用户名: 密码: 验证码:
羊草遗传转化受体系统的建立及转BADH基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊草(Leymus chinensis/Aneurolepidium chinensis)是分布于我国北方天然草地面积较广、营养价值较高而且较耐盐碱的优良的禾本科牧草,是经济价值较高的草原类型。羊草具有耐寒、耐旱、耐湿、耐践踏、耐土壤瘠薄和一定的耐盐碱能力,适应范围很广。但是由于近年来人们的过度开发和利用,造成天然羊草草原的退化。为了保护羊草资源,提高草地生产力,探索改良盐碱化草地的技术和途径已成为必然趋势,如何利用大面积盐碱地是我们全人类迫切需要解决的问题。
     羊草是建立人工草地和治理盐碱化草地的理想草种,虽具有一定的抗盐碱能力,但一直未能很好地发挥改良盐碱地的作用。根据羊草生育规律及生物学特性,进行栽培、利用,充分发挥羊草具有的耐盐碱能力,不断培育出高度耐盐碱的羊草新品种,才是开发利用羊草草地资源的根本对策。
     采用传统的育种方法选育耐盐品种极为缓慢。随着分子生物学技术的发展,人们可以用基因工程技术提高植物的耐盐碱性。提高植物抗盐性最根本、最经济、最有效的方法是充分利用抗盐基因,培育新的高抗盐品种。
     本文利用野生羊草种子采用组织培养方法,探索羊草的生长发育规律及相关的生物学特性,开展羊草组织培养和遗传转化研究,建立了高效的羊草遗传转化受体系统,为培育出品质优良又高度抗盐碱的羊草新品种打下良好基础;并在此基础上,进行了羊草愈伤组织的抗旱、抗盐碱敏感性研究,确定羊草愈伤组织在盐碱培养基上的最大忍受强度,通过在高盐碱浓度培养基上筛选,希望获得羊草耐盐突变体植株;首次通过基因枪方法将BADH基因转入羊草受体系统中,并对转化结果进行了初步检测。取得的主要研究结果如下:
     一、建立并优化了羊草遗传转化受体系统
     1.羊草愈伤组织的获得
     羊草的成熟胚(种子)及根茎是诱导愈伤组织理想外植体。外植体的灭菌时,首先用70%乙醇浸泡5min,然后在1g/L升汞溶液中浸泡15min,这样可以达到灭菌的最佳效果。羊草种子具有休眠特性,经过低温处理后有利于种子萌发,随着低温处理天数增加,种子萌发率也升高;变温更有利于羊草种子萌发。用100ppm赤霉素(GA_3)处理休眠的羊草种子时,处理48小时为打破休眠、促进萌发的最佳时间,种子的萌发率可达16%。
     为了提高成熟胚的胚性愈伤组织的诱导率,设计了不同的培养基及不同的激素浓度。羊草愈伤组织诱导采用MB(MS+B5有机)培养基,当培养基中2,4-D的浓度
    
    吉林农业大学硕士学位论文
    羊草遗传转化受体系统的建立及转BADH基因的研究
    为2 .Omg/L时诱导率为20%,本实验中,羊草愈伤组织诱导的最适2,4一D浓度为
    2.smg/L,诱导率达到了24%。
    2.羊草愈伤组织的继代培养
     羊草愈伤组织继代培养的最佳2,4一D浓度为2 .omg/L .MB和Ms培养基是较
    适宜的羊草愈伤组织继代培养基。在继代培养中蔗糖较适宜的浓度为409/1。培养
    基中脯氛酸浓度为2 50omg/L,是羊草愈伤组织的生长以及胚性状态保持较适宜的
    浓度。
    3.羊草愈伤组织的分化及再生
     羊草再生系统属于胚胎发生型,随继代培养时间的延长,愈伤组织的分化能力
    将迅速下降,继代培养6个月后分化能力基本丧失,所以用于分化的羊草愈伤组织
    继代时间不宜过长。
     培养基中加入0 .smg/L6一BA为羊草愈伤组织分化最佳条件,分化率达到了
    2 6 .67%。生根培养基中加入NAA的最适宜浓度为2 .omg/L。如果在愈伤组织分化前
    进行预分化10一30天,可以明显提供分化出苗率。
    二、羊草愈伤组织耐盐敏感性测定
     综合增重指数和愈伤组织生长状态两种因素考虑,羊草愈伤组织对中性盐
    (Nael)的可耐受最大强度为1 50二01/L,对碱性盐(NaHeo。与NaZeo。)的可耐受
    最大强度为4Inmol/L,对PH值的可耐受最大强度为8 .0。羊草愈伤组织在高盐浓度
    条件下,可以筛选出耐盐突变体植株。从4Inmol/L开始筛选,通过逐步提高碱性盐
    浓度的方法,最终获得了碱性盐筛选浓度为12~1/L耐盐植株的愈伤组织,并成
    功分化出5株幼苗。经形态学观察发现其叶色浓绿,株型低矮,茎叶直立,与一般
    分化植株明显不同。
    三、基因枪转化参数研究。
     当培养基中的kana功yC in浓度达到140啊/L以上时,羊草愈伤组织增重指数明
    显下降,达到1 50mg几时,羊草愈伤组织已经基本停止生长,羊草愈伤组织对卡
    那霉素的敏感浓度为1 50mg/L。羊草遗传转化可能不适宜用农杆菌浸染法。
     本实验中用于基因枪转化的杭盐碱基因为甜菜碱醛脱氢酶(BADH)基因。PCR
    及电泳结果表明,BADH基因已被整合到羊草染色体组中。采用基因枪转化研究,
    不同的轰击距离(6cln、gcm、12Cm)转化效率不同。随着轰击距离的加大,转化效
    率逐渐降低,当距离为6cm时,枪击后细胞受损严重,褐化较多,因此9 Cm轰击
    距离较为适宜。DNA用量为每枪6ul(含3。。ug金粉和1 .ZugDNA),11oopsix
    
    吉林农业大学硕士学位论文
    羊草遗传转化受体系统的建立及转BADH基因的研究
    9。。的压力x靶距组合,转化效果最好。在轰击距离为gctn的条件下,轰击1、
    2、3次,转化效率分别为88 .13%,41 .12%和18 .21%,轰击1次时转化效果最好。
     植物转化研究中,高效遗传转化受体系统的建立是转?
