用户名: 密码: 验证码:
水蒸汽冷却润滑时Al_2O_3基陶瓷刀具切削和磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色切削技术是现代制造业的主要发展趋势之一,而绿色切削过程中刀具的切削和摩擦磨损特性是其中一个十分重要的研究领域。本课题以过热水蒸汽作冷却润滑介质(OWVCL)和干式切削时不同增韧方式的A1203基陶瓷刀具的切削和摩擦磨损特性为主要研究目标,应用摩擦学、陶瓷材料学及金属切削加工学等理论方法,采用解析计算、试验研究以及计算机仿真等多种手段,研究A1203基陶瓷刀具在不同冷却润滑条件下切削难加工材料时的切削性能和摩擦磨损特性;不同冷却润滑条件、不同增韧方式对刀具材料摩擦磨损特性的影响,分析其磨损机理;并研究切削过程中与摩擦现象密切相关的加工硬化行为等,为A1203基陶瓷刀具在绿色切削中的应用提供理论依据和技术支撑。
     从热震试验、理论计算及有限元仿真分析等三方面综合考察TiC颗粒增韧、SiC晶须增韧、ZrO2相变增韧及纯A1203等四种A1203基陶瓷刀具材料的抗热震性能,为分析金属切削过程中热应力对上述刀具磨损行为的影响提供理论及试验依据。研究表明在三种增韧方式中,Zr02相变增韧对提高A1203基陶瓷材料的抗热震性能最有效,TiC颗粒增韧则较差,三种增韧A1203基复相陶瓷的抗热震性能都明显优于纯A1203陶瓷。
     通过微动摩擦试验研究了水蒸汽润滑及干摩擦条件下A1203基陶瓷刀具材料的摩擦磨损行为,为研究其在切削过程中的摩擦磨损提供了依据。研究表明水蒸汽润滑能有效降低A1203基陶瓷刀具材料的摩擦系数,减小磨损量。
     在合理范围内将车削过程进行适当简化,建立了过热水蒸汽冷却润滑和干切削时的斜角车削刀-屑接触面热力耦合模型,为分析不同冷却润滑条件下陶瓷刀具的摩擦磨损提供了参考依据。
     使用综合性能较好的Al2O3-TiC复相陶瓷刀具,研究其在过热水蒸汽冷却润滑(OWVCL)和干切削条件下连续切削高锰钢ZGMnl3及高强度钢AISI4340的性能。研究表明过热水蒸汽作为冷却润滑介质能有效地减小切削力,降低切削温度,并具有较好的加工表面质量。
     研究了三种A1203基复相陶瓷刀具在过热水蒸汽冷却润滑(OWVCL)和干切削条件下连续切削高锰钢ZGMnl3时的摩擦磨损行为。表明过热水蒸汽冷却润滑(OWVCL)能有效地提高Al2O3-SiC和Al2O3-TiC两种复相陶瓷刀具的耐磨损性能,但却会劣化Al2O3-ZrO2陶瓷刀具的耐磨损性能
     研究在过热水蒸汽冷却润滑(OWVCL)和干切削条件下高锰钢ZGMnl3及304不锈钢的加工硬化行为,并做304不锈钢拉伸硬化试验进行对比,分析影响奥氏体钢在切削过程中加工硬化行为的主要因素,以期为在过热水蒸汽冷却润滑(OWVCL)条件下切削奥氏体钢的推广应用提供更好的依据。研究结果表明过热水蒸汽冷却润滑(OWVCL)能减轻奥氏体钢在切削过程中的加工硬化程度,同等切削条件下304不锈钢的硬化程度要小于高锰钢ZGMnl3,应变诱发的马氏体的量也远小于后者。
Green cutting technology is a developing trend of modern manufacturing industry; both the cutting performance and tribological behavior of tool material are the most important research fields on green cutting technology. This dissertation focuses on the cutting performance and tribological behavior of Al2O3-base composites ceramics tool with overheated water vapor as coolant and lubricant cutting (OWVCL) and dry cutting as compared one. Using tribology, materials science and metal cutting theory, adopting analytical calculation, experimental study, computer simulation and other methods, under different cooling and lubricating conditions, the effects of tribological behavior of the tested ceramics tool materials with different toughening mechanisms, their wear mechanisms, and the work hardening in cutting process are all studied. The above researches to Al2O3-base composites provide theoretical and practical support for the application of Al2O3-base ceramics tools in green cutting.
     This paper presents three ways, thermal shock testing, theoretical calculation and finite element analysis to estimate the thermal shock resistance of four kinds of Al2O3-base composites ceramics tool, which provides the experimental and theoretical foundation for the wear behaviors of cutting tools with thermal stress on the cutting process. It was found that, by means of phase transformation-toughening, ZrO2adding can effectively improve the thermal shock performance of Al2O3-base ceramics, but the particle toughening one has a poor effect. And the thermal shock performances of three kinds of Al2O3-base composites ceramics were clearly better than that of the single-phase Al2O3ceramics.
