用户名: 密码: 验证码:
TiAl_3/Ti_3AlC_2/Al_2O_3复合材料制备及其耐铝液熔蚀—磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冶金、化工、航空航天及汽车等领域,高温腐蚀性环境当中承受动载的关键零部件往往因腐蚀-磨损的作用而失效,从而造成巨大的经济损失。当前,对于腐蚀-磨损的研究多集中于材料在腐蚀性气体、溶液或颗粒冲刷条件下的加速流失,而对于材料在高温金属熔体当中的熔蚀-磨损失效行为研究鲜有报道。
     本文针对材料在腐蚀性极强的高温铝液当中的熔蚀-磨损失效现象,采用机械球磨+反应热压工艺制备出Ti_3AlC_2+Al_2O_3两相原位内生增强的TiAl_3基复合材料,并利用自行研制的高温熔蚀-磨损试验机对H13钢及TiAl_3/Ti_3AlC_2/Al_2O_3复合材料在750℃铝液当中的熔蚀-磨损行为进行了对比研究,同时,探讨了材料在高温铝液当中的熔蚀-磨损机理。主要研究结果和创新如下:
     1.复合材料的原位合成机理:反应热压过程中当Al熔化以后,Al与TiO_2即迅速发生放热反应生成TiAl_3与中间产物TiO,随着温度升高Al_2O_3逐渐在TiAl_3晶界上析出,当到达高温段后TiAl_3与TiC反应逐渐生成Ti_3AlC_2。其总的反应式为:3TiO_2+11Al+2TiC→2TiAl_3+Ti_3AlC_2+2Al_2O_3反应热压过程中由于瞬间放热而产生部分液相,导致试样内部出现瞬时的颗粒重排及熔体浸渗,从而实现瞬间液相致密。球磨50h后的Al/TiO_2/TiC复合粉末经1250℃/50MPa保温10min烧结后可以得到组织均匀细小、致密的TiAl_3/Ti_3AlC_2/Al_2O_3复合材料。
     2.复合材料中TiAl_3与Al_2O_3呈两相互贯通的空间网络状增强结构,同时Ti_3AlC_2相的引入极大地提升了复合材料的综合力学性能:室温三点弯曲强度、断裂韧性及压缩强度分别为658.9MPa、7.9MPa/m1/2和1742.0MPa,且在1000℃下的高温压缩强度为604.1MPa。Ti_3AlC_2+Al_2O_3协同增强的TiAl_3复合材料存在多种增韧机制:包括Ti_3AlC_2和Al_2O_3颗粒的剥离,Ti_3AlC_2相导致的裂纹偏转及桥接,以及Ti_3AlC_2颗粒的变形及层裂。
     3.在700~900℃下循环氧化50h后,复合材料表面只生成Al_2O_3单层膜,而在1000℃下氧化时其表面氧化膜为Al_2O_3与金红石型TiO_2的混合物。尽管氧化膜并不致密,复合材料在700~1000℃温度区间内仍表现出优异的抗高温循环氧化性能。
     4.铝液熔蚀-磨损行为研究表明:对“以生成界面金属间化合物为典型腐蚀特征”的典型耐磨材料如H13钢这一类材料,界面金属间化合物的生成速度、性质及其与基体界面的结合情况对其在铝液当中的熔蚀-磨损性能的影响很大。H13钢在铝液当中熔蚀-磨损的材料流失量远高于其单纯腐蚀与单纯磨损条件下材料流失量之和。在本文不同实验条件下,其熔蚀-磨损体积损失约为133~407mm3/h,熔蚀与磨损二者的交互作用率均不小于93.9%。
     5.相对H13钢而言,TiAl_3/Ti_3AlC_2/Al_2O_3复合材料的耐铝液熔蚀-磨损性能提高了几十甚至上百倍,其在750℃铝液当中的熔蚀-磨损体积损失仅为0.84~7.53mm3/h。在低载荷或者低转速条件下,复合材料甚至表现出负的交互作用,其最大交互作用率约为47.5%。这一方面是由于复合材料在铝液当中腐蚀时不生成其它界面产物,而仅为极少量Ti元素的溶解;另一方面则是由于TiAl_3基体与Al_2O_3二者所形成的空间网络状结构改善了复合材料在铝液当中的耐磨损性能
In the field of metallurgical, chemical, aerospace and automotive, corrosion-weardamage to the key components used in high temperature corrosive environment which underdynamic loading often results in tremendous economic losses. Many researches have focusedon the accelerated degradation of materials in corrosive gas, solution or particle erosionconditions. However, the corrosion-wear behavior of materials in high temperature metal melthas been rarely reported.