Leymus chinensis is an important grass of the Gramineae family. It widely grows in the natural grassland of Northern China. Its value of nutrition is very high and it can grow very well in the saline-alkaline field. There is important economical value. Leymus chinensis whose adaptability is strong can stand coldness, drought, wet, trample, poor soil conditions and some saline-alkaline stress. But the grassland has been excessively exploited, which makes the grassland degradative. In order to protect the resource of Leymus chinensis and improve the productivity of grassland, it is necessary to seek the new technologies and approaches of melioration. It is an urgent problem to solve how to utilize large area of saline-alkaline field.
    Leymus chinensis is an ideal grass to build meadow and control the saline-alkaline field. Although Leymus chinensis can endure saline-alkaline stress, it can't affect melioration of the saline-alkaline field. According to law of reproductive and characteristic of biology, we can plant and approve Leymus chinensis. We should utilize the capacity of bearing saline-alkaline and breed some new kinds of species enduring saline-alkaline stress, it is basic route to control saline-alkaline.
    It is extremely slow to select and breed species which bear salt by traditional methods. With the development of molecular biology, we can use technology of gene engineering to improve endurance of saline-alkaline. The most efficient and ultimate method is to utilize saline-alkaline resisted gene in order to breed high-resisted species.
    This paper studied the law and peculiarity of Leymus chinensis and optimized the tissue culture system. The high efficient regeneration system firstly is founded, which makes it a good foundation to breed the new species which good characteristic and ability to endure saline-alkaline stress. The tissue culture system of mature embryos of Leymus chinensis was optimized. The sensitive characteristic on saline-alkaline of Leymus chinensis calli was studied; first assure Leymus chinensis calli enduring on the saline-alkaline medium. We hope to get saline-endured mutation by selecting with the high-concentration saline-alkaline medium. Studies have been done on genetic transformation and ways of saline-endurance. BADH gene was transferred into the regenerated system of Leymus chinensis by gene-gun and then examined. The results of study were acquired as follows:
    
    
    
    
    1. The tissue culture system of mature embryos on Leymus chinensis was optimized.
    (1) Acquisition of Leymus chinensis calli
    Mature embryo (seed) and root-stock is the ideal part to induce calli. It can be effectively kill germ by using 70% alcohol for 5 minutes and then in 1g/L Hgcl2 for 15 minutes. There is the characteristic of sleeping for Leymus chinensis seed. Low temperature contributed to germination. For some days accumulation germination rate increased. Temperature varieties contributed greatly to germination. 48 hours is the best time for germination by using 100ppm GA3, and germination rate can get to 16%.