     Using OWVCL technology, the results of fretting wear experiments of Al2O3-base composites ceramics show that the friction coefficient and wear of ceramics materials were all significantly reduced compared to dry friction, which provided the experimental and theoretical foundations to study the wear behaviors of the ceramics tools in cutting process.
     Adopting the analytic method, a friction model between tool and chip, based on appropriate simplification, was developed for the oblique cutting process under dry cutting and OWVCL technology, which provide the foundation for studying the tools wear behaviors on different coolant and lubricant conditions.
     composites ceramics was selected as the testing tools, which has good comprehensive properties; the cutting performance of Al2O3-TiC tools was studied in turning ZGMn13and AISI4340. The results showed that, compared to the dry cutting, reduction in the cutting force, surface roughness and cutting temperature were observed with OWVCL technology.
     With OWVCL technology, the results of wear experiments of the three kinds of Al2O3-base composites ceramics tools in cutting process show that the wear of Al2O3-TiC and Al2O3-SiC tools were markedly reduced, compared to dry cutting. On the contrary, wear of Al2O3-ZrO2tools was increased compared to dry cutting.
     The work hardening behaviors of ZGMnl3and AISI304in turning using Al2O3-TiC Ceramic tool were studied, compared to the tensile test of AISI304, the results showed that, with OWVCL technology, the work hardening extent was obviously decreased, compared to dry friction. Under the same condition, the work hardening extent of AISI304was considerably lower than ZGMn13, and the quantity of strain-induced martensite of the former is considerably less than the one of the latter, too.
引文
[1]席俊杰,陈华辉,吴中.绿色切削技术的发展及应用[J].润滑与密封.2006,31(2):181-184.
    [2]曾庆良,许艳.绿色切削液的应用研究[J].机床与液压.2006,34(7):113-115.
    [3]孙建国,刘镇昌.论绿色切削液的必要性和可行性[J].润滑与密封.2001,26(2):68-71.
    [4]侯滨,陈波水,方建华.关于绿色切削液研究开发的几点思考[J].润滑与密封.2002,27(4):37-39.
    [5]侯亚丽,商珊珊,顾礼铎,李长河.绿色切削加工技术[J].精密制造与自动化,2007,(04):19-22.
    [6]张伟,刘仲谦,张纾,徐滨士.绿色制造与再制造技术研究与发展[A].第二届全国装备再制造工程学术会议暨首届青年再制造工程学术论坛论文集[C],2006.
    [7]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社.1995.
    [8]金志浩.工程陶瓷材料[M].西安:西安交通大学出版社.2000.
    [9]于启勋.刀具材料的回顾与展望(上)[J].机械工艺师,1999,(11):5-6.
    [10]于启勋.刀具材料的回顾与展望(下)[J].机械工艺师,1999,(12):5-6.
    [11]刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].中国机械程,2000(21):105-110.
    [12]E Brinksmeier, A Walter, R Janssen, P Diersen. Aspects of cooling lubrication reduction in machining advanced materials[J]. Pro. Instn. Mech. Engrs.,1999,213,Part B:769-777.
    [13]路冬,李剑峰,李方义.绿色切削加工技术的研究现状与进展[J].工具技术,2005,(03):3-6.
    [14]刘献礼,孟安,陈立国,候世香等.硬态干式切削GCr15时的临界硬度[J].机械工程学报,2000,(3):13-16.
    [15]胡世平,芮执元,李有堂.绿色的干式切削技术及应用[J].机床与液压,2002,(6):40-41.
    [16]刘让贤,刘佳,黄洪亮.难加工材料干切削表面粗糙度试验研究[J].制造技术与机床,2006,(11):33-36.
    [17]宋文龙,邓建新,王志军.微池润滑刀具干切削过程中的减摩机理[J].摩擦学学报,2009,(02):103-108.
    [18]VARADARAJAN A S, PHILIP P K, RAMAMOORTHY B. Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning [J]. Intl. J. of Mach. Tools & Manufac.,2002, (42):193-200.
    [18]张昌义,童明伟.干式、半干式和低温冷风切削加工技术[J].工具技术,2004,38(1):61-63.
    [19]Shane Y. Hong, Irel Markus, Woo-cheol Jeong. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6A1-4V[J]. International Journal of Machine Tools and Manufacture, Volume 41, Issue 15, December 2001, 41,15(12):2245-2260.
    [20]Vishal S. Sharma, Manu Dograb,N. M.Suri. Cooling techniques for improved productivity in turning[J]. International Journal of Machine Tools and Manufacture,2009,49,6(5):435-453.
    [21]L. De Chiffre, J. L. Andreasen, S. Lagerberg, I. B. Thesken. Performance Testing of Cryogenic C02 as Cutting Fluid in Parting/Grooving and Threading Austenitic Stainless Steel[J]. CIRP Annals-Manufacturing Technology 2007,56,1:101-104.