     The aim of the present investigation is to mainly understand the corrosion-wear damagebehavior of materials in the highly corrosive molten aluminum. According to the target, anin-situ Ti_3AlC_2and Al_2O_3cooperatively reinforced TiAl_3composite was synthesized from amechanically milled powder mixture by using an in situ reaction/hot pressing method. Thecorrosion-wear behaviors of TiAl_3/Ti_3AlC_2/Al_2O_3composite and H13tool steel in a moltenaluminum at750oC were investigated using a self-developed high temperaturecorrosion-wear test apparatus. The corrosion-wear mechanisms of these two materials werecompared and discussed. The main results and innovation are as follows:
     1. Based on the detailed analysis, the synthesis mechanism of TiAl_3/Ti_3AlC_2/Al_2O_3composite is proposed as follows: after the melting of Al, Al and TiO_2reacted immediately toform TiAl_3and the transitional phase TiO. Subsequently, Al_2O_3precipitated on the grainboundary of TiAl_3with the increasing of temperature. When reached the high temperaturesection, TiAl_3and TiC reacted to form Ti_3AlC_2. The total reaction is defined as:3TiO_2+11Al+2TiC→2TiAl_3+Ti_3AlC_2+2Al_2O_3Due to the large amount of heat released in a very short time by the exothermic reaction, thesample internally generated transient liquid phase, which leading to instantaneous particlerearrangement and melt infiltration and resulting in a transient liquid phase dense. A fullydense Ti_3AlC_2/Al_2O_3/TiAl_3composite with homogeneous and fine microstructure wasfabricated from50h-milled Al-TiO_2-TiC powder mixture at1250oC and50MPa for10min.
     2. Due to the introduction of Ti_3AlC_2phase and the interpenetrating structure of TiAl_3matrix and Al_2O_3reinforcement, the composite achieved three-point bending strength,fracture toughness and compressive strength of~658.9MPa,~7.9MPa/m1/2and~1742.0MPa,respectively. And the high compressive strength could be maintained of604.1MPa even at1000oC. The toughening of composite are primarily attributed to pull-out of the Ti_3AlC_2andAl_2O_3particles, crack deflection and crack bridging by the Ti_3AlC_2phase and as well as the deformation and delamination of Ti_3AlC_2particles.
     3. The investigation of50h cyclic oxidation behavior of composite at elevatedtemperature showed that the scales on composite are only Al_2O_3at700~900oC, while Al_2O_3and rutile TiO_2at1000oC. Though the oxidation scales are not dense, composite still exhibitsexcellent cyclic oxidation resistance in the temperature range of700~1000oC.
     4. A typical feature of materials corroded in molten aluminum is to generatedintemetallic compound layer between the substrate and molten aluminum. H13tool steel is atypical representative of these materials, so the corrosion-wear behavior of H13tool steel isinvestigated detailed. The results show that the corrosion-wear resistance of materials isdepended on the formation rate and characterization of intermetallic compound layer, as wellas the combination between the substrate and intermetallic zone. The corrosion-wear lossesare much higher than the simple sum of materials losses under plain corrosion and plain wear.The corrosion-wear volume loss of H13tool steel is about133~407mm3/h, and the synergyratio of corrosion-wear is not less than93.9%under the explored condition.
     5. Compared with H13tool steel, the corrosion-wear resistance of TiAl_3/Ti_3AlC_2/Al_2O_3composite has improved significantly. The corrosion-wear volume loss of composite is only0.84~7.53mm3/h, which is dozens or even hundreds times less than that of H13. Under thecondition of low load or low velocity, the composite even exhibits negative synergy, and thehighest synergy ratio of corrosion-wear is47.5%. This is partly due to no intermetalliccompound formed in the interface, but just a little Ti dissolved into the molten aluminumwhen the composite corroded in Al melt. On the other hand, the interpenetrating structure ofTiAl_3matrix and Al_2O_3reinforcement improve the wear resistance of composite in moltenaluminum.
