]Kushner D J.Life in high salt and solute concentrations:halophilic bacteria.Microbial life in extreme environments[M].London:Academic press,1978.
    [37]刘铁汉,周培瑾.嗜盐微生物[J].微生物学通报,1996,126(3):232.
    [38]陶卫平.嗜盐菌的嗜盐机制[J].生物学通报,1996,31(1):23-24.
    [39]Csonka L N.Physiological and genetic response of bacteria to osmotic stress[J].Microbiological Reviews,1989,53(1):121-147.
    [40]Sleator R D,Hill C.Bacterial osmoadaptation:the role of osmolytes in bacterial stress and virulence[J].FEMS Microbiology Reviews,2002,26:49-71.
    [41]Oren A.Anaerobic heterotrophic bacteria growing at extremely high salt concentrations.In:Trends in microbial ecology[J].International Microbiology,1993,539-542.
    [42]Vargas C,Jebbar M,Carrasco R.Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens[J].Journal of Applied Microbiology,2006,100:98-107.
    [43]何健,李顺鹏,崔中利.含盐工业废水生化处理耐盐污泥驯化及其机制[J].中国环境科学,2002,22(6):546-550.
    [44]洪青,张国顺,张忠辉等.中度嗜盐菌Halomonas sp.BYS-1的渗透调节[J].微生物学通报,2004,31(5):71-75.
    [45]Beetymoters W U.Removal of organic precursors by permanganate oxidation and alum coagulation[J].Water Research,1985,19(3):309-314.
    [46]张芳西.含酚废水的处理与利用[M].北京:化学工业出版社,1983,1-10.
    [47]刘琼玉,李太友.含酚废水的无害化处理技术进展[J].环境污染治理技术与设备,2002,3(2):62-66.
    [48]贾太轩,冯世宏,杜惠玲.含酚废水的氧化法处理[J].天津化工,2005,19(2):12-14.
    [49]蒋展鹏.环境工程学[M].北京:高等教育出版社,1992.
    [50]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002.
    [51]尹军,韩相奎,周春生等.流化式生物膜法处理含酚废水的效能[J].环境科学,1996,17(1):60-62.
    [52]安林坤,马林,全军民等.固定化酪氨酸酶去除水中酚及胺类物质的研究[J].中山大学学报(自然科学版),2000,39(5):63-67.
    [53]叶鹏,张剑波,陈嵩等.固定化辣根过氧化物酶催化去除五氯酚[J].中山大学学报(自然科学版),2005,41(6):918-925.
    [54]魏远隆,安春江,席淑琪等.固定化微生物法处理含酚废水的研究[J].南京理工大学学报,2005,29(3):326-329.
    [55]Watanabe K,Hino S,Takahashi N,et al.Effects of exogenous phenol-degrading bacteria on performance and ecosystem of activated-sludge[J].Journal of Fermentation and Bioengineering,1996,82:291-297.
    [56]Evans W C.Oxidation of phenol and benzoic acid by some soil bacteria[J].Biochemical Journal,1947,41(3):373-382.
    [57]Latha S,Mahadevan A.Review:role of rhizobia in the degradation of aromatic substances[J].World Journal of Microbiology & Biotechnology,1997,13(6):601-607.
    [58]Kalin M,Neujahr H Y,Weissahr R N et al.Phenol hydroxylase from trichosporon cutaneum:gene cloning,sequence analysis,and functional expression in Escherichia coli[J].Journal of Bacteriology,1992,174(2):7112-7120.
    [59]Muller C.Carbon catabolic repression of phenol degradation in P.Putida is mediated by the inhibition of the activator protein ph1R[J].Journal of Bacteriology,1996,178(7):2030-2036.
    [60]Shingler V,Franklin M,Tsuda D et al.Molecular analysis of a plasmid encoded phenol hydrolase of Pseudomonas sp.Strain CF600[J].Journal of General Microbiology,1989,135:1083-1098.