    [22]S. Paul, A. B. Chattopadhyay. Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels[J]. Cryogenics,1995,35,8:515-523.
    [23]N. R. Dhar, S. Paul, A. B. Chattopadhyay. Machining of AISI 4140 steel under cryogenic cooling-tool wear, surface roughness and dimensional deviation[J].Journal of Materials Processing Technology,2002,123,3(5):483-489.
    [24]Yakup Yildiz, Muammer Nalbanta. A review of cryogenic cooling in machining processes[J].International Journal of Machine Tools and Manufacture,2008,48,9(7):947-964.
    [25]S. Y. Hong. Advancement of economical cryogenic machining technology[], Proceeding of 3rd International Conference on Manufacturing,1995:168-173.
    [26]万光珉,柯建宏.高锰钢的低温切削研究昆明工学院学报[J],1994,(4).
    [27]杨颖.低温冷风在绿色加工中应用的若干问题研究[D].重庆:重庆大学,2004.
    [28]贺静.低温冷风加工难切削材料的实验研究[D].重庆:重庆大学,2006.
    [29]F. Itoigawa, T. H. C. Childs, T. Nakamura, et al. Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy[J], Wear,2006,260(3):339-344.
    [30]T. Wakabayashi,I. Inasaki, S. Suda, et al. Tribological characteristics and cutting performance of lubricant esters for semi-dry machining[J], Annals of the CIRP,2003,52(1):61-64.
    [31]S. Min,I. Inasaki, S. Fujimura, et al. A study on tribology in minimal quantity lubrication cutting[J], Annals of the CIRP,2005,54, (1):105-108.
    [32]A. Attanasio,M. Gelfi, C. Giardini, et al. Minimal quantity lubrication in turning:Effect on tool wear [J]. Wear,2006,260(3):333-338.
    [33]严鲁涛;袁松梅;刘强;绿色切削高强度钢的刀具磨损及切屑形态[J].机械工程学报,2010,(09):188-192.
    [34]Podgorkov V. V. et al:Patent of USSR#1549721 MCI B23Q. Method of cutting in application, in Russia(1992)
    [35]Godlevski, V. A., Volkov, A. V., Latysher, V. N., Maurin, L. N. Water steam lubrication during machining[J]. Tribologia,1998, 162,6(11):890-901.
    [36]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究[D].哈尔滨工业大学,2005.
    [37]张悦.钛合金与高温合金的绿色切削技术研究,[硕士学位论文],哈尔滨,哈尔滨工业大学,2006.
    [38]曹国凡.小型蒸汽发生器研制及水蒸汽冷却润滑时刀具磨损的研究,[硕士学位论文],哈尔滨,哈尔滨工业大学,2007.
    [39]王翔宇.水蒸汽作冷却润滑剂的难加工金属材料切削实验与仿真研,[硕士学位论文],镇江,江苏科技大学,2011.
    [40]iraj SHETTY, Raghuvir PAI, Steam as coolant and lubricant in turning of metal matrix composites Zhejiang Univ Sci A 2008, 9(9):1245-1250.
    [41]韩荣第,吴健.绿色切削技术探讨[J].工具技术,2006,(12):8-10.
    [42]刘献礼,王艳鑫,郭凯.绿色切削技术的研究现状及发展[J].航空制造技术,2009,(13):26-31.
    [43]任家隆.切削中绿色射流冷却工艺的研究[J].中国机械工程,2000,(07):738-741.
    [44]艾兴.刀具材料的现状和发展动向[J].中国机械工程,1989,(04):18-20.
    [45]于启勋,朱正芳.刀具材料的历史、进展与展望[J].机械工程学报,2003,(12):62-66.
    [46]Cook M W, Bossom P K. Trends and recent developments in the material manufacture and cutting tool application of poly-crystalline diamond and polycrystalline cubic boron nitride[J].International Journal of Refractory Metals and Hard Materials,2000,18(2-3):147-152.
    [47]储开宇;21世纪刀具材料的发展与应用[J].制造技术与机床,2010,(07):63-67.
    [48]邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报,2002,(04):41-45:
    [49]王宝友,崔丽华,黄传真,艾兴.陶瓷刀具的发展与应用[J].工具技术,2001,(01):3-7:
    [50]H. E. Lutz, M. V. Swain, T.N.Claussen, Thermal shock behavior of duplex ceramics[J]. Journal of the American Ceramics Society, 1991,74(1):19-24.
    [51]McMeeking R M, Evans A G. Mechanics of transformation-toughening in brittle materials[J]. Journal of the American Ceramics Society,1982,65:242-246.
    [52]P. E. Becher. Microstructure design of toughed ceramics[J]. Journal of the American Ceramics Society,1991,74(2):255-269.