引文
[1] Malka Ramakrishna, Ne i Srdjan, Gulino Daniel A. Erosion-corrosion and synergisticeffects in disturbed liquid-particle flow [J]. Wear,2007,262(7):791-799.
    [2]姜晓霞,李诗卓,李曙,金属的腐蚀磨损[M].北京:化学工业出版社,2003.
    [3] Watson S. W., Friedersdorf F. J., Madsen B. W.et al. Methods of measuringwear-corrosion synergism [J]. Wear,1995,181:476-484.
    [4] Watson S. W., Madsen B. W., Cramer S. D. Wear-corrosion study of white cast irons[J]. Wear,1995,181:469-475.
    [5] Madsen Brent W. Measurement of erosion-corrosion synergism with a slurry wear testapparatus [J]. Wear,1988,123(2):127-142.
    [6] Stack M. M. Looking beyond the millennium: critical issues in the evaluation ofmaterials performance for resistance to erosive wear in corrosive conditions [J]. Wear,1999,233:484-496.
    [7] Stack M. M., Corlett N., Turgoose S. Some recent advances in the development oftheoretical approaches for the construction of erosion–corrosion maps in aqueousconditions [J]. Wear,1999,233:535-541.
    [8] Stack M. M., Wang H. W. Simplifying the erosion–corrosion mechanism map forerosion of thin coatings in aqueous slurries [J]. Wear,1999,233:542-551.
    [9] Jiang J., Stack M. M., Neville A. Modelling the tribo-corrosion interaction in aqueoussliding conditions [J]. Tribology International,2002,35(10):669-679.
    [10] Stack M. M., Abdelrahman G. H. Mapping erosion-corrosion of carbon steel inoil-water solutions: effects of velocity and applied potential [J].Wear,2012,274:401-413.
    [11] Dybkov V. I. Reaction diffusion in heterogeneous binary systems [J]. Journal ofmaterials science,1986,21(9):3078-3084.
    [12] Bouche K., Barbier F., Coulet A. Intermetallic compound layer growth between solidiron and molten aluminium [J]. Materials Science and Engineering: A,1998,249(1):167-175.
    [13] Bouayad A., Gerometta Ch, Belkebir A.et al. Kinetic interactions between solid ironand molten aluminium [J]. Materials Science and Engineering: A,2003,363(1):53-61.
    [14] Shahverdi H. R., Ghomashchi M. R., Shabestari S.et al. Microstructural analysis ofinterfacial reaction between molten aluminium and solid iron [J]. Journal of materialsprocessing technology,2002,124(3):345-352.
    [15] Awan Gul Hameed. The morphology of coating/substrate interface inhot-dip-aluminized steels [J]. Materials Science and Engineering: A,2008,472(1):157-165.
    [16]娄本浊.从耐腐蚀性能看高温熔铝坩埚的选材[J].材料保护,2009,42(3):71-72.
    [17]曾辉,王学华,陈信.复合石墨组织铸铁抗铝液侵蚀的机理及应用[J].铸造,2003,52(2):89-91.
    [18]高占勇,张金龙,武文霞等.石墨形态对铸铁在铝液中耐腐蚀性的影响[J].铸造,2009,58(9):937-939.
    [19]李鹏,崔传孟,王魁汉.新型铁基合金材料在铝液中耐腐蚀性能的研究[J].有色矿冶,1998,14(3):39-41.
    [20] Balloy David, Tissier Jean-Charles, Giorgi Marie-Laurenceet al. Corrosion mechanismsof steel and cast iron by molten aluminum [J]. Metallurgical and Materials TransactionsA,2010,41(9):2366-2376.
    [21]陈维平,朱士鎏,龚建森等.熔铝铸铁坩埚新型材质的研究[J].湖南大学学报,1991,18(4):71-76.
    [22] Zhu Yulong, Schwam David, Wallace John F.et al. Evaluation of soldering, washoutand thermal fatigue resistance of advanced metal materials for aluminum die-castingdies [J]. Materials Science and Engineering: A,2004,379(1):420-431.
    [23]王荣,闵永安,吴晓春. H13钢经不同表面处理后的静态抗铝热熔损性能比较[J].金属热处理,2003,28(12):5-8.
    [24] Mihelich John, Decker Raymond F. Apparatus for processing corrosive molten metals
    [P]. US:5711366,1998.1.27.