    [61]Kim Y,Ayoubi P,Harker A R.Constitutive expression of the cloned phenol hydroxylase genes from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation[J].Applied and Environmental Microbiology,1996,62(9):3227-3233.
    [62]刘涛,刘正学,张长铠等.苯酚高效降解菌L68的分离及分类鉴定[J].山东大学报(理学版),2002,37(4):369-372.
    [63]华苟根,郭坚华.红球菌属的分类及应用研究进展[J].微生物学报,2003,30(4):701-707.
    [64]Valli K,Gold M H.Degradation of 2,4-dicholorophenol by the lignin-degrading fungus Phanerochaete chrysosporium[J].Journal of Bacteriology,1991,173:345-352.
    [65]Leit(?)o A L,Duarte M P,Oliveira S J.Degradation of phenol by a halotolerant strain of Penicillium chrysogenum[J].International Biodeterioration & Biodegradation,2007,59:220-225.
    [66]胡忠,吴奕瑞,徐艳等.海洋苯酚降解菌Candida sp.P5的分离鉴定及其降解特性[J].应用与环境生物学报,2007,13(2):243-247.
    [67]Neujahr H.Y,Gaal A.Phenol hydroxylase from yeast purification and properties of the enzyme from Trichosporon cutaneum[J].European Journal of Biochemistry,1973,35:386-400.
    [68]Semple K T,Cain R B.Biodegradation of phenol by the alga Ochromonus danica[J].Applied and Environmental Microbiology.1996,162(4):1256-1273.
    [69]Henry F,Smyth J R.Evaluation of some factors influencing the phenol resistance of staphylococcus aureus[J].Journal of Bacteriology,1934,27:333-341.
    [70]Berger H,Wyss O.Studies on bacterial resistance to inhibition and killing by phenol[J].Journal of Bacteriology,1952,65:103-109.
    [71]Hamdy M K,Sherrer E L,Randles C I et al.Some characteristics of a phenol-oxidizing Pseudomonas[J].Journal of Bacteriology,1955,4:71-75.
    [72]Henry H T,Cecil W C,Paul W K.Microbial metabolism of aromatic compounds.Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria[J].Journal of Bacteriology,1964,87:910-919.
    [73]Feist G F,Hegeman G D.Phenol and benzoate metabolism by Pseudomonas putida:regulation of tangential pathway[J].Journal of Bacteriology,1969,100(2):869-877.
    [74]Neujahr H Y,Lindsjo S,Varga J.Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis[J].Antonie van Leeuwenhoek;Journal of Microbiology,1974,40:209-216.
    [75]Neujahr H Y,and Varga J M.Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum[J].European Journal of Biochemistry,1970,13:37-44.
    [76]Sala-Trepat J M,Evans W C.The meta cleavage of catechol by Azotobacter species.4-Oxalocrotonate pathway[J].European Journal of Biochemistry,1971,20(3):400-413.
    [77]Stanier R Y,Omston L N.The beta-ketoadipate pathway[J].Advance in Microbial Physiology,1973,20(3):400-413.
    [78]Kkor J,Olsen R H.Complete nucleotide sequence of tbuD,the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1,and functional analysis of the encoded enzyme[J].Journal of bacteriology,1992,174:6518-6526.
    [79]Kim I C,Oriel P J.Characterization of the Bacillus stearmophilus BR219 phenol hydroxylase gene[J].Applied and Environmental Microbiology,1995,61(4):1252-1256.
    [80]Munnecke D M,Hsich D P.Pathway of microbial metabolism of parathion[J].Applied and Environmental Microbiology,1976,31:63-69.
    [81]Spain J C,Wyss O,Gibson D T.Enzymatic oxidation of p-nitrophenol[J].Biochemical and Biophysical Research Communication,1979,88:634-641.
    [82]Harnme L F,Kirk L L,Appse S M et al.Degradation and induction specificity in actinomycetes that degrade p-nitrophenol[J].Applied and Environmental Microbiology,1993,59:3505-3508.
