用户名: 密码: 验证码:
TiO_2生物活性改性膜层及其摩擦学与生物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用钛合金由于其优良的力学相容性和生物相容性,在硬组织替换和修复领域具有广阔的应用前景。但是医用钛合金属于生物惰性材料,与骨的结合是一种机械锁合,植入人体后其表面将长期与组织、细胞或血液直接接触,它们之间的相互作用将使各自的功能和性质受到影响,有可能在生物体内发生毒性、炎症、血栓等反应,因此,有必要控制和改善医用钛合金的表面性质。为缩短医用钛合金种植体骨整合时间,提高钛基植入体的耐磨性、抗腐蚀性和生物活性,达到种植体即刻或初期快速与骨组织结合在一起的目的,各种表面改性技术被大量应用于改善种植体材料的表面构型和表面生物活性。微弧氧化(MAO)表面改性方法能够制备具有良好生物相容性和不易剥脱的表面活性膜层,在促进种植体-骨结合方面被认为是最有效的表面处理技术之一。植入体表面的活化处理和多孔结构设计可诱导骨组织向内生长,增加界面结合强度和加快骨修复进程,从而改善治疗效果。但是其表面多孔结构的存在,也为细菌的滋生,术后的感染提供了温床。
     本文从仿生的视角,在纯钛表面以设计、构建抑菌和生物活性膜层为目标,试验研究了以微弧氧化为基础,结合碱热处理和离子注入对纯钛表面复合改性处理方法。采用物相分析(XRD和FTIR)和显微表征(SEM与EDS)方法研究了膜层的特性。系统表征了表面膜层在模拟体液(SBF)中的矿化行为、膜层的稳定性、膜层的耐磨性、膜层的抑菌性以及膜层的生物活性,并评价了膜层的生物相容性。
     研究了MAO工艺参数对膜层表面形貌、相组成以及厚度的影响,采用正交试验方法研究了不同工艺参数对材料表面亲水性的影响。研究结果表明,可以通过优化调整电参数使表面亲水性达到最佳,工艺参数对纯钛表面亲水性影响程度的顺序为:占空比>反应时间>脉冲频率>电解液温度>电解液pH>脉冲电压。
     目前MAO制备含Ca、P氧化膜的研究中,需要经进一步的处理才能形成含有羟基磷灰石成分的陶瓷膜。为减少试验步骤,提高MAO膜层生物活性,研究了MAO结合碱热处理复合表面处理方法制备的表面膜层的结构、膜层元素分布及其在模拟体液(SBF)中的矿化行为。结果表明,两步法可以获得含有大量Ti-OH基团及Ca、P元素的膜层结构,Ti-OH基团是SBF中诱导羟基磷灰石形成的必要条件。与直接MAO法相比,复合处理得到的含有Ca、P膜层的生物活性较好。
     为提高膜层耐磨性,达到耐磨减磨的目的,研究了MAO结合N离子注入复合表面处理方法对表面膜层耐磨性、电化学性质及其生物活性的影响。研究结果表明,共同存在的氮化层及氧化层,增加了离子注入MAO样品表面的硬度,而离子轰击效应将缺陷引入了膜层表面,造成了表面粗糙度的增加,当选择合适的注入剂量时,硬度与表面粗糙度的匹配能够达到最佳,此时试样表面的耐磨损性能最好。当缺陷的数量与成膜均匀性能够达到最佳匹配时,试样具有最佳耐蚀性能。N离子注入存在饱和注入剂量,超过该剂量后,膜层元素的相对含量不会增加,反而会由于离子轰击的力学效应,造成试样表面缺陷的增多,从而导致金属的耐磨性和耐蚀性能降低。在干摩擦及湿摩擦条件下,注入剂量为1017ions/cm2时,试样具有最小的摩擦因数。注入剂量对腐蚀电位有较大的影响,注入剂量为1017ions/cm2时,试样腐蚀电位最高,具有最佳耐腐蚀性。采用仿生矿化溶液考察N离子注入纯钛和MAO结合N离子注入复合方法处理的纯钛,24h后在试样表面均获得了磷酸钙相,说明这两种方法获得的试样均具有较好的生物活性,能够诱导磷酸盐沉积在试样表面。
     为保证膜层生物活性的同时使膜层具有一定的抗菌功能,研究了MAO结合Ag离子注入复合表面处理方法对表面膜层抑菌性、电化学腐蚀及其生物活性的影响。结果表明,在SBF中Ag离子注入MAO试样的腐蚀电位高于纯钛,说明Ag离子注入MAO纯钛具有较好的耐腐蚀性。Ag离子注入膜层以纳米Ag颗粒的形式存在,当Ag离子注入剂量达到10~(17)ions/cm~2后,MAO膜层对金黄色葡萄球菌有明显的抗菌效果,抗菌率达95.8%,同时具有最佳耐腐蚀性。注入剂量在2×101~(8i)ons/cm~2时抗菌率达到100%。
     采用细胞培养的方法评价了MAO、MAO结合碱热处理、MAO结合N离子注入及MAO结合Ag离子注入处理膜层的生物相容性。细胞相容性试验结果表明,细胞在试样表面吸附良好,具有较好的生物相容性。MAO结合Ag离子注入,在本试验中Ag离子的注入剂量范围内,Ag离子的引入并没有降低细胞在材料表面的生长活性,即材料具有抑菌作用的同时,并没有对细胞的生长有明显抑制作用,其生物相容性良好。与直接MAO处理试样相比较,复合处理方法得到膜层表面成骨细胞生长更好,显示出更好的细胞相容性。
Due to the excellent mechanical compatibility and biocompatibility of medical titaniumalloy, it has a broad application prospect in hard tissue replacement and repairment field. Butmedical titanium alloy belongs to biological inert materials. And the combination with bone isa kind of mechanical lock after implantation in the human body, whose surface will be directcontact with blood, organization or cell in long-term. And the interaction between them willmake their functions and properties affected. Toxic, inflammation or blood clots reactionsmay take place. Therefore, it is essential to control and improve the surface properties ofmedical titanium alloy. In order to shorten the medical titanium implant bone integration time,improve the wear resistance, corrosion resistance and biological activity of titanium baseimplants, and