用户名: 密码: 验证码:
紫铜与低碳钢/铸铁堆焊层组织性能及界面扩散机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫铜以其优良的耐蚀、减磨等物理化学性质,倍受青睐广为使用。阀门作为工业最为常用的部件应用十分广泛,而阀门密封面在其重复开关的过程中,极易受到介质的腐蚀和磨损,使阀门密封面受到损伤,影响其使用寿命。因此,开展阀门耐磨合材料的研究,可以延长阀门的使用寿命,从而达到提高经济效益的目的,具有重要的理论意义和应用价值。
     本文采用等离子弧将紫铜堆焊到20g和HT200表面,并在堆焊过程中施加横向磁场,对比分析不同堆焊电流和磁场电流下堆焊层的成形性、硬度、耐磨性、耐蚀性和显微组织,并对堆焊界面的结合机理和扩散行为进行研究,明确堆焊电流和磁场电流对堆焊层组织性能的影响规律和作用机理。得到主要结论如下:
     (1)对于无外加磁场作用的紫铜/低碳钢堆焊层而言,堆焊速度为120mm/min、送粉量为15g/min、堆焊电流为120A时,堆焊层的成形性最好,力学性能达到最佳值,此时硬度为58.05HV,磨损量为0.0118g,摩擦系数值为0.70,堆焊层的显微组织为细小等轴晶。当堆焊电流为100A时,堆焊层的腐蚀电位为-0.2778mv,耐蚀性最差;当堆焊电流增大为140A时,堆焊层的腐蚀电位也达到了最大值-0.1274mv,此时堆焊层的耐蚀性最好。
     (2)对于无外加磁场作用的紫铜/铸铁堆焊层而言,当送粉量为15g/min、堆焊速度为120mm/min、堆焊电流选为120A时,堆焊层的成形性最好,力学性能达到最佳值,此时硬度为82.06HV,磨损量为最小值0.0147g,摩擦系数为0.73。堆焊电流为100A时,堆焊层的腐蚀电位为-0.3250mv,耐蚀性最差;当堆焊电流增大为140A时,堆焊层的腐蚀电位也达到了最大值-0.1762mv,此时堆焊层的耐蚀性最好。
     (3)当外加磁场作用于堆焊过程时,对于紫铜/低碳钢堆焊层而言,堆焊电流为120A、磁场电流为2A时,堆焊层的成形性、力学性能和显微组织达到了最佳状态,此时的硬度为50.16HV,磨损量为0.0027g,摩擦系数为0.6,显微组织以相对细小的等轴晶为主;对于紫铜/铸铁堆焊层而言,堆焊电流为130A、磁场电流为2A时,堆焊层的力学性能和显微组织达到最佳状态,此时堆焊层的硬度为69.47HV,磨损量为0.0015g,摩擦系数为0.5,显微组织以相对细小的等轴晶为主。对于两种堆焊层耐蚀性的分析可以得出,无论堆焊电流为120A还是130A,其最佳的耐蚀状态均出现在磁场电流为2.5A时,此时的腐蚀电位分别为-0.126V和-0.102V。
     (4)对于Cu-Fe二元金属的扩散,是遵循溶质再分配规律的。在较小的生长速率下,溶质原子可以进行充分扩散,使溶质Cu溶入Fe中,接近于平衡状态下的分凝系数;在较大的生长速率下,界面溶质扩散受到抑制,导致界面固相内溶质富集,溶质的分凝系数较平衡状态下要大。
     (5)在外加磁场的作用下,等离子弧和液态熔池将发生旋转运动,形成电磁搅拌作用。电磁搅拌作用对于电弧的作用比较明显,但最终均作用于熔池,从而改变堆焊层晶粒的形核和长大过程。随着磁场电流的增大,所产生的磁感应强度也将增大,这促使堆焊层液态熔池中的磁扩散强度增大,促进元素的迁移和扩散,使堆焊层中组织均匀、成形美观,并可适当改善堆焊层的综合力学性能。
Red copper is widely used for its physical and chemical properties, such as excellentcorrosion resistance and antifriction. The valve which is the most commonly used inindustrial components has been widely applied. But sealing faces of valves are easy to becorroded and abraded in the process of its repeat switch,which were vulnerable to bedamaged and affect its service life. So it has important theory meaning and practice valueto research the resistant material which would prolong the lifetime of valves and increasethe economic performance.