    [83]Patel R N,Hou C T,Felix A et al.Catechol 1,2-dioxygenase from Acinetobacter calcoacticus:purification and properties[J].Journal of Bacteriology,1976,127(1):536-544.
    [84]Gaal A,Neujahr H Y.Metabolism of phenol and resoricinol in Trichosporon cutaneurn[J].Journal of Bacteriology,1979,137(1):13-21.
    [85]Bagdasarian M,Timmis K N.Host vector systems for gene cloning in Pseudomonas[J].Current Topics in Microbiology and Immunology,1982,96:47-67
    [86]Ellen L N,Ornston N L.Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli[J].Journal of Bacteriology,1986,168(2):815-820.
    [87]Ghosal D,You I S,Chatterjee D K et al.Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and Pip4[J].The Proceeding of the National Academy of Science,1985,82:1638-1642.
    [88]Harayama S,Rekik M W,Rose K et al.Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products[J].Journal of Bacteriology,1989,171(9):5048-5055.
    [89]Jerome J K,Ronald H O.Molecular cloning,characterization,and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1 c[J].Journal of Bacteriology,1990,172(8):4624-4630.
    [90]Pillis L J,Davis L T.Microorganism capable of degrading phenolics[J].United States Patent,1985,US455638:42-46.
    [91]Quentmeier A,Friedrich CG.Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria[J].Applied and Environmental Microbiology,1994,60:973-978.
    [92]Mutzel A,Reinscheid U M,Antranikian G et al.Isolation and characterization of a thermophilic Bacillus strain,that degrades phenol and cresols as sole carbon source at 70℃[J].Applied and Environmental Microbiology,1996,46:593-596.
    [93]Hinteregger C,Streichsbier F.Halomonas sp.,a moderately halophilic strain,for biotreatment of saline phenolic waste water[J].Biotechnology Letter,1997,19:1099-1102.
    [94]Kanekar P P,Samaik S S,Kelkar A S.Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar,India[J].Journal of Applied Microbiology,1999,85:128-133.
    [95]Onysko K A,Budman H M,Robinson C W.Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5[J].Biotechnology and Bioengineering,2000,70:291-299.
    [96]Andrew S W,Mark J B.Bacterial community structure and physiological state within an industrial phenol bioremediation system[J].Applied and Environmental Microbiology,2000,66(6):2400-2407.
    [97]H(?)ctor L,Ayala-del-R(?)o,Stephen J et al.Correspondence between community structure and function during succession in phenol and phenol-plus-Trichloroethene-fed sequencing batch reactors[J].Applied and Environmental Microbiology,2004,70(8):4950-4960.
    [98]Stephen T L T,Benjamin Y P M,Abdul M M et al.Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation[J].Applied Microbiology and Biotechnology,2005,67:708-713.
    [99]Arutchelvan V,Kanakasabai V,Nagarajan Set al.Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater[J].Journal of Hazardous Materials,2005,B 127:238-243.
    [100]Tsai S Y,Juang R S.Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365[J].Journal of Hazardous Materials,2006,B38:125-132.
    [101]Bai J,Wen J P,Li H Met al.Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis[J].Process Biochemistry,2007,42:510-517.
    [102]Salmer(?)n-Alcocer A,Ruiz-Ordaz N,Ju(?)ez-Ram(?)rez J et al.Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp.,Microbacterium phyllosphaerae,and Candida tropicalis[J].Biochemical Engineering Journal,2007,37:201-211.
    [103]Woolard C R.Biological treatment of hypersaline Wastewaters[D].University of Notre Dame,1993.
    [104]文湘华,占新民,王建龙等.含盐废水生物处理研究进展[J].环境科学,1999,20(3):104-106.
    [105]Woolard C R,Irvine R L.Response of a periodically operated halophilic biofilm reactor to changes in salt concentration[J].Water Science and Technology,1995,31:41-50.
    [106]Bastos A E R,Moon D H,Rossi A et al.Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples[J].Archives Microbiology,2000,174:346-352.
    [107]Leit(?)o A L,Duarte M P,Santos Oliveira J.Degradation of phenol by a halotolerant strain of Penicillium chrysogenum[J].International Biodeterioration & Biodegradation 2007,59:220-225.