guarantee the success of the implant operation to immediate or initial fast andbone tissue together in purpose, all kinds of surface modification technology is widely appliedto improve the implant material surface configuration and surface biological activit y.Micro-arc oxidation (MAO) surface modification method can prepare good biocompatibilityand hardly stripped surface film, which is considered to be the most effective surfacetreatment techniques in promoting the combination of bone and implant. The activationtreatment of implant surface and porous structure design can induce bone ingrowth, which canalso increase the interface bonding strength and speed up the bone repair process, so as toimprove the treatment effect. But the surface porous structures also provide a hotbed forbacterial growth and postoperative infection.
     This paper designed the surface modification method from the perspective of bionics onpure titanium surface. In order to prepare an antibacterial and biological film, micro-arcoxidation was chosen as the foundation, combined with alkali heat treatment and ionimplantation surface modified composite processing method. The phase analysis (XRD andFTIR) and microscopic characterization method (SEM with EDS) were used to study thecharacteristics of the titanium surface film. Mineralization behavior of the surface film in thesimulated body fluid (SBF) was evaluated by the stability, abrasion resistance, antibacterialability and the biological activities. The biocompatibility of the film was also analyzed.
     The effects of micro-arc oxidation process parameters on the film surface morphology,organization and thickness were stydied. And the different parameters on the material surfacehydrophilic hydrophobic nature were also stuied by using the orthogonal experiment method.Research results show that the surface hydrophilicity has the relationship with the pore sizeand the distribution state of on porous surface, which can achieve the best fit by adjusting the parameters. The influence of reaction parameters on hydrophilic property has the relationshipas follow: duty ratio> reaction time> temperature> pH> pulse voltage.
     In the present the study of MAO film containing Ca and P, further processing is neededto form ceramic film containing hydroxyapatite. In order to optimize the process and improvethe biological activity of MAO film, the film prepared by micro-arc oxidation combined withalkali heat treatment was studied. The structure, element distribution and mineralization in thesimulated body fluid (SBF) were studied. Results show that the two-step method can obtain afilm containing lots of Ti-OH group, Ca and P element. Ti-OH group is essential for inducingthe hydroxyl apatite formation in SBF. Compared with direct micro-arc oxidation method, thecomplex treatment film containing Ca and P has good biological activity.