    [53]张长瑞,郝元恺.陶瓷基复合材料原理、工艺、性能与设计[M].长沙:国防科技出版社,2001.
    [54]K. Niihara, New Design Concept of Structural Ceramics-Ceramic Nanocomposite[J]. Ceram. Soc.Jpn,1991,99(10):974-982.
    [55]张卫方.致密TiC-A1203复合陶瓷材料的自蔓延高温合成.无机材料学报[J],1999,14(2):487-490.
    [56]邓建新,艾兴.陶瓷刀具切削加工时的磨损与润滑[J].工具技术,2001,35(3):3-6.
    [57]Evans A G. Wear mechanism in ceramics[J]. proc. of Int. Con. Fundamental of Friction and Wear of Materials, Pittsburgh:ASME, 1980:439-452.
    [58]Wayne S F. Microstructure and wear resistance of silicon nitride composites[J]. Friction and Wear if Ceramics,1994:261-285.
    [59]Tonshoff H K. Wear of ceramic tools in milling[J]. Lubrication Engineering,1991,47(9):772-777.
    [60]G. Brandt Flank and crater wear mechanisms of alumina-based cutting tools when machining steel[J]. Wear,1989, (112):39-45.
    [61]Wayne S F, Buljan S T. Wear of ceramic cutting tools in Ni based superalloy machining[J]. Tribology Trans,1990,33 (4):618-626.
    [62]J Vigneau, P Bordel. Influence of the microstructure of the composite ceramic tools on their performance when machining nickel alloys. Annals of the CIRP,1987,36.
    [62]Casto S L, Valvo EL. Wear mechanism of ceramic tools[J]. Wear,1993,160,2:227-235.
    [63]Jianxin Deng, Xing Ai, Jinsheng Zhang. Eeffet of whisker orientation on the friction and wear behavour of A1203/TiB2/SiCw composites in sliding wear tests and in maching processes[J]. Wear,1996,201:178-185.
    [64]宋世学,艾兴,赵军,吴齐.A12o3-TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料.2003,27(12):35-35.
    [65]P.F.Becher, G.C. Wei.toughening behavior in SiC-wisker reinforced alumina[J]. Journal of the American Ceramic society.1984,67, (12):267-269.
    [66]刘志兵,王西彬,杨洪建.陶瓷刀具干铣削超高强度钢的试验研究[J].工具技术,2003,37(5):7-9.
    [67]Cheryl R B. Effect of SiCw and TiC particulate additions on the friction and wear behavior of Si3N4[J]. Journal of American Ceramic society,1990,73 (11):3442-3448.
    [68]Cerammer D C. Ceramic teratology needs and opportunities[J]. Tribology Trans,1987,31 (2):164-169.
    [69]韩荣第;王辉;刘俊岩;王扬;难加工材料绿色切削刀具磨损试验研究[J],制造技术与机床,2008,(04):78-81.
    [70]韩荣第,刘俊岩.切削液渗透毛细管的动力学模型研究[J].润滑与密封,2005,(01):31-36.
    [71]张悦.过热水蒸汽作冷却润滑剂的绿色切削相关技术研究
    [72]M. E. Merchant. Basic mechanics of the metal cutting process[J]. ASME J. appl. Mech. II,1944(66):168-175.
    [73]G. V. Stabler, The fundamental geometry of cutting tools[J], Proc. Inst. Mech. Eng.1951(165):14-21.
    [74]M C Shaw, N H Cook,P a Simth. The Mechanics of Three_dimensional Cutting Operations[J] Transactions of ASME,1952(74):1055-1064.
    [75]L. V. COLWELL. Predicting the angle of chip flow for single-point cutting tools[J]. Trans. ASME 76,1954 (199).
    [76]J. C. MAZUR. A technique to optimize control of process variable in related studies of causes and effects of metal cutting behaviour[J]. Ann. CIRP 15,1967 (287).
    [77]E. UsuI and A. H1ROTA, Analytical prediction of three dimensional cutting process Part2. Chip formation and cutting force with conventional single-point tool[J]. ASME J. Enong Ind.100,1978 (229).
    [78]J. A. KIRK, D. K. ANAND and C. McKINDRA, Matrix representation and prediction of three-dimensional cutting[J]. ASME J. Engng Ind. 99,1977 (828).
    [79]Y. KOREN, Flank wear model of cutting tools using control theory[J]. ASME J. Engng Ind.100,1978 (103).
    [80]E. G. THOMSEN, A. G. MACDONALD and S. KOBAYASHI, Flank friction studies with carbide tools reveal sublayer plastic flow[J]. ASME J. Eneng Ind.75,1962 (53).
    [81]L. V. COLWELL, J. C. MAZUR and W. R. DEVRIES, Analytical strategies for automatic tracking of tool wear. Proc[J].6th North American Manufacturing Conf.,1978:276.
    [82]N. N. ZOREV, Metal Cutting Mechanics. Pergamon Press[M], Oxford, 1966.