     Red copper is welding on the surface of20G and HT200with plasma arc undertransverse direction magnetic field. The comparison analysis of the formability, hardness,wearing resistance, erosion resistance, microstructure under different welding current andmagnetic field currentwas investigated by experimental method. And interfacing bondingmechanism of surfacing layer are tested and studied. The influence rule and actingmechanism of magnetic field currents and welding currents on properties andmicrostructure of surfacing layer are researched. The main results are as following:
     (1)For red copper and low-carbon steel surfacing layer without external magneticfield, the formability of surfacing layer, mechanical properties has reached the bestcondition when the welding speed is120mm/min, powder feed rate is15g/min, weldingcurrent is120A.The hardness is58.05HV, wear extent is0.0118g, friction factor is0.70.At this time the microstructure of surfacing layer consists of small equiaxed grain. Thecorrosion resistance is worst when the welding current is100A and the corrosion potentialof the surfacing layer is-0.2778mv; The corrosion resistance is best when welding currentincreases to140A, and the corrosion potential surfacing layer has reached the maximum of-0.1274mv.
     (2)For red copper and cast iron surfacing layer without external magnetic field, theformability of surfacing layer, mechanical properties has reached the best conditionwhenpowder feed rate equal to15g/min,welding speedequal to120mm/min, weldingcurrent equal to120A.At the moment, hardness is82.06HV, wear extent is minimum valueof0.0147g, fraction factor is0.73.The erosion resistance of surfacing layer is not goodwhen the welding current equal to100A,the corrosion potential equal to-0.3250mv. Theerosion resistance of surfacing layer is well when welding current increase to140A, thecorrosion potential reach to a maximum value of-0.1762mv.
     (3)For red copper and low-carbon steel surfacing layer which magnetic field actedon it, the formability of surfacing layer, mechanical properties and microstructure hasreached the best condition when welding current equal to120A,magnetic field current equalto2A.At this time, hardness is50.16HV, wear extent is0.0027g, fraction factor is0.6, themicrostructure of surfacing layer consists ofrelatively smallequiaxedgrain. For red copperand cast iron surfacing layer, the formability of surfacing layer, mechanical properties andmicrostructure has reached the best condition when welding current equalto130A,magnetic field current equal to2A.At this time, hardness is69.47HV, wear extentis0.0015g, fraction factor is0.5, the microstructure of surfacing layer consists of relativelysmall equiaxedgrain. Regardless of the current for120A or130A, the erosion resistanceof surfacing layer is best when magnetic field current is2.5A, the corrosion potential is-0.126V and-0.102V.
     (4)Following the law of solute redistribution, Cu-Fe binary metallic is submitted todiffuse. Under the small growth rate,solutes atoms can be fully spread, and dissolved theCu intoFe,make it close to the segregation coefficient in equilibrium state. Under the largegrowth rate, diffusion of the interface solute is restrained, whichcan lead to soluteenrichment within the solid state, and the solute segregation coefficient is larger thantheequilibriumstate.
     (5)Induced by the extra magnetic field, plasma arc andliquid molten poolrotarymotion occurred which can formed electromagnetic stirring.Electromagnetic stirring hasthe positive effects on theelectric arc. It can act on molten pool, change surfacing layergrain nucleation and growth process. With the increasing of the magnetic field current,magnetic induction intensity will also raise. This causedmagnetic diffusion of surfacinglayer liquid molten poolincrease, the element migration and diffusion. It can also makesurfacing layer uniform and aesthetic, which can be appropriately to improve thecomprehensive mechanics performance of the surfacing layer.
引文
[1]李殿魁.我国钢铁工业的现状与发展趋势[J].上海钢研,2000(2):42-47.
    [2]王先进,茹铮,马衍伟.我国汽车用钢板的现状和研究进展[J].钢铁,1998,33(10):68-72.
    [3]高清宝,王德权.阀门堆焊技术[M].北京:机械工业出版社,1994.
    [4] Chattopadhyay R. Surface wear analysis, treatment and prevention[J]. USA: ASM International,2001,68-120.
    [5]盛兆顺,伊琦岭.设备状态监测与故障诊断技术及应用[M].北京:机械工业出版社,2003.6.
    [6]郑林庆.摩擦学原理[M].北京:高等教育出版社,1994.
    [7]戴雄杰.摩擦学基础[M].上海:上海科学技术出版社,1984.
    [8]温诗铸.摩擦学原理[M].北京:清华大学出版社,2002.