    [25] Yan M., Fan Z. Review Durability of materials in molten aluminum alloys [J]. Journalof materials science,2001,36(2):285-295.
    [26] Miyahara Hirofumi, Muraoka Ryuji, Mori Nobuyukiet al. Influence of alloyingelements on wettability and reaction of molten aluminum with alumina [J]. Journal ofthe Japan Institute of Metals,1995,59(6):660-665.
    [27]张永刚,韩雅芳,陈国良,金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [28]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5.
    [29]孙扬善,梅建平,黄海波. Fe3Al基合金的高温耐冲蚀磨损性能[J].钢铁研究学报,1997,9(2):39-43.
    [30] Yu Xinquan, Sun Yangshan. The oxidation improvement of Fe3Al based alloy withcerium addition at temperature above1000℃[J]. Materials Science and Engineering:A,2003,363(1):30-39.
    [31]范敏,余新泉,孙扬善. Fe3Al基合金在含SO2和SiO2颗粒高温气流中的冲刷腐蚀[J].中国腐蚀与防护学报,2000,20(3):27-32.
    [32]王文俊,林均品,王艳丽等.用正电子湮没技术研究锌液对钛铝基合金的腐蚀[J].稀有金属材料与工程,2007,36(6):994-997.
    [33]王文俊,王艳丽,林均品等.锌锅部件锌液腐蚀的研究现状[J].钢铁研究学报,2007,19(3):1-5.
    [34]耿刚强,官磊,李宁等.铁硅金属间化合物耐熔铝腐蚀性研究[J].热加工工艺,2006,35(6):14-16.
    [35] Karger-Kocsis J., Felh s D., Xu D.et al. Unlubricated sliding and rolling wear ofthermoplastic dynamic vulcanizates against steel [J]. Wear,2008,265(3):292-300.
    [36]曾辉,黎东涛,李国彪等.陶瓷-金属-合金三层复合材料坩埚的液态成形法研究[J].热加工工艺,2007,36(17):5-7.
    [37] Milman Yu V., Miracle D. B., Chugunova S. I.et al. Mechanical behaviour of Al3Tiintermetallic and L12phases on its basis [J]. Intermetallics,2001,9(9):839-845.
    [38] Wang ShouRen, Li Changchun, Yong Wanget al. Formation of La-modified L12-Al3Tiby mechanical alloying and annealing [J]. Materials Characterization,2008,59(4):440-446.
    [39] Colinet C., Pasturel A. Ab initio calculation of the formation energies of L12, D022,D023and one dimensional long period structures in TiAl3compound [J]. Intermetallics,2002,10(8):751-764.
    [40] Nayak S. S., Pabi S. K., Murty B. S. High strength nanocrystalline L12-Al3(Ti, Zr)intermetallic synthesized by mechanical alloying [J]. Intermetallics,2007,15(1):26-33.
    [41] Karpets M. V., Milman Yu V., Barabash O. M.et al. The influence of Zr alloying on thestructure and properties of Al3Ti [J]. Intermetallics,2003,11(3):241-249.
    [42] Ward-Close C. M., Minor R., Doorbar P. J. Intermetallic-matrix composites-a review[J]. Intermetallics,1996,4(3):217-229.
    [43] Uenishi Keisuke, Matsubara Toshio, Shibutani Tomohideet al. Wear and oxidationresistance of Al2O3particle dispersed Al3Ti composite with a nanostructure prepared bypulsed electric current sintering of mechanically alloyed powders [J]. Intermetallics,2002,10(1):105-111.
    [44] DiPietro M. S., Kumar K. S., Whittenberger J. D. Compression behavior ofTiB2-particulate reinforced composites of Al22Fe3Ti8[J]. J. Mater. Res,1991,6(3):530.
    [45] Kumar K. S., Whittenberger J. D. Discontinuously reinforced intermetallic matrixcomposites via XD synthesis [J]. Materials science and technology,1992,8(4):317-330.
    [46] Heilmaier Martin, Saage H., Mirpuri K. J.et al. Superposition of grain size anddispersion strengthening in ODS L12-(Al, Cr)3Ti [J]. Materials Science and Engineering:A,2002,329:106-111.
    [47] Heilmaier M., Saage H., Eckert J. Formation of ODS L12-(Al, Cr)3Ti by mechanicalalloying [J]. Materials Science and Engineering: A,1997,239:652-657.