    In order to improve the embryogenic calli induction rate of mature embryos, different media with different hormones were used in the embryogenic calli induction. The experiment results indicated that the selection of suitable medium is the basis to improve the induction rate and the quantity of embryogenic calli inducing from mature embryos. The hormone treatments had certain effects on the calli induction which lead to the significant difference. The mature calli induction of different media is quite different. MB gain very well induction efficiency. Among the difference of hormones, when concentration of 2,4-D was 2.5mg/L it could obviously enhance efficiency of induction and embryos induction.
    (2) Leymus chinensis calli subculture
    In the experiment, MB and MS media could improve the growth of mature calli and could obtain embryogenesis calli at last. The 2.0mg/L is the best in Leymus chinensis calli subculture when using 2,4-D. Concentration of sugar and proline should be 40g/L and 2500mg/L in su
引文
[1] 武保国 羊草[J] 农村百事通 2003.10:28 中国农业科学院草原研究所
    [2] 张玉芬 周道玮 羊草分化及育种研究进展[J].中国草地 2002.24.2:54~74
    [3] 张玉良 东北及内蒙古产羊草属植物授粉特性的测定[J].植物分类学报,1954,3(2):245~246.
    [4] 王克平 羊草物种分化的研究—Ⅰ.野生种群的考察[J].中国草原,1984,(2):32~36.
    [5] 王克平 羊草物种分化的研究—Ⅱ.试验地种群对比1.羊草授粉特性的测定[J].中国草原,1985,(2):43~44.
    [6] 赵传孝,杨根凤,张国瞳等 羊草种子发芽率的研究[J].中国草原,1986,(5):54~56.
    [7] 刘公社 张卫东 禾本科牧草分子生物学及生物技术研究进展[J] 西北植物学报 2003,23 4:682—687
    [8] 易津 羊草种子的休眠生理及提高发芽率的研究[J].中国草地,1994,(6):1~6.
    [9] 王萍,周天,刘建国等 提高羊草种子发芽能力的研究[J].东北师大学报,1998,(1):54~57.
    [10] 马鹤林,宛涛,王风刚.羊草结实特性及结实率低的原因[J].中国草原,1984,(30):15~21.
    [11] 潘国富,孙振雷.羊草PMC减数分裂、花粉育性及结实性的研究[J].中国草原,1986,(3):7~14.
    [12] 王昱生,徐宝田,王海山.提高羊草草种结实率的实验研究[A].吉林省植物学会,黑龙江省生态学会,第三次东北草原学会论文集[C].长春:1980:439~543.
    [13] 杜建材,王照兰,于林清等 用远缘杂交方法改良羊草结实性的研究[J].中国草地,1998,(4):5~8.
    [14] 杨允菲,祝玲.松嫩平原天然羊草种群结实器官性状的波动与气候因子关系的研究[J].植物学报,1993,35(6):472~476.
    [15] 杨允菲,杨利民,张宝田,等 东北草原羊草种群结实特性与气候年变化的关系[J].植物学报,2000,42(3):294~299.
    [16] 王玉林,袁有福,罗新义.羊草开花习性的观察[A].吉林省植物学会,黑龙江省生态学会.第三次东北草原学会论文集[C].长春:1980:328~335.
    [17] 王仁忠,祖元刚,聂绍荃.羊草种群生物量生殖分配的初步研究[J].应用生态学报,1999,10(5):553~555.
    [18] 王梦龙.羊草结实特性的研究[J].中国草地,1998,(1):18~20.
    [19] 王策箴.羊草的内部构造及其细胞学的研究[J].中国草原,1983,(1):41~45.