    [108]Woolard C R.Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[J].Water Environment Research,1994,66(3):230-235.
    [109]Woolard C R,Irvine R L.Treatment of hypersaline wastewater in the sequencing batch reactor[J].Water Research,1995,29(4):1159-1168.
    [110]Peyton B M,Wilson T,Yonge D R.Kinetics of phenol biodegradation in high salt solutions[J].Water Research,2002,36:4811-4820.
    [111]李源,雷中方.盐度升高对三种苯酚处理系统冲击的研究[J].复旦学报,2005,44(4):578-582.
    [112]顾立锋,何健,张瑞福等.一株耐盐苯酚降解酵母菌的分离及降解特性研究[J].土壤学报,2004,41(5):756-760.
    [113]徐玉泉.醋酸不动杆菌pheaA_2的16S rDNA测序及其苯酚降解特性研究[J].高技术通讯,2000,10(3):12-14.
    [114]Entsch B,van Berkel W J.Structure and mechanism of p-hydroxybenzoate hydroxylase[J].The FASEB Journal,1995,9:476-483.
    [115]Sabine E,Falck S,Wolfgang H.Genetic organization,nucleotide sequence and regulation of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB850[J].Microbiology,1995,18(1):13-20.
    [116]Syn C K,Magnuson J K,Kingsley M T et al.Characterization of Pseudomonas putida genes responsive to nutrient limitation[J].Microbiology,2004,150(6):1661-1669.
    [117]Watanable K,Teramoto M,Harayama S.An out break of nonflocculating catabolic populations caused the breakdown of a phenol-degrading activated-sludge process[J].Applied and Environmental Microbiology,1999,65(7):2813-2819.
    [118]Muyzer G,de Waal E C,Uitterlinden A G.Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA[J].Applied and Environmental Microbiology,1993,59(3):695-700.
    [119]郑雪松,杨虹,李道棠等.基因间隔序列在细菌分类鉴定和种群分析中的应用[J].应用与环境生物学报,2003,9:678-684.
    [120]Gonzalez N,Romero J,Espejo R T.Comprehensive detection of bacterial populations by PCR amplification of the 16-23S rRNA spacer region[J].Journal of Microbiological Methods,2003,55:91-97.
    [121]Jiang H L,Tay J H,Maszenan A Met al.Bacteial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation[J].Applied and Environmental Microbiology,2004,70(11):6767-6775.
    [122]Selvaratnam S,Schoedel B A.Application of the polymerase chain reaction(PCR) and reverse transcriptase/PCR for determining the fate of phenol-degrading Pseudomonas putida ATCC 11172 in bioaugmented sequencing batch reactor[J].Applied Microbiology and Biotechnology,1997,47:236-242.
    [123]谢冰,姜京顺.铜离子冲击下活性污泥微生物多样性的分子生态学分析[J].环境科学学报,2002,22(6):721-725.
    [124]杨洋,左剑恶,全哲学等.UASB反应器中厌氧氨氧化污泥的种群分析[J].中国环境科学,2006,26(1):52-56.
    [125]Nakagawa T,Ishibashi J,Maruyama A et al.Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the suiyo seamount,Izu-Bonin Arc,Western Pacific[J].Applied and Environmental Microbiology,2004,70(1):393-403.
    [126]Wagner M,Loy A,Nogueira R et al.Microbial community composition and function in wastewater treatment plants[J].Antonie van Leeuwenhoek,2002,81(1-4):665-680.
    [127]Feris K,Ramsey P,razar F C et al.Differences in hyporheic-zone microbial community structure along a heavy-metal contam ination gradient[J].Applied and Environmental Microbiology,2003,69(9):5563-5573.
    [128]Di Giovanni G D,Watrud L S,Seidler R Jet al.Fingerprinting of mixed bacterial strains and BIOLOG gram-negative(GN) substrate communities by enterobacteriai repetitive intergenic consensus sequence-PCR(ERIC-PCR)[J].Current Microbiology,1999,38:217-223.