    [9]张小虞.内燃机工业为构建和谐社会做贡献[R].武汉:中国内燃机学会2005年学术年会专题报告.
    [10]屈晓斌,陈建敏,周惠娣等.材料磨损失效及其预防研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192.
    [11]邵荷生,曲敬信,许小棣.摩擦与磨损[M].煤炭工业出版社,1992,4-6.
    [12]董丽虹,朱胜,徐滨士等.耐磨损耐腐蚀粉末等离子弧堆焊技术的研究进展[J].焊接,2004:69-74.
    [13]姚寿山,陆皓.阀门密封面堆焊材料高温耐磨性的研究[J].上海交通大学学报,1996,30(8):120-121.
    [14]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:357-360.
    [15]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988:1-2.
    [16]马丽心,刘义翔,李文新.粘着磨损及影响因素的研究[J].哈尔滨商业大学学报,2001,17(1):75-78.
    [17]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:2-3.
    [18] Liz-Marzan L M. Surface plasmon absorption behavior for different hped silver nanoparticles [J].Langmuir,2006(22):63-65.
    [19]蒋金勋,张佩芳.金属腐蚀学[M].北京:国防工业出版社,1986:5-6.
    [20]刘秀晨,安成强,崔作兴等.金属腐蚀学[M].北京:国防工业出版社,2002.
    [21]陆入领,范家峰,王晓伟.阀门腐蚀失效分析与处理[J].阀门,2002,24(2):30-35.
    [22]谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社,1998,18-21.
    [23] Sare I R, Mardel J I, Hill A J. Wear-resistant metallic and elastomeric materials in the mining andmineral processing industries-an overview[J]. Wear,2001,250:1-10.
    [24]崔信昌.等离子弧焊接和切割[M].北京:国防工业出版社,1988,54-65.
    [25]张清理.金属磨损和耐磨材料手册[M].北京:冶金工业出版社,1984,33-53.
    [26]董祖珏,黄庆云.国内外堆焊发展现状[C].第八次全国焊接会议论文集,北京:机械工业出版社,1997.
    [27]董允,张延森.现代表面工程技术[M].北京:机械工业出版社,2000,123.
    [28]徐滨士.表面工程与维修[M].北京:机械工业出版社,1996,120-131.
    [29]王德权,胡毅均,李杰.阀门用钴基合金及堆焊工艺[J].阀门,2004,2,12-17.
    [30]高荣发.等离子弧喷焊[M].北京:机械工业出版社,1979.
    [31]陈德才,崔德容.机械密封设计制造与使用[M].北京:机械工业出版社,1993.
    [32]黄明亚.我国阀门行业的现状及发展趋势[J].阀门,2002,12(1):1-5.
    [33]吉林工业大学焊接教研室.金属熔焊原理及工艺(下册)[M].北京:机械工业出版社,1981.
    [34]铸铁手册编写组.铸铁手册[M].北京:机械工业出版社,1979,80-100.
    [35]单际国,董祖珏,徐滨士等.我国堆焊技术的发展及其在基础工业中的应用现状[J].中国表面工程,2002,4:19-20.
    [36]周永强,李午申,冯灵芝.表面工程技术的发展与应用[J].焊接技术,200l,30(4):5-7.
    [37]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [38]董祖珏,黄庆云.国内外堆焊发展现状[C].第八次全国焊接会议论文集,北京:机械工业出版社,1997.
    [39]刘中青,刘凯.异种金属焊接技术指南[M].北京:机械工业出版社,1997:44-47.
    [40] Hartsell E W. Joining copper and copper alloys[J]. Welding Journal,1973,16(3):236-237.
    [41]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:石油工业出版社,2001.
    [42]宋兴奎.异质材料等离子弧堆焊层性能及界面结合机理的研究[D].沈阳:沈阳工业大学,2012.
    [43] Vande E, Heide. Cold metal transfer has a future joining steel to aluminium[J]. Welding Journal,2005(6):38-40.
    [44]单际国,任家烈.镍基合金粉末光束堆焊层的微观组织及强化机理研究[J].材料研究学报,2002,16(2):151-157.45-60.
    [45]陆入领,范家峰,王晓伟.阀门腐蚀失效分析与处理[J].阀门,2002,24(2):30-35.
    [46] Schussler. Formation processes of CuCl and regenerated Cu crystals on bronze surface in neutraland acidic media[J]. Applied Surface Science,2002,16(5):12-16.