    [20] 陆静梅,李建东.几种不同生态环境植物解剖结构比较研究[J].东北师大学报,1994,(3):
    
    100~104.
    [21] 任文伟,钱吉,郑师章.不同地理种群羊草的遗传分化研究[J].生态学报,1999,19(5):689~696.
    [22] 马鹤林,云锦凤,宛涛等 “农牧一号”羊草生物学特性及主要经济性状表现[J].中国草地,1992,(2):1~5.
    [23] 王克平.羊草物种分化的研究—Ⅱ.试验地种群对比2.形态特征、生育特性调查[J].中国草原,1987,(1):48~52.
    [24] 王克平,罗璇.羊草物种分化的研究—Ⅴ.羊草种内分化的四个生态型[J].中国草原,1988,(2):51~52.
    [25] 马鹤林,宛涛,王风刚.羊草结实特性及结实率低的原因[J].中国草原,1984,(30):15~21.
    [26] 杜占池,杨宗贵.不同土壤类型羊草光合和蒸腾作用特性的比较研究[J].植物学报,1995,37(1):66~73.
    [27] 王德利,王正文,张喜军.羊草两个趋异类型的光合生理生态特性比较的初步研究[J].生态学报,1998,19(16):837~843.
    [28] 夏丽华 磁处理种子对羊草生长及抗盐碱性的影响[J] 草业学报 2001,3:58~63
    [29] 雷和田 赵云云,王景林等 小麦×羊草远缘杂交的受精和胚胎发育[J] 华北农学报 1997,12(2):29~32
    [30] 陈晖,匡柏健,王敬驹.通过细胞工程改良羊草品质的研究[J].草业学报,1995,4(1):1~5.
    [31] 段晓刚,樊金铃.羊草染色体组的研究[J].中国草原,1984,(2):63~65.
    [32] 段晓刚,樊金铃.黄绿型羊草染色体观察[J].中国草原,1986,(5):57.
    [33] 张丽萍,陈丽颖,李建东.东北松嫩草原羊草过氧化物同工酶及酯酶同工酶的研究[J].草业科学,1992,9(5):49~51.
    [34] 陈世龙.内蒙古东部地区不同类型草原中羊草的同工酶研究[J].中国草地,1994,(6):47~50.
    [35] 汪敏,钱吉,郑师章.羊草不同地理种群的同工酶研究[J].应用生态学报,1998,9(3):269~272.
    [36] 崔继哲,曲来叶,祖元刚.松嫩平原中部地区羊草种群遗传结构研究[J].植物研究,2000,20(1):89~93.
    [37] 崔继哲,曲来叶,祖元刚.微生境下羊草两种生态型种群的遗传多样性及遗传分化——等位酶分析[J].生态学报,2000,20(3):434~439.
    [38] 段晓刚,樊金铃.羊草减数分裂的研究[J].中国草原,1984,(2):66~67.
    [39] 刘公社,张卫东 禾本科牧草分子生物学及生物技术研究进展[J] 西北植物学报 2003,23(4):682~687
    
    
    [40] 查普曼GP等.禾本科植物导论[M].北京:科学出版社,1996.
    [41] HEMT, YULQ. Study and application prospects of for age in biological techniques[J]. Progression in Biological Engineering生物工程进展,1997,17 2:63-64,71 (in Chinese).
    [42] 胡宝忠,刘娣,胡国富等 羊草遗传多样性的研究[J].植物生态学报,2001,25(1):83~89.
    [43] LIU J, LIU G SH, QI D M. Construction of genetic fingerprint of Aneurolepidium chinensis using microsatellite sequences [J]. Acta Botanica Sinica植物学报,2000,42 9:985-987 (in Chinese).
    [44] 方宣均.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [45] LIU Jie, ZHU Zhi-qing, LIU Gong-she etc. AFLP variation analysis on the germ plasm resources of Leymus chinensis [J]. Acta Botanica Sinica植物学报,2002,44 7:845-851 (in Chinese).
    [46] 汪恩华 刘杰 刘公社等 形态与分子标记用于羊草种质鉴定与遗传评估的研究[J] 草业学报,2002,12:68-75
    [47] LIU J, LIU G SH. Effect of PEG on germ ination and active oxygen metabolism in wild rye Leymus chinensis [J]. Acta Prataculturae Sinica, 2002,11 1:59-64 (in Chinese).