    [48] Liu Y. M., Xiu Z. Y., Wu G. H.et al. Study on Ti fiber reinforced TiAl3composite byinfiltration-in situ reaction [J]. Journal of materials science,2009,44(16):4258-4263.
    [49] Yang W. S., Xiu Z. Y., Wang X.et al. Microstructure evolution and oxidation behaviourof Tif/TiAl3composites [J]. Materials&Design,2011,32(1):207-216.
    [50] Adharapurapu Raghavendra R., Vecchio Kenneth S., Jiang Fengchunet al. Fracture ofTi-Al3Ti metal-intermetallic laminate composites: Effects of lamination onresistance-curve behavior [J]. Metallurgical and Materials Transactions A,2005,36(11):3217-3236.
    [51] Adharapurapu Raghavendra R., Vecchio Kenneth S., Jiang Fengchunet al. Effects ofductile laminate thickness, volume fraction, and orientation on fatigue-crackpropagation in Ti-Al3Ti metal-intermetallic laminate composites [J]. Metallurgical andMaterials Transactions A,2005,36(6):1595-1608.
    [52] Rohatgi Aashish, Harach David J., Vecchio Kenneth S.et al. Resistance-curve andfracture behavior of Ti-Al3Ti metallic–intermetallic laminate (MIL) composites [J].Acta Materialia,2003,51(10):2933-2957.
    [53] Travitzky N., Gotman I., Claussen N. Alumina-Ti aluminide interpenetratingcomposites: microstructure and mechanical properties [J]. Materials Letters,2003,57(22):3422-3426.
    [54] Yin Xiaowei, Travitzky Nahum, Greil Peter. Near-net-shape fabrication ofTi3AlC2-based composites [J]. International journal of applied ceramic technology,2007,4(2):184-190.
    [55] Schicker S., Garcia D. E., Bruhn J.et al. Reaction synthesized Al2O3-based intermetalliccomposites [J]. Acta materialia,1998,46(7):2485-2492.
    [56] Horvitz D., Gotman I., Gutmanas E. Y.et al. In situ processing of dense Al2O3-Tialuminide interpenetrating phase composites [J]. Journal of the European CeramicSociety,2002,22(6):947-954.
    [57] Hsu Chia-Wen, Chao Chuen-Guang. Effect of heat treatments on in-situ Al2O3/TiAl3composites produced from squeeze casting of TiO2/A356composites [J]. Metallurgicaland Materials Transactions B,2002,33(1):31-40.
    [58] Peng H. X., Fan Z., Wang D. Z. In situ Al3Ti-Al2O3intermetallic matrix composite:Synthesis, microstructure, and compressive behavior [J]. Journal of Materials Research,2000,15(9):1943-1949.
    [59] Yin Xiaowei, Travitzky Nahum, Greil Peter, Three-dimentional printing of Ti-Al-O-Ccomposites [J]: Journal of American Ceramic Society,2007,27(2):473-482.
    [60] He Shan-Shan, Yin Xiao-Wei, Zhang Li-Tonget al. Ti3AlC2-Al2O3-TiAl3compositefabricated by reactive melt infiltration [J]. Transactions of Nonferrous Metals Societyof China,2009,19(5):1215-1221.
    [61] Yin Xiaowei, Travitzky Nahum, Greil Peter. Three-dimensional printing ofnanolaminated Ti3AlC2toughened TiAl3-Al2O3Composites [J]. Journal of theAmerican Ceramic Society,2007,90(7):2128-2134.
    [62] Sujata M., Bhargava S., Sangal S. On the formation of TiAl3during reaction betweensolid Ti and liquid Al [J]. Journal of materials science letters,1997,16(13):1175-1178.
    [63] Watson Matthew J., Chan Helen M., Harmer Martin P.et al. Effects of milling liquid onthe reaction-bonded aluminum oxide process [J]. Journal of the American CeramicSociety,1998,81(8):2053-2060.
    [64] Kleiner S., Bertocco F., Khalid F. A.et al. Decomposition of process control agentduring mechanical milling and its influence on displacement reactions in the Al-TiO2system [J]. Materials chemistry and physics,2005,89(2):362-366.