     In order to improve the film abrasion resistance, the film prepared by micro-arcoxidation combined with N ion implantation was stuied. The effects of abrasion resistance,electrochemical properties and biological activity characterized on the film were stuied. Theresults show that the obtained nitriding layer and oxide layer increased the surface hardness.And ion bombardment effect will produce defects on the film surface, which will increase thesurface roughness. When choosing the right implation dosage, the matching of hardness andsurface roughness can achieve the best. The surface will have the best wear resistanceproperties. When the number of defects and uniform film-forming performance achieve thebest match, the surface has the best corrosion resistance. N ion implantation possessessaturation dosage. Exceeding this dosage, the relative content of elements dosage in the filmdoes not increase. Surface defects will increase due to the mechanical effect of ionbombardment which will lead to lower wear resistance and corrosion resistance. Under thecondition of dry and wet friction, when the implanation dosage is1017ions/cm2, the samplehas the least friction factor. The implantation dosage has great influence on the corrosionpotential. When the implantation dosage is1017ions/cm2, the corrosion potential of thesample is the highest, which has the best corrosion resistance. Biomimetic mineralizationsolution was used to examine the bioactivity of film on the pure titanium prepared by N ionimplantation and micro-arc oxidation combined with N ion implantation. After24h, acalcium phosphate phase received both on the two sample surface, which shows that the twomethods have good biological activity. These methods can induce phosphate deposits on thesurface of the sample.
     In order to obtain a biological and antibacterial function film, the effects of micro-arcoxidation combined with Ag ion implantation on the antibacterial, corrosion resistance and itsbiological activity of the film was studied. Results show that the corrosion potential of micro-arc oxidation combined Ag ion implantation film was higher than that of pure titaniumspecimen in the SBF, which suggests a better corrosion resistance by complex method. Agexists in the form of Ag nanoparticles in the film. When the Ag ion implantation dosagereaching10~(17)ions/cm~2, the ion implanted micro-arc oxidation film has obvious antibacterialeffect on the staphylococcus aureus, whose antibacterial rate was95.8%and has the bestcorrosion resistance at the same time. When the implantation dosage reached2×10~(18)ions/cm~2,the antibacterial rate got100%.
     Using cell culture methods to evaluate the biocompatibility of porous films prepared byMAO, MAO combined with alkali heat treatment, MAO combined with N ion implantationand MAO combined with Ag ion implantation. Cell compatibility test results show that theattachment of cell on the complex porous film is good. In this experiment the introduction ofAg ions did not reduce the cell growth activity. The film has antibacterial ability, at the sametime, does not have obvious inhibitory effect on cell growth. It also owns good biologicalcompatibility. Compared with directly MAO treatment, composite processing methods arebetter for osteoblast growth and show a better cell compatibility.
引文
[1] Geetha M., Singh A.K., Asokamani R., et al. Ti based biomaterials, the ultimate choicefor orthopaedic implants-A review [J]. Progress in Materials Science,2009,54(3):397-425.
    [2]周长忍.生物材料学[M].北京:中国医药科技出版社,2004.
    [3] Long M., Rack H.J. Titanium alloys in total joint replacement-a materials scienceperspective [J]. Biomaterials,1998,19(18):1621-1639.
    [4] Katz J.L. Anisotropy of Young's modulus of bone [J]. Nature,1980,283(5742):106-7.
    [5] Jasty M., Maloney W., Bragdon C., et al. The initiation of failure in cemented femoralcomponents of hip arthroplasties [J]. Journal of Bone&Joint Surgery, British Volume,1991,73-B(4):551-558.
    [6] Ionita D., Mazare A., Portan D., et al. Aspects relating to stability of modified passivestratum on TiO2nanostructure [J]. Metals and Materials International,2011,17(2):321-327.
    [7] Williams D.F. On the mechanisms of biocompatibility [J]. Biomaterials,2008,29(20):2941-2953.
    [8] Hallab N.J., Anderson S., Stafford T., et al. Lymphocyte responses in patients with totalhip arthroplasty [J]. Journal of Orthopaedic Research,2005,23(2):384-391.
    [9] Niinomi M. Metallic biomaterials [J]. Journal of Artificial Organs,2008,11(3):105-110.
    [10]刘宣勇.生物医用钛材料及其表面改性[M].北京:化学工业出版社,2009.
    [11] Teoh S.H. Fatigue of biomaterials: a review [J]. International Journal of Fatigue,2000,22(10):825-837.
    [12] Kuroda D., Hanawa T., Hibaru T., et al. New Manufacturing Process of Nickel-FreeAustenitic Stainless Steel with Nitrogen Absorption Treatment [J]. MaterialsTransactions,2003,44(3):414-420.
    [13] Geis-Gerstorfer J., Sauer K.H., Passler K. Ion release from Ni-Cr-Mo and Co-Cr-Mocasting alloys [J]. The International Journal of Prosthodontics,1991,4(2):152-158.