    [48] 刘书润,刘钟龄.内蒙古锡林河流域植物区纲要[A].中国科学院内蒙古草原生态定位站.草原生态系统研究[C].北京:科学出版社,1988,(3):261.
    [49] 王克平,罗璇.羊草物种分化的研究—Ⅲ.生态型差异的遗传基础分析,Ⅳ—土壤学、营养学、气象学分析[J].中国草地,1987,(4):42~45.
    [50] 钱吉,马玉红,任文伟等 不同地理种群羊草分子水平上生态型分化的研究[J].生态学报,2000,20(3):440~443.
    [51] Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulforium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44:357-384
    [52] McCue K F, Hanson A D. Drought and salt tolerance: understanding and application. TIBTECH, 1990, 8:358-362
    [53] 肖岗,张耕耘,刘风华等.山菠菜甜菜碱醛脱氢酶基因研究.科学通报,1995,40(8):741-745
    [54] Ishitani M,Nakamura T,Han S Y,et al. Expression of the batain aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol,1995, 27:307-315
    [55] McCue K F, Hanson A D. Salt-inducible betain aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol, 1992, 18:1-11
    [56] Weretilnky E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc
    
    Nat 1 Acad Sci USA, 1990, 87:2 745-2 749
    [57] Wood AJ, Saneoka H, Rhodes D, et al, Retaine aldehyde dehydrogenase in Sorghum. Plant Physio I, 1996, 110:1301-1308
    [58] 余叔文,甜菜中BADH的cDNA的克隆 1999.植物生理与分子生物学.北京:科学出版社
    [59] 肖岗,张耕耘,刘风华等 山菠菜甜菜碱醛脱氢酶基因研究 1995.科学通报,40,(8):741—747
    [60] 梁峥,马德钦,汤岚等 菠菜甜菜碱醛脱氢酶基因在烟草中的表达 1997.生物工程学报,13:236—240
    [61] 李银心 常凤启 转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性 植物学报 2000,5:35~38
    [62] 宁布 杜一民 干旱地区牧草种质资源繁殖技术的研究 内蒙古畜牧科学 1997,4:27~28
    [63] 王海波 植物组织及细胞培养的通用分析模式的探讨[博士学位论文],中国农业科学院,1994
    [64] 吕芝香,蔗糖在植物组织培养中的作用 植物生理学报[J],1981,7(2):105-111
    [65] 梁海曼,颜昌敬主编,农作物组织培养[M],上海科技出版社 1991,
    [66] Duncan, D.R 1985,Planta, 165:322-332
    [67] Vasil, I.K 1987,Journal Plant Physiol,122:193-213
    [68] Chaleff RS. Isolatlon of agronomically useful mutants from Plant cell cultures. Science 1983,219:678
    [69] Dracup M. Why does in ritro cell selection not improve the salt tolerance of Plants? In: Randall P J. Delhaize E, Richards RA et al(eds). Genetic Aspects of Plant Mineral Nutrition. K Juwer Academic Publishers.1993, P 137
    [70] Ashraf M. Breeding for salinity tolerance in Plants. Critoal Rev in Plant Science 1994.13:7
    [71] Hasegawa PW, Bressan RA, Handa AK. Cellu armechanisms of salinity tolerance. HortSci 1986, 21:1 317
    [72] Dix P J. McLysaght V A, Plunkett A. Salt stress: Resistance mechanisms and in vitro selection Procedures. in:: Withers LA, Alderson PG (eds), Plant Tissue Culture and Its Agricultural Applications.Balterworths.London. 1986.P 469
    [73] Nabors MW.Environmental stress resistance. In: Dix PS(ed), Plant Cell Line Selection, Procedures and APPlications. VCH, Weinheim, New York.1990, P167
    [74] 贺道耀 余叔文 水稻高脯氨酸愈伤组织变异体的选择及其耐盐性 植物生理学报,1995,21(1):65~72
    [75] Ben-Hayyim G, Goffer Y.Plantlet regeneration from a NaCl-selected salt-tolerant callus culture of
    
    shamoui orange(Citrus sinensis L.O Sbeck). Plant Cell Rep 1989, 7:680