    [129]高平平,晁群芳,张学礼等.TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性[J].生态学报,2003,23(10):1963-1969.
    [130]田扬捷,杨虹,李道棠等.用RISA法评估地下水细菌群落结构差异及变化[J].微生物学报,2004,44(5):676-678.
    [131]Snaldr J,Amann R,Huber I et al.Phylogeny analysis and in situ identification of bacteria in activated sludge[J].Applied and Environmental Microbiology,1997,63(7):2884-2896。
    [132]Purkhold U,Pommerening-R(o|¨)ser A,Juretschko S et al.Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys[J].Applied and Environmental Microbiology,2000,66(12):5368-5382.
    [133]Throback I N,Enwall K,Jarvis A et al.Reassessing PCR primers targeting nirS,nirK and nosZ genes for community survey of denitrifying bacteria with DGGE[J].FEMS Microbiology Ecology,2004,49(3):401-417.
    [134]Zhang X L,Gao P P,Chao Q F et al.Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp.from an activated sludges system[J].FEMS Microbiology Letter,2004,237(2):365-375.
    [135]Bothe H,Jost G,Schloter Met al.Molecular analysis of ammonia oxidation and denitrification in natural environments[J].FEMS Microbiology Reviews,2000,24(5):673-390.
    [136]Sinigalliano C D,Kuhn D N,Jones R D.Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater[J].Applied and Environmental Microbiology,1995,61(7):2702-2706.
    [137]Rotthauwe J H,Witzel K P,Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Applied and Environmental Microbiology,1997,63(12):4704-4712.
    [138]徐玉泉,方宣钧,陈明等.采用苯酚羟化酶基因特异引物检测苯酚降解菌[J].微生物学报,2001,41(3):298-303.
    [139]张学礼,熊顺子,刘彬彬等.焦化废水处理厂接触氧化池中降酚菌群的苯酚羟化酶大亚基基因多样性[J].生态学报,2005,25(8):2025-2030.
    [140]Watanabe K,Teramoto M,Futamata H et al.Molecular detection,isolation,and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge[J].Applied and Environmental Microbiology,1998,64(11):4396-4402.
    [141]Braker G,Fesefeldt A,Witzel KP.Development of PCR primer systems for amplification of nitrite reductase genes(nirK and nirS) to detect denitrifying bacteria in environmental samples[J].Applied and Environmental Microbiology,1998,64(10):3769-3675.
    [142]Belkin S,Brenner A,Abeliovich A.Biological treatment of a high salinity chemical industrial wastewater[J].Water Science and Technology,1993,27(7-8):105-112.
    [143]Yang P Y,Nitisoravut S,Wu J Y S.Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions[J].Water Research,1994,29(6):1525-1532.
    [144]Benedict C,Okeke T G,William T et al.Reduction of perchlorate and nitrate by salt tolerant bacteria [J].Environmental Pollution,2002,118:357-363.
    [145]Fikret K A,Dincer R.Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor[J].Enzyme and Microbial Technology,1998,22:427-433.
    [146]Bielefeldt A,Stensel H D.Modeling competitive inhibition effects during biodegradation of BTEX mixtures[J].Water Research,1999,33:707-714.
    [147]李红梅.苯酚厌氧降解菌的选育及其降酚特性[D].硕士学位论文,2006.
    [148]Ventosa A,Nieto J J,Oren A.Biology of moderately halophilic aerobic bacteria[J].Microbiology and Molecular Biology Reviews,1998,62:504-544.
    [149]Widada J,Nojiri H,Omori T.Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation[J].Applied Microbiology and Biotechnology,2002,60:45-59.
    [150]Bouchez T,Patureau D,Dabert P et al.Ecological study of a bioaugmentation falilure.Environmental Microbiology[J].2000,2(2):179-190.
    [151]Yu Z T,Mohn W W.Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing[J].Applied and Environmental Microbiology,2001,67:1565-1574.