    [14] Sheeja D., Tay B.K., Lau S.P., et al. Tribological characterisation of diamond-likecarbon coatings on Co-Cr-Mo alloy for orthopaedic applications [J]. Surface andCoatings Technology,2001,146-147:410-416.
    [15] Clemow A.J.T., Daniell B.L. Solution treatment behavior of Co-Cr-Mo alloy [J].Journal of Biomedical Materials Research,1979,13(2):265-279.
    [16] Harsha S., Dwivedi D.K., Agrawal A. Influence of WC addition in Co-Cr-W-Ni-Cflame sprayed coatings on microstructure, microhardness and wear behaviour [J].Surface and Coatings Technology,2007,201(12):5766-5775.
    [17] Niinomi M. Mechanical properties of biomedical titanium alloys [J]. Materials Scienceand Engineering: A,1998,243(1-2):231-236.
    [18] David H K. Metals in medical applications [J]. Current Opinion in Solid State andMaterials Science,1998,3(3):309-316.
    [19] Mitsuo N. Mechanical properties of biomedical titanium alloys [J]. Materials Scienceand Engineering: A,1998,243(1-2):231-236.
    [20] Niinomi M. Recent metallic materials for biomedical applications [J]. Metallurgical andMaterials Transactions A,2002,33(3):477-486.
    [21] Kokubo T., Kim H.M., Kawashita M., et al. Bioactive metals: preparation andproperties [J]. Journal of Materials Science-materials in Medicine,2004,15(2):99-107.
    [22] Frosch K.H., Stürmer K. Metallic Biomaterials in Skeletal Repair [J]. European Journalof Trauma,2006,32(2):149-159.
    [23] Eliades T. Orthodontic materials research and applications: Part2. Current status andprojected future developments in materials and biocompatibility [J]. American Journalof Orthodontics and Dentofacial Orthopedics,2007,131(2):253-262.
    [24] Nag S., Banerjee R., Fraser H.L. Microstructural evolution and strengtheningmechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys [J].Materials science&Engineering C-biomimetic and Supramolecular Systems,2005,25(3):357-362.
    [25] McLachlan D.R.C. Aluminium and the risk for alzheimer's disease [J]. Environmetrics,1995,6(3):233-275.
    [26] Gwinn M.R., Newhouse K. Toxicological Review of Vandium Pentoxide (V2O5)[M].Washington, D.C: U. S. Environmental Protection Agency,2011.
    [27] Averill B., Briggs L., Chasteen N., et al. The biochemistry of vanadium [M]. Springer,Berlin/Heidelberg.1983:105-138.
    [28] Jasty M. Clinical reviews: Particulate debris and failure of total hip replacements [J].Journal of Applied Biomaterials,1993,4(3):273-276.
    [29] Sailer I., Pjetursson B.E., Zwahlen M., et al. A systematic review of the survival andcomplication rates of all-ceramic and metal-ceramic reconstructions after anobservation period of at least3years. Part II: fixed dental prostheses [J]. Clinical OralImplants Research,2007,18:86-96.
    [30] Leyens C., Peters M.,陈振华等译.钛与钛合金[M].北京:化学工业出版社,2005.
    [31] Niinomi M. Recent research and development in titanium alloys for biomedicalapplications and healthcare goods [J]. Science and Technology of Advanced Materials,2003,4(5):445-454.
    [32] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedicalapplications [J]. J Mech Behav Biomed,2008,1(1):30-42.
    [33] Rack H.J., Qazi J.I. Titanium alloys for biomedical applications [J]. Materials Scienceand Engineering: C,2006,26(8):1269-1277.
    [34] Niinomi M., Hanawa T., Narushima T. Japanese research and development on metallicbiomedical, dental, and healthcare materials [J]. JOM Journal of the Minerals, Metalsand Materials Society,2005,57(4):18-24.
    [35] Liu X.Y., Chu P.K., Ding C.X. Surface modification of titanium, titanium alloys, andrelated materials for biomedical applications [J]. Materials Science and Engineering R:Reports,2004,47(3-4):49-121.
    [36] Brunette D.M., Tengvall P., Textor M., et al. Titanium in Medicine: material science,surface science, engineering, biological responses and medical applications [M]. Berlin:Springer,2001.
    [37] Kusmierczak S. Corrosion resistance of titanium alloy [J]. Engineering for RuralDevelopment,2011,5(25-26):486-489.