    [76] Bressan RA. Singh NK, Handa Ak et al. Stable and unstable tolerance to NaCl in cultured tobacco cells. In: Freeling M(ed), UCLA SymPosia on Plant Genetics. Liss, New York. 1985, P755
    [77] Kononowicz A K, Hasegawa P M, Bressan R A. Chromosome number and nuclear DNA Content of Plants regenerated from salt adapted Plant cells. Plant Cell Rep 1990, 8:676
    [78] 周荣仁,杨燮荣,余叔文.烟草耐盐愈伤组织变异体对盐渍的适应性。植物生理学报 1993,19:188
    [79] Watad AA, Swartzberg D, Bressan RA et al. Stability of salt tolerance at the cell level after regeneration of Plants from a salt tolerant tobacco cell line. Physiol Plant 1991, 83:307
    [80] Christinansen MN. World environmental limitations to food and fiber culture. In: Christinansen MN, Lewis CF(eds).Breeding Plants for Less Favorable Environments. Wjley, New York. 1982,P1
    [81] 刘友良 植物耐盐性研究进展 植物生理学通讯 1987.4:1~7
    [82] 周荣仁 利用组织培养研究植物耐盐机理与筛选耐盐突变体的进展 植物生理学通讯 1989 5:27~29
    [83] 王萍,周天.在NaCl胁迫下羊草幼苗生理反应及外源钙的缓解效应[J].草地学报,1998,6(1):20~25.
    [84] 王萍 Na_2CO_3胁迫下羊草幼苗生理效应及外源脱落酸的缓解效应[J].草地学报,1998,3:24~28.
    [85] 周荣仁 苜蓿耐盐突变体的研究 曲阜师范学院 植物抗盐生理专刊 1984.63
    [86] 祁翠兰 李志勇,刘秉信 红豆草耐盐突变体的研究 中国农业科学院草原研究所 中国草地 1998.3
    [87] 石德成,殷立娟.Na_2CO_3胁迫下羊草的胁变反应及其数学分析[J].植物学报,1992,34(5):386~393.
    [88] 石德成,盛艳敏,赵可夫.复杂盐碱生态条件的人工模拟及其对羊草生长的影响[J].草业学报,1998,7(1):36~41.
    [89] 张丽娟等 不同品种羊草耐盐性模糊综合评价 哲里木畜牧学院学报 2000 3:1~5
    [90] 王关林 方宏筠 主编 植物基因工程 2002,8 第二版 科学出版社 62—63
    [91] Jefferson R A. The Gus gene fusion system. Plant Molecular Biology Reporter, 1987,5(4):387-405
    [92] WANG Z Y,YE X D. Expression of a sulphur-rich sunflower album in gene in transgenic tall fescue(Festuca arundinnacea Schreb) plants[J].Plant Cell Reports,2001,20 3:213-219.
    
    
    [93] DALTONS J, TIMMSE, et al. Co-transformed, diploid Loliumte mulentum perennial rye grass, Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectil e bombardment[J].Plant Cell Reports., 1999,18 9:721-726.
    [94] KUAIB, DALTONS J, et al. Regeneration of fertile transgenic tall fescue plant with a stable highly expressed foreign gene[J].Plant Cell, Tissue and Organ Culture, 1999,58 2:149-154.
    [95] DENCHEV P D, SONGSTAD D D, et al. Transgenic orchard grass (Dactylis glomerata) plants by direct embryo genesis from micro projectile bombarded leaf cells[J].Plant Cell Reports,1997,16 12:813-819.
    [96] YE X D, WU X L, et al. Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilissac B gene[J].Plant Cell Reports,2001,20 3:205-212.
    [97] JUN Y, et al. A draft sequence of the rice genome (Oryza sativa L.ssp. Indica) [J]. Science, 2002,296:79-92.
    [98] STEPHEN A G, et al. A draft sequence of the rice genome (Oryza sativa L.ssp.japonica) [J]. Science, 2002, 296: 92-100.
    [99] 马鹤林 对我国今后牧草育种工作的思考 内蒙古草业 1996 3,4:4~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700