    [65] Essl Frank, Janssen Rolf, Claussen Nils. Wet milling of Al-containing powder mixturesas precursor materials for reaction bonding of alumina (RBAO) and reaction sinteringof alumina-aluminide alloys (3A)[J]. Materials chemistry and physics,1999,61(1):69-77.
    [66]龚江宏,陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [67]吴晶.耐铝液腐蚀-磨损金属材料的筛选及其试验设备的研制[D].广州:华南理工大学,2012.
    [68]黄平,孟永钢,徐华,摩擦学教程[M].北京:高等教育出版社,2007.
    [69] Zhang D. L., Newby M. Solid-state reactions during heating mechanically milledAl/TiO2composite powders [J]. Metallurgical and Materials Transactions A,2004,35(7):2115-2125.
    [70] Sobczak N., Stobierski L., Radziwill W.et al. Wettability and interfacial reactions inAl/TiO2[J]. Surface and interface analysis,2004,36(8):1067-1070.
    [71] Alamolhoda Somaye, Heshmati-Manesh Saeed, Ataie Abolghasem. Mechano-thermaltreatment of TiO2-Al powder mixture to prepare TiAl/Al2O3composite [J]. Metals andMaterials International,2011,17(5):743-748.
    [72] Verdian M. M., Heshmati-Manesh S. Mechanochemical synthesis of TiAl3/Al2O3ultrafine grained composite [J]. International Journal of Modern Physics B,2008,22(18-19):2914-2923.
    [73] Welham N. J. Mechanical activation of the solid-state reaction between Al and TiO2[J].Materials Science and Engineering: A,1998,255(1):81-89.
    [74] Feng C. F., Froyen Ludo. Formation of Al3Ti and Al2O3from an Al-TiO2system forpreparing in-situ aluminium matrix composites [J]. Composites Part A: AppliedScience and Manufacturing,2000,31(4):385-390.
    [75] Liu Zhiguang, Raynova Stiliana, Zhang Delianget al. Study on the self sustainedreactions in an Al-TiO2composite powder produced by high-energy mechanical milling[J]. Materials Science and Engineering: A,2007,449:1107-1110.
    [76] Wagner F., Garcia D. E., Krupp A.et al. Interpenetrating Al2O3-TiAl3alloys producedby reactive infiltration [J]. Journal of the European Ceramic Society,1999,19(13):2449-2453.
    [77] Avraham Shaul, Beyer Peter, Janssen Rolfet al. Characterization of α-Al2O3-(Al-Si)3Ticomposites [J]. Journal of the European Ceramic Society,2006,26(13):2719-2726.
    [78] Wang X., Sohn H. Y., Schlesinger M. E. Determination of the kinetics of TiAl3formation from fine Ti and Al particles using differential scanning calorimetry [J].Materials Science and Engineering: A,1994,186(1):151-155.
    [79] Flammersheim Hans-Jürgen, Opfermann Johannes R. Kinetic evaluation of DSC curvesfor reacting systems with variable stoichiometric compositions [J]. Thermochimica acta,2002,388(1):389-400.
    [80] Starink M. J. The determination of activation energy from linear heating rateexperiments: a comparison of the accuracy of isoconversion methods [J].Thermochimica Acta,2003,404(1):163-176.
    [81] Wang T., Lu Y. X., Zhu M. L.et al. DSC research on critical temperature in thermalexplosion synthesis reaction Ti+3Al→TiAl3[J]. Journal of thermal analysis andcalorimetry,2002,67(3):605-611.
    [82] Pan J., Li J. H., Fukunaga H.et al. Microstructural study of the interface reactionbetween titania whiskers and aluminum [J]. Composites science and technology,1997,57(3):319-325.
    [83] Choi Yoon, Rhee Shi Woo. Reaction of TiO2-Al-C in the combustion synthesis ofTiC-Al2O3Composite [J]. Journal of the American ceramic society,1995,78(4):986-992.
    [84] Ge Zhenbin, Chen Kexin, Guo Junming, et al. Combustion synthesis of ternary carbideTi3AlC2in Ti-Al-C system [J]. Journal of the european ceramic society,2003,23(3):567-574.
    [85] Guo Junming, Chen Kexin, Zhou Hepinget al. Effects of TiAl3addition in Ti-Al-Csystem on combustion synthesis of Ti3AlC2Powders [J]. Acta Metallurgica Sinic,2004,40(1):109-112.