    [38] Dee K.C., Puleo D.A., Bizios R. Biomaterials [M]. An Introduction ToTissue-Biomaterial Interactions. John Wiley&Sons, Inc.2003:1-13.
    [39] Lausmaa J., Kasemo B., Mattsson H. Surface spectroscopic characterization of titaniumimplant materials [J]. Applied Surface Science,1990,44(2):133-146.
    [40] Sutherland D.S., Forshaw P.D., Allen G.C., et al. Surface analysis of titanium implants[J]. Biomaterials,1993,14(12):893-899.
    [41] Lucchini J.P., Aurelle J.L., Therin M., et al. A pilot study comparing screw-shapedimplants. Surface analysis and histologic evaluation of bone healing [J]. Clin OralImplan Res,1996,7(4):397-404.
    [42] Buser D., Nydegger T., Oxland T., et al. Interface shear strength of titanium implantswith a sandblasted and acid-etched surface: A biomechanical study in the maxilla ofminiature pigs [J]. Journal of Biomedical Materials Research,1999,45(2):75-83.
    [43] Baleani M., Viceconti M., Toni A. The Effect of Sandblasting Treatment on EnduranceProperties of Titanium Alloy Hip Prostheses [J]. Artificial Organs,2000,24(4):296-299.
    [44] Degasne I., Baslé M.F., Demais V., et al. Effects of Roughness, Fibronectin andVitronectin on Attachment, Spreading, and Proliferation of Human Osteoblast-LikeCells (Saos-2) on Titanium Surfaces [J]. Calcified Tissue International,1999,64(6):499-507.
    [45] Kim H., Choi S.H., Ryu J.J., et al. The biocompatibility of SLA-treated titaniumimplants [J]. Biomedical materials (Bristol, England),2008,3(2):025011.
    [46] Paital S.R., Dahotre N.B. Calcium phosphate coatings for bio-implant applications:Materials, performance factors, and methodologies [J]. Materials Science andEngineering: R: Reports,2009,66(1-3):1-70.
    [47] Tiller J.C., Bonner G., Pan L.C., et al. Improving biomaterial properties of collagenfilms by chemical modification [J]. Biotechnology and Bioengineering,2001,73(3):246-252.
    [48] Davisa D.H., Giannoulisa C.S., Johnsonb R.W., et al. Immobilization of RGD to <111>silicon surfaces for enhanced cell adhesion and pro liferation [J]. Biomaterials,2002,23(4)19-27.
    [49] Lutolf M.P., Hubbell J.A. Synthetic biomaterials as instructive extracellularmicroenvironments for morphogenesis in tissue engineering [J]. Nat Biotech,2005,23(1):47-55.
    [50] Filiaggi M.J., Coombs N.A., Pilliar R.M. Characterization of the interface in theplasma-sprayed HA coating/Ti-6Al-4V implant system [J]. Journal of BiomedicalMaterials Research,1991,25(10):1211-1229.
    [51] De Groot K., Geesink R., Klein C.P.A.T., et al. Plasma sprayed coatings ofhydroxylapatite [J]. Journal of Biomedical Materials Research,1987,21(12):1375-1381.
    [52] Radin S.R., Ducheyne P. Plasma spraying induced changes of calcium phosphateceramic characteristics and the effect onin vitro stability [J]. Journal of Mater ialsScience: Materials in Medicine,1992,3(1):33-42.
    [53] Chen C.C., Huang T.H., Kao C.T., et al. Characterization of functionally gradedhydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys [J]. Journal ofBiomedical Materials Research Part B: Applied Biomaterials,2006,78B(1):146-152.
    [54] Zheng M., Fan D., Li X.K., et al. Microstructure and osteoblast response of gradientbioceramic coating on titanium alloy fabricated by laser cladding [J]. Appllied SurfaceScience,2008,255(2):426-428.
    [55] Vijayalakshmi U., Prabakaran K., Rajeswari S. Preparation and characterization ofsol–gel hydroxyapatite and its electrochemical evaluation for biomedical applications[J]. Journal of Biomedical Materials Research Part A,2008,87A(3):739-749.
    [56] Zhang Z., Wang C.C., Zakaria R., et al. Role of Particle Size in NanocrystallineTiO2-Based Photocatalysts [J]. The Journal of Physical Chemistry B,1998,102(52):10871-10878.
    [57] Cavalli M., Gnappi G., Montenero A., et al. Hydroxy-and fluorapatite films on Ti alloysubstrates: Sol-gel preparation and characterization [J]. Journal of Materials Science,2001,36(13):3253-3260.