    [83]Oxley, P L B Mechanics of Machining:an Analytical Approach to Assessing Machinability. Ellis Horwood Limited (UK),1989:242.
    [84]Lin G C,P Mathew, P L B Oxley, et al. Predicting Cutting Forces for Oblique Machining Conditions[J]. Proceedings of the Institution of Mechanical Engineers,1982(196):141-148
    [85]A Moufki, A Molinari, et al. Modelling of onhogonal curing with a temperature dependent friction law[J]. Mech Phys Solids.1998 (46):2103-2138.
    [86]A Moufki, A Deviilez,D Dudzinski, et al. Thermomechanical modelling of oblique cutting and experimental validation[J]. Intemational Journal of Machine Tools&Manufacture,2004(44):971-989.
    [87]Molinari. A Moufki. A new thermomechanical model of cutting applied to tuming operations:Part I. Theory[J]. International Journal of Machine Tools&Manufacture.2006 (45):166-180.
    [88]Xiaoping Yang, C R Liu. A new stress-based model of friction characteristic in machining and its significant impact on residual stresses computed by finite element method[J]. International Journal of Mechanical Sciences,2002, (44):703-723.
    [89]王晓琴.钛合金Ti6A14V高效切削刀具摩擦磨损特性及刀具寿命研究[d].山东大学,2009.
    [90]李炳林.斜角切削的热力建模与仿真分析[J].中国机械工程,2101,21,20(10):2402-2407
    [91]白万金,柯映林,吴红兵,董辉跃.斜角切削过程的三维热-弹塑性有限元分析[J].计算机集成制造系统,2009,15,5:1010-1015.
    [92]吕明,郭建.刀-屑摩擦对斜角切削切屑流动特性影响的仿真研究[J].兵工学报,2010,31,11:1491-1497.
    [93]王永国,艾兴,李兆前等.新型陶瓷刀具材料的热应力分析[J].无机材料学报,2001,16(5):999-1003.
    [94]刘中秋.ZrO2/LaPO4复相陶瓷的抗热震性能研究[天津大学硕士学位论文].天津大学,2009.
    [95]Valdimir D Krestic. Fracture of Brittle Solids in the Presence of Thermoelastic Stresses [J]. Journal of the American Ceramics Society,1984,67(9):589-593
    [96]宋世学,艾兴,赵军.Al2O3-TiCN陶瓷刀具材料的抗热震性能及断裂机理研究[J].济南大学学报(自然科学版),2003,17(2):97-99.
    [97]W.D.Kingery. Factors affecting thermal shock resistance of ceramic materials[J], Journal of the American Ceramics Society, 1955,38(1):3-15.
    [98]D.P.H.Hasselman. Elastic energy at fracture and surface energy as design criteria for thermal shock[J], Journal of the American Ceramics Society,1963,6(11):535-540.
    [99]D.P.H.Hasselman. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J], Journal of the American Ceramics Society,1969,2 (11):600-604.
    [100]lin gy, lei tc, zhou y, wang sx. Mechanical properties of Al2O3 and Al2O3-ZrO2 ceramics reinforced by sic whiskers[J]. Journal of Materials Science,1993,28(10):2745-2749.
    [101]W.Buessem. Ring test and its application to thermal shock problems,0. A. R. Report, Wright-Patterson Air Force Base, Dayton, OH,1950.
    [102]S.S, Manson Behavior of materials under conditions of thermal stress, N. A. C. A. Technical Note 2933, Washington DC,1953.
    [103]A. G. Evans, E. A. Charles. Structural integrity in severe thermal environments[J], Journal of the American Ceramics Society, 1977,50(1-2):22-28.
    [104]D. P. H. Hasselman, R. A. Heiler. Thermal stresses in severe environment[M]. New York:Plenun Press,1980.
    [105]Biljana D. Stojanovic. Thermal shock behavior of sintered alumina based refractories[J]. Advanced Science and Technology of Sintering,1999:290-295.
    [106]Doe Fundamentals Handbook[M]. Washington:U.S.Department of Energy,1992.
    [107]Donald Pirts, Leighton Sissom. Schaum's Outline of Theory and Problems of Heat Transfer[M]. New York:McGraw-Hill Companies, 1998.
    [108]Warren M. Rohsenow, James R Hartnett, Young I. Cho. Handbook of Heat Transfer (3rd Edition)[M]. New York:McGraw-Hill Companies,1998.
    [109]K. T. Faber, M.D.Huang, A.G.Evans. Quantitatives studies of thermal shock in ceramics based on a novel test technique[J]. Journal of the American Ceramics Society,1981,64:296-301.
    [110]M. V. Swain. R-Curve Behavior and Thermal shock Resistance of Ceramic [J]. Journal of the American Ceramics Society,1990, 73(3):621-628.