    [47]李国栋.当代磁学[M].合肥:中国科技大学出版社,1999,15.
    [48] Hutehings I M. Tribological friction and wear of engineering materials[J]. Great Britain: EdwardArnold,1992:40-140.
    [49] Uhlmann D R, Seward T P, Chalmers B. The effect of magnetic fields on the structure of metalalloy castings[J]. Trans Metall Soc AIME,1966,236,527-529.
    [50]李廷举,温斌,张志峰.电磁场作用下材料加工新技术[J].大连理工大学学报,2000,40:61-64.
    [51]张军,傅恒志,谢发勤.金属熔体的电磁成形与凝固[J].材料研究学报,1997,11:612-622.
    [52] Boettinger W J, Coriell S R, Greer A L et al. Solidification microstructures: recent developments,future directions[J]. Acta Materialia,2000,48,43-70.
    [53] Asai S. Recent development and prospect of electromagnetic processing of materials[J]. Scienceand Technology of Advanced Materials,2000, l,191-200.
    [54] Harada K, Tsurekawa S, Watanabe T et al. Enhancement of homogeneity of grain boundarymicrostructure by magnetic annealing of electrodeposited nanocrystalline nickel[J]. Scripta Mater,2003,49,367-380.
    [55] Bacaltchuk C M B, Castello-Branco G A. Effect of magnetic field applied during secondaryannealing on texture and grain size of silicon steel[J]. Scripta Mater,2003,48,1343-1347.
    [56]李文彬.磁力应用工程[M].兵器工业出版社,北京,1991,1.
    [57]刘乐昕.电磁场作用下的铸铁表面重熔强化[D].沈阳:沈阳工业大学,2001.
    [58] Inatomi Y. Morphological change of semiconductor growth interface from soulution in a magneticfield[J]. Cryst Growth,1999(198-199):176-181.
    [59] Lehmann P, Moreau R, Camel D et al. Modification of interdendritic convection in directionalsolidification by a uniform magnetic field[J]. Acta Metall,1998,46,4067-4079.
    [60]王晖,任忠鸣,蒋国昌.均恒强磁场在材料科学中的应用[J].材料科学与工程,2001,19,119-124.
    [61]贾昌申,殷咸青,贾涛等.纵向磁场中的电弧行为[J].西安交通大学学报,1994,28(4):7-13.
    [62] Gelfgat Y. Rotating magnetic fields as a means to control the hydrodynamics and heat transfer inthe proeesses of bulk single crystal growth[J].Crystal Growth,1999(198/199):165-169.
    [63] Farrel D E. Superconducting properties of aligned crystalline grain of Y1Ba2Cu3O7-δ[J]. PhysicalReview B,1987,36,4025-4027.
    [64] Ralph M. Buoyant melt flows under the influence of steady and rotaing magnetic fields[J]. CrystalGrowth.1999,197:341-354.
    [65] Kishida Y, Takeda K, Miyoshino I. Anisotropic effect of magnetohy drodynamics on metalsolidification[J]. ISIJ International,1990,30,34-40.
    [66] Tiller W A, Jackson K, Rutter J W et al. The redistribution of solute atoms during the solidificationof metals[J]. Acta Metallurgica,1953, l,428-437.
    [67] Utech H P, Flemings M C. Elimination of solute banding in indium antimonite crystals by growthin a magnetic field[J]. Journal of Applied Physics,1966,37,2021-2024.
    [68] Motakef S. Magnetic field elimination of convection interference with segregation duringvertical-Bridgman growth of doped semiconductors[J]. Journal of Crystal Growth,1990,104:833-850.
    [69] Miguel J M, Guilimany J M, Vizeaino S. Tribologieal study of Cu-Al coating obtained by differentprocesses[J]. Tribology International,2003,36:181-187.
    [70] Xiao Y H. Measurements of surface tension of liquid metals and alloy sunder arc weldingconditions[J]. Int Mat Rev,1977,13(9):781-794.
    [71]刘政军,刘景铎,牟力军等.磁场强度对重熔层耐磨性的影响[J].焊接技术,2001,22(5):73-75.
    [72][苏]M.A.阿勃拉洛夫,P.Y.阿勃杜拉赫曼洛夫,电磁作用焊接技术[M].北京:机械工业出版社,1988,20-53.
    [73]罗键.外加纵向磁场GTAW焊接机理[J].金属学报,2001,37(2):212-216.