    [58] Li P., Groot K., Kokubo T. Bioactive Ca10(PO4)6(OH)2-TiO2composite coating preparedby sol-gel process [J]. Journal of Sol-Gel Science and Technology,1996,7(1):27-34.
    [59] Piveteau L. D., Gasser B., Schlapbach L. Evaluating mechanical adhesion of sol-geltitanium dioxide coatings containing calcium phosphate for metal implant application[J]. Biomaterials,2000,21(21):2193-2201.
    [60] Montenero A., Gnappi G., Ferrari F., et al. Sol-gel derived hydroxyapatite coatings ontitanium substrate [J]. Journal of Materials Science,2000,35(11):2791-2797.
    [61] You C., Oh S., Kim S. Influences of Heating Condition and Substrate-SurfaceRoughness on the Characteristics of Sol-Gel-Derived Hydroxyapatite Coatings [J].Journal of Sol-Gel Science and Technology,2001,21(1):49-54.
    [62] Kim H.W., Koh Y.H., Li L.H., et al. Hydroxyapatite coating on titanium substrate withtitania buffer layer processed by sol-gel method [J]. Biomaterials,2004,25(13):2533-2538.
    [63] Kim H.M., Miyaji F., Kokubo T., et al. Preparation of bioactive Ti and its alloys viasimple chemical surface treatment [J]. Journal of Biomedical Materials Research,1996,32(3):409-417.
    [64] Kim H.M., Miyaji F., Kokubo T., et al. Effect of heat treatment on apatite-formingability of Ti metal induced by alkali treatment [J]. Journal of materials science Materialsin medicine,1997,8(6):341-347.
    [65] Kim H.M., Sasaki Y., Suzuki J., et al. Mechanical properties of bioactive titanium metalprepared by chemical treatment [J]. Key Engineering Materials,2000,192-195:227-230.
    [66] Nishiguchi S., Nakamura T., Kobayashi M., et al. The effect of heat treatment onbone-bonding ability of alkali-treated titanium [J]. Biomaterials,1999,20(5):491-500.
    [67] Nishiguchi S., Kato H., Fujita H., et al. Enhancement of bone-bonding strengths oftitanium alloy implants by alkali and heat treatments [J]. Journal of BiomedicalMaterials Research,1999,48(5):689-696.
    [68] Kokubo T. Formation of biologically active bone-like apatite on metals and polymers bya biomimetic process [J]. Thermochimica Acta,1996,280/281:479-490.
    [69] Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in bodyenvironment [J]. Acta Materialia,1998,46(7):2519-2527.
    [70] Kokubo T., Kim H.M., Miyaji F., et al. Ceramic-metal and ceramic-polymer compositesprepared by a biomimetic process [J]. Composites Part a-Applied Science andManufacturing,1999,30(4):405-409.
    [71] Kokubo T., Kim H.M., Kawashita M., et al. Nucleation and growth of apatite anamorphous phases in simulated body fluid [J]. Glass Science and Technology-Glastechnische Berichte,2000,73:247-254.
    [72] Spriano S., Bronzoni M., Vernè E., et al. Characterization of surface modifiedTi-6Al-7Nb alloy [J]. Journal of Materials Science: Materials in Medicine,2005,16(4):301-312.
    [73] Takao H. Biofunctionalization of titanium for dental implant [J]. Japanese DentalScience Review,2010,46(2):93-101.
    [74] Wang X., Hayakawa S., Tsuru K., et al. Bioactive titania gel layers formed by chemicaltreatment of Ti substrate with a H2O2/HCl solution [J]. Biomaterials,2002,23(5):1353-1357.
    [75] Ohtsuki C., Iida H., Hayakawa S., et al. Bioactivity of titanium treated with hydrogenperoxide solutions containing metal chlorides [J]. Journal of Biomedical MaterialsResearch,1997,35(1):39-47.
    [76] Miyazaki T., Ohtsuki C., Akioka Y., et al. Apatite deposition on polyamide filmscontaining carboxyl group in a biomimetic solution [J]. Journal of Materials Science:Materials in Medicine,2003,14(7):569-574.
    [77] Kuo M.C., Yen S.K. The process of electrochemical deposited hydroxyapatite coatingson biomedical titanium at room temperature [J]. Materials Science and Engineering: C,2002,20(1-2):153-160.
    [78] Yamashita K., Yonehara E., Ding X., et al. Electrophoretic coating of multilayeredapatite composite on alumina ceramics [J]. Journal of Materials Research,1998,43(1):46-53.