    [86] Li Shi-Bo, Zhai Hong-Xiang, Bei Guo-Pinget al. Synthesis and microstructure ofTi3AlC2by mechanically activated sintering of elemental powders [J]. Ceramicsinternational,2007,33(2):169-173.
    [87] Yoshida Michiyuki, Hoshiyama Yasuhiro, Ommyoji Junjiet al. Microstructuralevolution during the formation of Ti3AlC2[J]. Materials Science and Engineering: B,2010,173(1):126-129.
    [88] Khoptiar Yuri, Gotman Irena, Gutmanas Elazar Y. Pressure-assisted combustionsynthesis of dense layered Ti3AlC2and its mechanical properties [J]. Journal of theAmerican Ceramic Society,2005,88(1):28-33.
    [89] Han Jae-Ho, Hwang Sung-Sic, Lee Dongyunet al. Synthesis and mechanical propertiesof Ti3AlC2by hot pressing TiCx/Al powder mixture [J]. Journal of the Europeanceramic Society,2008,28(5):979-988.
    [90] Zhang D. L., Ying D. Y., Munroe P. Formation of Al2O3during heating of an Al/TiO2nanocomposite powder [J]. Journal of materials research,2005,20(2):307-313.
    [91] Gaus Shaun P., Harmer Martin P., Chan Helen M.et al. Alumina-aluminide alloys (3A)technology: I, model development [J]. Journal of the American Ceramic Society,2000,83(7):1599-1605.
    [92] Gaus Shaun P., Harmer Martin P., Chan Helen M.et al. Alumina-aluminide-alloys (3A)technology: II, modeling of TixAly-Al2O3composites formation [J]. Journal of theAmerican Ceramic Society,2000,83(7):1606-1612.
    [93] Janssen Rolf, Scheppokat Sven, Claussen Nils. Tailor-made ceramic-basedcomponents-advantages by reactive processing and advanced shaping techniques [J].Journal of the European Ceramic Society,2008,28(7):1369-1379.
    [94] Wang X. H., Zhou Y. C. Layered machinable and electrically conductive Ti2AlC andTi3AlC2ceramics: a review [J]. Journal Materials of Technology,2010,26(5):385-416.
    [95] Matsubara T., Shibutani T., Uenishi K.et al. Fabrication of a thick surface layer of Al3Tion Ti substrate by reactive-pulsed electric current sintering [J]. Intermetallics,2000,8(7):815-822.
    [96] Wang X. H., Zhou Y. C. Microstructure and properties of Ti3AlC2prepared by thesolid-liquid reaction synthesis and simultaneous in-situ hot pressing process [J]. ActaMaterialia,2002,50(12):3143-3151.
    [97] Tzenov Nikolay V., Barsoum Michel W. Synthesis and characterization of Ti3AlC2[J].Journal of the American Ceramic Society,2000,83(4):825-832.
    [98] Wang X. H., Zhou Y. C. Oxidation behavior of Ti3AlC2at1000-1400℃in air [J].Corrosion Science,2003,45(5):891-907.
    [99] Qian Xukun, Li Yibin, Sun Yueet al. Cyclic oxidation behavior of TiC/Ti3AlC2composites at550-950℃in air [J]. Journal of Alloys and Compounds,2010,491(1):386-390.
    [100] Qian Xukun, He Xiaodong, Li Yibinet al. Improving the cyclic-oxidation resistance ofTi3AlC2at550℃and650℃by preoxidation at1100℃[J]. International Journalof Applied Ceramic Technology,2010,7(6):760-765.
    [101] Udayashankar N. K., Rajasekaran S., Nayak Jagannath. Oxidation and corrosionresistance of TiAl3coatings [J]. Transactions of the Indian Institute of Metals,2008,61(2-3):231-233.
    [102] Chu M. S., Wu S. K. Oxidation behavior of Ti-50Al intermetallics with thin TiAl3filmat1000℃[J]. Oxidation of metals,2005,63(1-2):1-13.
    [103] Yamaguchi Norio, Kakeyama Takuro, Yoshioka Takayukiet al. Effect of the thirdelements on high temperature oxidation resistance of TiAl3intermetallic compounds [J].Materials Transactions,2002,43(12):3211-3216.
    [104] Reddy R. Ga, Wen X., Okafor ICI. Diffusion of oxygen in the Al2O3oxidation productof TiAl3[J]. Metallurgical and Materials Transactions A,2000,31(12):3023-3028.