    [111]吕珺,郑治祥,金志浩等.晶须及颗粒增韧氧化铝基陶瓷复合材料的抗热震性能[J].材料工程,2000(12):15-18.
    [112]A. G. Evans. Perspective on the development of high toughness ceramics [J]. Journal of the American Ceramics Society,1990, 73:187-206.
    [113]G.H. Stewart, Science of ceramics[M]. New York:Academic Press. 1962.
    [114]E J Opila, JL Smialek, R C Robinson, el al. SiC recession due to SiO2 scale volatility under combustor conditions. Part II: Thermodynamics and gaseous diffusion model[J]. Journal of the American Ceramics Society,1999,82(7):1826-1834.
    [116]鲍登,泰伯.固体的摩擦与润滑[M].北京:机械工业出版社,1982.
    [117]松原清.摩擦学[M].李明怀等译.西安:西安交通大学出版社,1988.
    [118]全永听.工程摩擦学M].杭州:浙江大学出版社,1994.
    [119]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [120]Gates R S, Hsu M, Klaus E E. Tribochemical mechanism of alumina with water[J]. Tribology transactions,1989,32(3):357-363.
    [121]MG Gee; The formation of aluminum hydroxide in the sliding wear of alumina. Wear,1992,153(1):201-227.
    [122]Lancaster J K. A review of the influence of environmental humidity and water on friction, lubrication and wear[J]. Tribology International,1990,23(6):371-389.
    [123]Kim H, Shin D, Fischer T E. Mechanical and chemical aspects in the wear of alumina[C]//Japan International Tribology Conference. III.1990:1437-1442.
    [124]李敦钫,孙加林.氧化锆 增韧氧化铝在水润滑条件下的摩擦学特性研究[J].稀有金属,2003,27(3):328-331.
    [125]李敦钫,孙加林.氧化锆增韧氧化铝在空气中的摩擦磨损[J].表面技术,2003,32(1):19-21.
    [126]R.H. Brown, J.A. Armarego, Oblique machining with a single cutting edge, Int. J. Mach. Tool Des. Res.4 (1964) 9-25.
    [127]J.K. Russell, R.H. Brown, The measurement of chip flow direction, Int. J. Mach. Tool Des. Res.6 (1966) 129-138.
    [128]W. K. Luk, The direction of chip flow in oblique cutting, Int. J. Proc. Res.10(1) (1972) 67-76.
    [129]M.C. Shaw, Metal Cutting Principles[M], Oxford Science Publications, Oxford,1984.
    [130]Brecher C, Esser M, Witt S. Interaction of manufacturing process and machine tool[J]. CIRP Annals-Manufacturing Technology, 2009,58(2):588-607.
    [131]Devillez A, Dudzinski D. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers[J]. Mechanical systems and signal processing,2007,21(1):441-456.
    [132]Zou G P, Yellowley I, Seethaler R J. A new approach to the modeling of oblique cutting processes[J]. International Journal of Machine Tools and Manufacture,2009,49(9):701-707.
    [133]Nayebi A, Mauvoisin G, Vaghefpour H. Modeling of twist drills wear by a temperature-dependent friction law[J]. journal of materials processing technology,2008,207(1):98-106.
    [134]Lorphevre E R, Filippi E, Dehombreux P. Inverse method for cutting forces parameters evaluation[J]. Engineering Mechanics, 2007,14(5):345-357.
    [135]Gupta A. Thermal modeling and analysis of carbide tool using finite element method[D]. Master thesis. Deemed University, (INDIA),2005.
    [136]Riviere-Lorph e vre E, Filippi E, Dehombreux P. Experimental investigation of parameter-dependent analytical cutting force models for the simulation of the milling process[C]//AIP Conference Proceedings.2011,1353:579.
    [137]W Johnson, P B Mellir. Engineering Plasticity[M]. New York: Ellis Horwood,1983.
    [138]刘战强 吴继华 史振宇 赵丕芬 金属切削变形本构方程的研究[J].工具技术2008,42(13):3-8.
    [139]Johnson G R, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature. Proceedings of the 7th International symposium on Ballistics,1983, Netherlands, pp.541-547
    [140]仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社:1989
    [141]E. Usui, H. Takeyama, A photoelastic analysis of machining stresses, J. Eng. Ind.82 (1960):303-308.
    [142]N.N. Zorev, Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting, International Research in Production Engineering, ASME, New York,1963; 42-49.
    [143]Fleischer. Heat Flow Simulation for Dry Maching of Power Train Castings[J].Annals of CIRP.2007,56(1):117-122.
    [144]T.Kato H F. Energy partition in conventional surface grinding[J]. ASME Trans. J. Manuf. Sci. Eng.1999,121:393-398.
    [145]Reznikov AN. Thermophysical Aspects of Metal Cutting Processes [M]. Moscow:Mashinostroenie,1981.
    [146]Eg Loewen, S M Shaw. On the analysis of cutting tool temperatures[J]. Transactions of the ASME,1954,71:217-231.