    [79] Wei M., Ruys A.J., Milthorpe B.K., et al. Solution ripening of hydroxyapatitenanoparticles: Effects on electrophoretic deposition [J]. J Biomed Mater Res,1999,45(1):11-19.
    [80] Yerokhin A.L., Nie X., Leyland A., et al. Plasma electrolysis for surface engineering [J].Surface and Coatings Technology,1999,122(2-3):73-93.
    [81] Rudnev V.S., Morozova V.P., Lukiyanchuk I.V., et al. Calcium-ContainingBiocompatible Oxide-Phosphate Coatings on Titanium [J]. Russian Journal of ApplliedChemistry,2010,83(4):671-679.
    [82] Zhang X.L., Jiang Z.H., Yao Z.P., et al. Electrochemical study of growth behaviour ofplasma electrolytic oxidation coating on Ti6AI4V: Effects of the additive [J]. Corros ionScience,2010,52(10):3465-3473.
    [83] Yerokhin A.L., Nie X., Leyland A., et al. Characterisation of oxide films produced byplasma electrolytic oxidation of a Ti-6Al-4V alloy [J]. Surface and Coatings Technology,2000,130(2-3):195-206.
    [84] Nie X., Leyland A., Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2coatings on titanium alloys using a hybrid technique of micro-arc oxidation andelectrophoresis [J]. Surface and Coatings Technology,2000,125(1-3):407-414.
    [85] Han Y., Hong S.H., Xu K.W. Structure and in vitro bioactivity of titania-based films bymicro-arc oxidation [J]. Surface and Coatings Technology,2003,168(2-3):249-258.
    [86] Song W.H., Jun Y.K., Han Y., et al. Biomimetic apatite coatings on micro-arc oxidizedtitania [J]. Biomaterials,2004,25(17):3341-3349.
    [87] Li L.H., Kong Y.M., Kim H.W., et al. Improved biological performance of Ti implantsdue to surface modification by micro-arc oxidation [J]. Biomaterials,2004,25(14):2867-2875.
    [88] Ryu H.S., Song W.H., Hong S.H. Biomimetic apatite induction on Ca-containing titania[J]. Current Applied Physics,2005,5(5):512-515.
    [89] Wang Y. Characterization of bioactive ceramic coatings prepared on titanium implantsby micro-arc oxidation [J]. Rare Metals,2006,25(1):84-89.
    [90] Chen Jianzhi, Shi Yulong, Wang Lei, et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation [J]. Materials Letters,2006,60(20):2538-2543.
    [91] Kim M.S., Ryu J.J., Sung Y.M. One-step approach for nano-crystalline hydroxyapatitecoating on titanium via micro-arc oxidation [J]. Electrochemistry Communications,2007,9(8):1886-1891.
    [92] Yu S., Yang X., Yang L., et al. Novel technique for preparing Ca-and P-containingceramic coating on Ti-6Al-4V by micro-arc oxidation [J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2007,83B(2):623-627.
    [93] Vangolu Y., Arslan E., Totik Y., et al. Optimization of the coating parameters formicro-arc oxidation of Cp-Ti [J]. Surface and Coatings Technology,2010,205(6):1764-1773.
    [94] Cimenoglu H., Gunyuz M., Kose G.T., et al. Micro-arc oxidation of Ti6Al4V andTi6Al7Nb alloys for biomedical applications [J]. Mater Charact,2011,62(3):304-311.
    [95] Sun X., Jiang Z., Yao Z., et al. The effects of anodic and cathodic processes on thecharacteristics of ceramic coatings formed on titanium alloy through the MAO coatingtechnology [J]. Applied Surface Science,2005,252(2):441-447.
    [96] Wei D.Q., Zhou Y., Wang Y.M., et al. Microarc Oxidation of Titanium Alloy to Ca-andP-Containing Gradient Biocoatings [J]. Rare Metal Mat Eng,2008,37:569-572.
    [97] Wei D.Q., Zhou Y., Yang C.H. Structure, cell response and biomimetic apatite inductionof gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Cacomposite coatings before and after crystallization [J]. Colloid Surface B,2009,74(1):230-237.
    [98] Wilson D.J., Rhodes N.P., Williams R.L. Surface modification of a segmentedpolyetherurethane using a low-powered gas plasma and its influence on the activation ofthe coagulation system [J]. Biomaterials,2003,24(28):5069-5081.