    [74]罗健,贾涛,殷咸青等.GTAW外加间歇交变纵向磁场的数值计算及其对焊接行为的影响[J].金属学报,1999,35(3):330-333.
    [75] Ahmet D, Behcet G, Fehim F. Examination of copper/stainless steel joints formed by explosivewelding[J]. Materailsand Design,2005,26:497-507.
    [76] Lucas W, Howse D. Activating flux increasing the performance and productivity of the TIG andplasma processes[J]. Welding and Metal Fabrication,1996,64(1):11-17.
    [77] Somasekharan A C, Murr L E. Microstructures in frictionstir welded dissimilar magnesium alloysand magnesium alloys to6061-T6aluminum alloy[J]. Materials Characterization,2004,52(1):49-64.
    [78]贾昌申,罗健.间歇交变纵向磁场对焊接电弧及熔池的作用机制研究[R].国家自然科学基金资助项目(No.59775059)申请书,1997:1-10.
    [79] Brown D C. The effect of electromagnetic stirring and mechanical vibration on arc welding[J].Welding Journal,1962,41(2):41-50.
    [80] Tseng C F, Savage W F. The effect of arc oscillation in either the transverse or longitudinaldirection has a beneficial effect on the fusion zone microstructure and tends to reduce Sensitivity tohot cracking[J]. Welding Journal,1971,50(12):777-785.
    [81]国旭明,钱百年,张艳等.场处理细化管线钢埋弧焊缝的显微组织[J].焊接学报,2001,22(2):27-30.
    [82] Kon S, Le Y. Improve weld quantity by low frequency arc oscillation[J]. Welding Journal,1985,64(3):5l-55.
    [83] Pearce B P, Kerr H K. Metal Trans[M],1981,12B:479-486.
    [84]殷咸青,罗键,李海刚等.电池搅拌对LDl0CS铝合金焊接接头晶粒细化效果及其强度改善的研究[J].机械强度,1999,21(4):265-270.
    [85]罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊缝成形机理[J].焊接学报,2001,22(3):17-20.
    [86]李晋.反极性弱等离子弧异种材质堆焊层组织与性能的研究[D].沈阳:沈阳工业大学,2011.
    [87]罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接机理(Ⅱ电弧模型)[J].金属学报,2001,37(2):217-220.
    [88]张忠典,李冬青,尹孝辉等.外加磁场对焊接过程的影响[J].焊接学报,2002(3):76-82.
    [89]国旭明,钱百年,郑玉贵等.电磁搅拌对管线钢埋弧焊性能的影响[J].材料研究学报,2001,12(6):639-643.
    [90]程江波.等离子弧堆焊层组织及性能的磁控[D].沈阳:沈阳工业大学,2006.
    [91]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004:176.
    [92] Briskman A N, Gladyshko V S, Salnikov A S. Effect of electromagnetic stirring on the crackingand corrosion resistance of weld joints in CrNi Steels[J]. Welding Production,1983,30(11):18-21.
    [93]李海刚,殷咸青,罗键等.用电磁搅拌提高LD10CS铝合金焊接接头的质量[J].焊接学报,1998,19(12):100-104.
    [94]高世桥,刘海鹏.毛细力学[M].北京:科学出版社,2010.
    [95]唐非,鹿安理,方慧珍等.一种降低残余应力的新方法:脉冲磁处理法[J].焊接学报,2000,21(2):29-31.
    [96]常云龙,陈德善.磁控等离子弧堆焊热源的研究[J].沈阳工业大学报,1997,19(5):49-52.
    [97]王希琳,王贞炳,陈志华等.铜与45钢扩散接合的研究[J].热加工工艺,1993,6(4):34-36.
    [98]黄海,张相彬,曹宏涛等.核电阀门的技术现状及发展方向[J].阀门,2005,7(3):25-28.
    [99]苏志东.核级阀门密封面堆焊[J].阀门,2007,12(2):12.
    [100]林砺宗,刘义崇,刘晓磊.灰口铸铁阀体密封面镍基堆焊技术[J].焊接,2006,14(6):45-48.
    [101] Asai S. Recent development and prospect of electro magnetic processing of materials[J]. Scienceand Technology of Advanced Materials,2000,1(4):191-200.
    [102]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):1-5.
    [103]殷咸青,李海刚,罗键.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究[J].西安交通大学学报,1998,32(5):91-95.
    [104]王瑞杰.多元多相合金的热力学描述及其在凝固过程中的应用[D].西安:西北工业大学,2004,82-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700