    [152]Takai K,Moyer C L,Miyazaki M et al.Marinobacter alkaliphilus sp.nov.,a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200at South Chamorro Seamount,Mafiana Forearc[J].Extremophiles,2005,9(l):17-27.
    [153]Oie C S,Albaugh C E,Peyton B M.Benzoate and salicylate degradation by Halomonas campisalis,an alkaliphilic and moderately halophilic microorganism[J].Water Research,2007,41(6):1235-1242.
    [154]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版).中国科学院微生物研究所译[M].北京:科学出版社,1984.
    [155]林菊生,冯作化.现代细胞分子生物学技术[M].北京:科学出版社,2004.
    [156]巴尼特A,佩恩RW,亚罗D著.胡瑞卿译.酵母菌的特征与鉴定手册[M].青岛:青岛海洋出版社,1991.
    [157]Thompson J D,Gibson T J,Plewniak F et al.The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997,25(24):4876-4882.
    [158]Kumar S,Tamura K,Nei M.MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Brief Bioinformatics,2004,5(2):150-163.
    [159]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000,40(2):115-120.
    [160]李海雷,孙宏春,张奇志等.节杆菌属甲基对硫磷的降解菌株L-W的分离及降解特性[J].核农学报,2008,22(2):192-195.
    [161]陈朝琼,廖银章,李旭东等.节杆菌P-1和红球菌J-5处理含PVA废水研究[J].水处理技术,2007,33(9):47-49.
    [162]齐云,赵林,胡滨等.不同温度下红球菌降解氯代苯甲酸及共代谢作用[J].天津大学学报,2006,39(12):1428-1433.
    [163]孙艳,钞亚鹏,钱世钧等.嗜吡啶红球菌R04的联苯降解途径的研究[J].微生物学报,2003,43(5)653-658.
    [164]王继华,杨茹冰,程玉鹏.瓦尔假丝酵母降解酚类污染物的研究[J].环境科学研究,2006,19(1):35-38.
    [165]沈锡辉,刘志培,刘双江.苯酚降解菌红球菌PNAN5菌株(Rhodococcus sp.Strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质的研究[J].环境科学学报,2004,24(3):482-483.
    [166]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of utilizing the principle of protein-dye binding[J].Analytical biochemistry,1976,72(7):248-254.
    [167]Anne U K,Erhard B.Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp[J].Applied and Environmental Microbiology,2002,68(2):772-783.
    [168]Grieve C M,Grattan S R.Rapid assay for determination of water soluble quaternary ammonium compounds[J].Plant and Soil,1983,70:303-307.
    [169]王昂,王丽丽,仪红等.茚三酮比色法测定谷氨酸含量的研究[J].中国调味品,2005,8:50-52.
    [170]王菊思,赵丽辉,匡欣等.某些芳香化合物生物降解性研究[J].环境科学学报,1995,15:407-414.
    [171]王颖群,陶涛.微生物渗透压调节过程中的相容性溶质[J].微生物学通报,1994,21(5):293-296.
    [172]Measures J C.Role of amino acids in osmoregulation of non-halophilic bacteria[J].Nature,1975,257(5525):398-400.
    [173]Quan X C,Shi H C,Liu H et al.Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation[J].Process Biochemistry,2004,39:1701-1706.
    [174]Mori Y.Characterization of a symbiotic coculture of Clostridium Thermohydrosulfuricwn YM3 and Clostricum Thermocellura YM4[J].Applied and Environmental Microbiology,1990,56(1):37-42.
    [178]Ivanka S,Albert K,Veselin S et al.Biodegradation of high amounts of phenol,catechol,2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells[J].Enzyme and Microbial Technology,2006,39:1036-1041.
    [179]Wagner M,Rath G,Amann R et al.In situ identification of ammonia-oxidizing bacteria[J].Systematic and Applied Microbiology,1995,18(2):251-264.
    [180]Layton A C,Dionisi H,Kuo H W et al.Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant[J].Applied and Environmental Microbiology,2005,71(2):1105-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700