    [99] Tan L., Crone W.C. Surface characterization of NiTi modified by plasma source ionimplantation [J]. Acta Materialia,2002,50(18):4449-4460.
    [100] Krupa D., Baszkiewicz J., Jezierska E., et al. Effect of nitrogen-ion implantation on thecorrosion resistance of OT-4-0titanium alloy in0.9%NaCl environment [J]. Surfaceand Coatings Technology,1999,111(1):86-91.
    [101] Buchanan R.A., Lee I.S., Williams J.M. Surface modification of biomaterials throughnoble metal ion implantation [J]. J Biomed Mater Res,1990,24(3):309-318.
    [102]王亚明. Ti6A14V合金微弧氧化涂层的形成机制与摩擦学行为[D].哈尔滨工业大学工学博士论文[D].2006:39-40
    [103] Wang Y.M., Jia D.C., Guo L.X., et al. Effect of discharge pulsating on microarcoxidation coatings formed on Ti6Al4V alloy [J]. Materials Chemistry and Physics,2005,90(1):128-133.
    [104] Li D.J., Cui F.Z., Gu H.Q. Cell adhesion of F+ion implantation of intraocular lens [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,1999,152(1):80-88.
    [105] Ismail F., Rohanizadeh R., Atwa S., et al. The influence of surface chemistry andtopography on the contact guidance of MG63osteoblast cells [J]. Journal of MaterialsScience: Materials in Medicine,2007,18(5):705-714.
    [106] Wei M., Kim H.M., Kokubo T., et al. Optimising the bioactivity of alkaline-treatedtitanium alloy [J]. Materials Science and Engineering: C,2002,20(1-2):125-134.
    [107] Chen Y., Zheng X., Ji H., et al. Effect of Ti-OH formation on bioactivity of vacuumplasma sprayed titanium coating after chemical treatment [J]. Surface Coating andTechnology,2007,202(3):494-498.
    [108] Kokubo T., Kim H.M., Kawashita M. Novel bioactive materials with differentmechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
    [109] Wei M., Kim H.M., Kokubo T., et al. Optimising the bioactivity of alkaline-treatedtitanium alloy [J], Materials Science and Engineering: C,2002,20:125-134.
    [110] Kim H.M., Miyaji F., Kokubo T., et al. Preparation of bioactive Ti and its alloys viasimple chemical surface treatment [J], Journal of Biomedical Materials Research,1996,32:409-417.
    [111] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27:2907-2915.
    [112] Kim H.M., Miyaji F., Kokubo T., et al. Effect of heat treatment on apatite-formingability of Ti metal induced by alkali treatment [J], Journal of materials science.Materials in medicine,1997,8:341-347.
    [113] Kokubo T. Formation of biologically active bone-like apatite on metals and polymers bya biomimetic process [J]. Thermochimica Acta,1996,280/281:479-490.
    [114] Gupta P., Tenhundfeld G., Daigle E.O., et al. Electrolytic plasma technology: Scienceand engineering-An overview [J]. Surface and Coatings Technology,2007,201:8746-8760.
    [115] Song W.H., Jun Y.K., Han Y., et al. Biomimetic apatite coatings on micro-arc oxidizedtitania [J]. Biomaterials,2004,25:3341-3349.
    [116] Zhu Y., Liu T., Ding C.. Structural characterization of TiO2ultrafine particles [J].Journal of Materials Research,1999,14:442-446.
    [117] Wei D.Q., Zhou Y., Wang Y.M., et al. Chemical etching of micro-plasma oxidizedtitania film on titanium alloy and apatite deposited on the surface of modified titaniafilm in vitro [J]. Thin Solid Films,2008,516:1818-1825.
    [118] Yang Z., Si S., Zeng X., Zhang C., et al. Mechanism and kinetics of apatite formationon nanocrystalline TiO2coatings: A quartz crystal microbalance study [J]. ActaBiomaterialia,2008,4:560-568.
    [119] Wan Y. Z., Raman S., He F., et al. Surface modification of medical metals by ionimplantation of silver and copper [J]. Vacuum,2007,81:1114-1118.
    [120] Zhao Q. F., Chen J. N., Zhang L., et al. Antimicrobial activity and mechanism of silvernitrate on Escherichia coli and Staphylococcus aureus [J]. Chinese Journal ofBioprocess Engineering,2011,9(3):52-56.
    [121] Qu F., Xu H. Y., Xiong Y. H., et al. Research progress in bactericidal mechanisms ofnano-silver [J]. Food Science,2010,31(17):420-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700