    [147]Zvorykin K. A., On the force and energy necessary to separate the chip from theworkpiece (in Russian), Vestnic Promyslennostie, 123,1896.
    [148]许立,藤涛.ZGMn13高锰钢本构方程及仿真实验的研究[J].制造技术与机床,2011,10:62-65.
    [149]C E Leshock, YC Shin. Investigation on cutting temperature in turning by a tool work thermocouple technique. Transactions of the ASME, Journal of Manufacturing Science and Engineering, Vol. 119,1997:502-508.
    [150]Sutter G, Faure L, Molinari A, et al. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining[J]. International Journal of Machine Tools and Manufacture.2003,43:671-678.
    [151]孙宝元,曾其勇,钱敏等.化爆材料瞬态切削温度的与切削力在线实时检测[J].含能材料.2006,Vo112:240-243.
    [152]Komanduri R Hou Z B. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[J]. Tribology International.2001,34:653-682.
    [153]E.-G. Ng, D. K. Aspinwall, D. Brazil, et al. Modelling of temperature and forces when orthogonally machining hardened steel [J]. International Journal of Machine Tools and Manufacture. 1999,39:885-903.
    [154]Jehnming Lin, Shinn-Liang Lee, Cheng-I Wang. Estimation of cutting temperature in high speed machining[J]. Transactions of the ASME, Journal of Engineering Materials and Technology, 1992,114:289-296.
    [155]顾立志,袁哲俊,龙泽明等.正交切削中切屑温度分布的研究[J].机械工程学报,2000(3):82-85.
    [156]谭美田.金属切削微观研究[M].上海科学技术出版社,1988.
    [157]Ay H, Yang W J. Heat transfer and life of metal cutting tools in turning[J]. International Journal of Heat and Mass Transfer, 1998,41(3):613-623.
    [158]傅秦生.热工基础与应用[M].第二版 机械工业出版社,2007.
    [159]杨嵩,任国柱.提高高锰钢车削性能的方法[J].北华航天工业学院学报,2006,16.6(12):12-14.
    [160]韩桂泉,周品.煤矿大型高锰钢托轮的切削试验研究[J].材料热处理学报.2005,26.4(8):87-90.
    [161]庞丽君.金属切削原理[M].北京:国防工业出版社.2009
    [162]K. Nakayama, M. Ogawa; Basic Rules on the Form of Chip in Metal Cutting[J]. Ann CIRP,1978,27(1):17-21
    [163]徐少红.高强度钢和超高强度钢的切削加工[J].装备制造技术,2007,2:72-73.
    [164]闻邦椿.机械设计手册[M] 第5版,第1卷.北京:机械工业出版社2010
    [165]T.H.C. Childs. Friction modelling in metal cutting.Wear, 2006(260):310-318
    [166]V.A Godlevski, A. V Volkov, The Kinetics of Lubricant Penetration Action during machining[J]. Lubrication Science,1997 (9):127-140
    [167]V. A. Godlevski, A. V. Volkov, A Description of the Lubricating Action of the Tribo-Active Components of cutting Fluids[J]. Lubrication Science,1998(11):51-62
    [168]Merchant M. E. Cutting-Fluid Action and the Wear of Cutting Tools. Conference of Lubrication and Wear, Institution of Mechanical Engineers, London,UK,1959:556-574.
    [169]张悦,孙泰礼,由颖,李启东等.气体作冷却润滑剂的绿色切削试验[J].沈阳工业大学学报,2010,(03):306-310.
    [170]Brandt G. Wear mechanisms of ceramic cutting tools when machining ferrous and non ferrous alloys. Journal of European Ceramic Society,1990(6):273-290.
    [171]束德林.金属力学性能[M].北京:机械工业出版社,1987.
    [172]薛群基,刘惠文,陶瓷摩擦学Ⅰ陶瓷的摩擦与磨损[J].摩擦学学报,1995,15(4):376-384.
    [173]赵文轸.材料表面工程导论[M].西安:西安交通大学出版社,1998.
    [174]高彩桥.金属摩擦磨损与热处理[M].北京:机械工业出版社,1988.
    [175]Whitney E D. Microstructural engineering of ceramic cutting tools. Ceramic Bulletin,1998,67 (6):1010-1014.
    [176]Tugrul. Ozel, Yigit Karpat, Luis Figueira. Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts[J]. Journal of Materials Processing Technology,2007,189:192-198.
    [177]竹山秀彦.切削加工[M].日本东京:丸善株式会社,1996.
    [178]S. Y. Luo, Y. S. Liao. Wear characteristics in turning high hardness alloy steel by ceramic and CBN tools[J] Journal of Materials Processing Technology,1999,88:114-121.
    [179]曾杰.无润滑条件下氧化铝基陶瓷材料与钢结硬质合金GT35的磨损特性对比[J].硬质合金,2004,21(2):89-93.