    [105]王福会,唐兆麟. TiAl金属间化合物的高温氧化与防护研究进展[J].材料研究学报,1998(4):337-344.
    [106]郑传林,徐重,贺志勇等. TiAl金属间化合物高温抗氧化研究进展[J].材料导报,2002(11):14-16.
    [107]杨松岚,王福会. NiAl金属间化合物高温氧化的研究进展[J].腐蚀科学与防护技术,2002(2):109-112.
    [108] Yang Songlan, Wang Fuhui, Wu Weitao. Effect of microcrystallization on the cyclicoxidation behavior of β-NiAl intermetallics at1000℃in air [J]. Intermetallics,2001,9(8):741-744.
    [109] Grabke H. J. Oxidation of NiAl and FeAl [J]. Intermetallics,1999,7(10):1153-1158.
    [110] Xu G. H., Lu Z., Zhang K. F. The oxidation resistance of submicron-grainedNiAl-Al2O3composite fabricated by pulse current auxiliary sintering [J]. Intermetallics,2012,31(12):99-104.
    [111]钱旭坤.层状Ti3AlC2的燃烧合成及其性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [112] Cao Guojian, Geng Lin, Zheng Zhenzhuet al. The oxidation of nanocrystalline Ni3Alfabricated by mechanical alloying and spark plasma sintering [J]. Intermetallics,2007,15(12):1672-1677.
    [113] Schwam David, Wallace John F., Zhu Yulonget al. Evaluation of heat checking andwashout of heat resistant superalloys and coatings for die inserts [R]. Washington DC:USDOE Office of Energy Efficiency and Renewable Energy; USDOE Office ofIndustrial Technologies,2005.
    [114] Lou D. C., Akselsen O. M., Ons ien M. I.et al. Surface modification of steel and castiron to improve corrosion resistance in molten aluminium [J]. Surface and CoatingsTechnology,2006,200(18):5282-5288.
    [115] Xu Jing, Bright Mark A., Liu Xingboet al. Liquid metal corrosion of316L stainlesssteel,410stainless steel, and1015carbon steel in a molten zinc bath [J]. Metallurgicaland Materials Transactions A,2007,38(11):2727-2736.
    [116] Yeremenko V. N., Natanzon Ya V., Dybkov V. Io. The effect of dissolution on thegrowth of the Fe2Al5interlayer in the solid iron-liquid aluminium system [J]. Journal ofMaterials Science,1981,16(7):1748-1756.
    [117] Dybkov V. I. Interaction of18Cr-10Ni stainless steel with liquid aluminium [J]. Journalof Materials Science,1990,25(8):3615-3633.
    [118] Dybkov O. V., Dybkov V. I. Analytical treatment of diffusional growth kinetics of twointermetallic-compound layers [J]. Journal of materials science,2004,39(21):6615-6617.
    [119] Dybkov V. I. Determining the kinetic constants for reactive diffusion in binary systems[J]. Powder Metallurgy and Metal Ceramics,1990,29(1):61-65.
    [120] Dybkov V. I. Evaluation of reaction kinetics in planar couples [J]. Journal of MaterialsScience Letters,1990,9(12):1459-1462.
    [121] Van Loo FJJ, Rieck G. D. Diffusion in the titanium-aluminium system-I. Interdiffusionbetween solid Al and Ti or Ti-Al alloys [J]. Acta Metallurgica,1973,21(1):61-71.
    [122] Bhushan Bharat,摩擦学导论[M].葛世荣.北京:机械工业出版社,2006.
    [123] Ma ecka J., Grzesik W., Hernas A. An investigation on oxidation wear mechanisms ofTi-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic-based alloys [J]. Corrosion Science,2010,52(1):263-272.
    [124] Güleryüz Hasan, imeno lu Hüseyin. Effect of thermal oxidation on corrosion andcorrosion-wear behaviour of a Ti-6Al-4V alloy [J]. Biomaterials,2004,25(16):3325-3333.
    [125] Cui X. H., Wang S. Q., Wang F.et al. Research on oxidation wear mechanism of thecast steels [J]. Wear,2008,265(3):468-476.
    [126] Stott F. H. The role of oxidation in the wear of alloys [J]. Tribology International,1998,31(1):61-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700