    [180]曾杰,丁厚福,郑治祥.粗颗粒氧化铝陶瓷基复合材料在不同载荷下的耐磨性研究[J].粉末冶金工业,2003,13(5):7-11
    [181]邓建新,艾兴.Al2O3/TiB2/SiCw陶瓷刀具加工镍基合金时的磨损机理[J].硅酸盐学报,1997,25(2):192-197.
    [182]陆新瀛.氧空位对氧化锆相结构稳定性及相变过程的影响[J].硅酸盐学报,1995,24(12):670-674.
    [183]Scott H G. Phase relationship in the zirconia-yittria system[J]. Mater Sci,1975,10:1527.
    [184]Ruh R, Mazdiyashi K S,Valentine P G, etal. Phase relations in the system ZrO-Y203 at low Y203 contens[J]. Am Ceram Soc,1984, 67(9):19.
    [185]Xin Guo. Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules [J]. Chem Mater,2004,16:3988-3994.
    [186]Sato T, Shimada M. Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water[J]. Mater Sci,1985,20 (11):3988-4992.
    [187]A. H. De Aza, J. Chevalier. Crack growth resistance of alumina zirconia and zirconia toughened alumina ceramics for joint prostheses[J]. Biomaterials,2002(23):937-946.
    [188]陈日曜.金属切削原理[M].第2版.北京:机械工业出版社,2004.
    [189]袁哲俊.金属切削实验技术[M].北京:机械工业出版社,1987.
    [190]周泽华.金属切削理论[M].北京:机械工业出版社,1987.
    [191]ROGERS H C. Adiabatic strain localization during dynamic Deformation[A]. In deformation processing and structure[M]. Krauss G,ASM,1984:78-99.
    [192]严彪.不锈钢手册[M].北京:化学工业出版社,2009.
    [193]郭建英.基于不同刀-屑摩擦模型的金属切削过程动力学研究[D],太原理工大学,2010.
    [194]John S. Strenkowski, Albert J. Shih, Jong-Cherng Lin. An analytical finite element model for predicting three-dimensional tool forces and chip flow[J]. International Journal of Machine Tools & Manufacture,2002,42:723-731.
    [195]M. Movahhedy, M. S. Gadala, Y. Altintas. Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method [J]. Journal of Materials Processing Technology,2000,103:267-275.
    [196]A. J. Haglund, H. A. Kishawy, R. J. Rogers. An exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element model[J]. Wear,2008,265(3-4):452-460
    [197]E. Ceretti, L. Filice, D. Umbrello, et al. ALE Simulation of Orthogonal Cutting:a New Approach to model heat transfer phenomena at the Tool-Chip Interface [J]. Annals of the CIRP, 2007,56(1):69-72.
    [198]SU Chong, HOU Jun-ming, ZHU Li-da, et al. Simulation study of single grain cutting based on fluid solid interaction method[J]. Journal of System Simulation,2008,20(19):5250-5257.
    [199]S. M. Athavale, J.S. Strenkowski. Material damage-based model for predicting chip-break ability[J], Journal of Manufacturing Science and Engineering,1997,119 (11):675-680.
    [200]方刚,曾攀.切削过程中数值模拟的研究进展[J].力学进展,2001,31(3):394-404.
    [201]Gouveia BPPA, Rodrigues JMC, Manim PAF. Ductile fracture in metal working:Experimental and theoretical research. [J]. Mat. Proc. tech,2000,101:52-63.
    [202]Ozel. The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools and Manufacture,,2006,46(6),518-530.
    [203]李国琛,耶纳.塑性大应变微结构力学[M].北京:科学出版社,1998.
    [204]杨钒,黄建龙.304奥氏体不锈钢应变诱发马氏体的研究[J].材料热处理学报,2012,3:104-108.
    [205]宋顺成.奥氏体不锈钢冲击力学性能及冲击诱发相变实验研究 兵器材料科学与工程,vol23 no4 2000(7):36-42.
    [206]秦添艳.304L不锈钢中冲击诱发马氏体的形态和性能[J].上海钢研,2001(2).
    [207]Woei-Shyan Lee,Chi-Feng Lin, THE MORPHOLOGIES AND CHARACTERISTICS OF IMPACT-INDUCED MARTENSITE IN 304L STAINLESS STEEL [J]. Scripta mater,2000,43:777-782.
    [208]Riviere JP, Brin C, Vilain JP. Structure and topography modifications of austenitic steel surfaces after friction in sliding contact[J]. Appl. Phys.A,2003,76:277-283.
    [209]Hubner W, Pyzalla A, Assmus K, Phase stability of AISI304 stainless steel during sliding wear at extremely low temperature[J]. Wear,2003,255:476-480.
    [210]李晓春,韦习成,HUA M engSUS.304奥氏体不锈钢的摩擦变形层研究[J].摩擦学学报,Vo127,2007(4):341-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700