用户名: 密码: 验证码:
镉形态分析与微区分布的质谱联用技术方法研究及其在印度芥菜耐镉机制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超累积植物筛选是重金属污染土壤植物修复的基础和核心问题,同时也是污染环境植物修复的难点及前沿。明确植物抗重金属的生理和分子机理,从而提高植物在污染环境下的适应范围和生产能力,对于高效利用自然资源和进行污染环境的生物修复均具有重要意义。由于缺乏强有力的分析手段,植物体内重金属的迁移机制,解毒机制尚未得出一致结论。
     本文在综述超积累植物对镉的耐性机制及其相关研究方法的基础上,选取镉富集植物印度芥菜为研究对象,重点开展镉的形态分析与微区分布方法研究,探讨植物螫合肽和区隔化在超积累植物对镉的耐受机制中的作用。综合运用高效液相色谱—电感耦合等离子体质谱(HPLC-ICP-MS)、超高效液相色谱—电喷雾质谱(UPLC-ESI-MS)和超高效液相色谱—飞行时间质谱(UPLC-QTOFMS)联用技术,建立了镉形态分析方法,重点解决了植物螫合肽(PCn)-Cd的定性分析难题,探讨植物螯合肽的形成机制及在植物体耐受与积累重金属中的作用。同时,借助激光烧蚀-电感耦合等离子体质谱(LA-ICP-MS)和透射电镜等手段,分析镉及其它六种元素在印度芥菜体内组织水平以及细胞水平上的分布特征,探讨各类组织/细胞对重金属的区隔化在植物体耐受耐镉机制中的作用。
     本研究取得的主要研究结果如下:
     1.通过温室水培试验研究了Cd胁迫时间和胁迫水平对印度芥菜生物量的影响以及Cd在植物体内的分布规律,从生物响应的角度探讨了Cd对印度芥菜的毒性及印度芥菜对Cd的耐性。印度芥菜对Cd的最大耐受量为1.0mg/L,超过此浓度植物的正常生长将受到影响,导致生物量下降。植物受胁迫48小时后出现中毒症状,生物量开始下降。随着胁迫时间和胁迫浓度增加,根、叶、茎中镉的浓度均显著增加,根部镉浓度远远大于茎和叶,茎大于叶。在考虑Cd对植物的危害时,胁迫时间和胁迫浓度两个因素要同时考虑。
     2.利用UPLC-ESMSMS建立了PCn的分析方法,探讨了PCn稳定性及在耐镉机制中的作用,在Cd的强力诱导下,胁迫合成大量的PCn,从而能螯合更多的Cd,产生较强的耐Cd性。建立了PCn-Cd的UPLC-QTOFMS分析方法,检测出(PC2~PC5)-Cd形态。两种质谱联用技术为PCn-Cd的精确测定提供了强有力的分析工具,解决了由于Cd形态标准物质缺乏造成的SEC-HPLC-ICPMS定性难问题,也为研究PCn与其它金属络合物的分析方法提供了可能。
     3.建立了SEC-HPLC-ICPMS测定Cd形态分析方法,在叶片和根部均检测到植物螯合肽(PC)3-Cd、植物螯合肽(PC)2-Cd、谷胱甘肽(GSH)-Cd,及半胱胺酸-Cd四种形态。在植物不同部位Cd存在形态不同,叶片中主要以GSH-Cd存在,而在根部主要以PC2-Cd为主。Cd形态极不稳定,样品处理采取液氮保护并-70℃保存,样品分析全流程用氮吹防氧化措施。研究结果证明,植物螯合肽的合成机制有两种,一是受Cd胁迫直接产生PCn,二是先形成GSH-Cd而后转化成PCn。
     4.研究了胁迫浓度和胁迫时间对Cd形态分布的影响。可以推论:植物受Cd胁迫后,先储存在根部。随着胁迫浓度的增大,为了减轻Cd的毒害,先后形成GSH-Cd,PC2-Cd, PC3-Cd,并向叶部转移。同时,叶部受Cd胁迫产生的PCn也会传输到根部,结合更多的Cd,形成PCn-Cd,继续向叶部转移,从而使植物产生很强的Cd耐受性。另外,GSH与PCn结合Cd的能力也存在竞争。随着胁迫时间的增加,根和中GSH-Cd、PC2-Cd、PC3-Cd浓度先迅速增加,而后逐渐降低,96h降至最低。表明在植物耐镉机制中PCn起部分作用,受高浓度Cd胁迫时,其他机制可能会被激发。
     5.建立了SEC-HPLC-ICP-MS同时测定印度芥菜中Cd、Cu、Zn形态分析的方法,在植物叶片和根部同时检测出三种元素的四种形态。在同一植物的不同部位,叶片中主要以GSH-Cd、Cys-Cu、 Cys-Zn为主,根部以PC2-Cd、PC2-Cu、Cys-Cu和Cys-Zn为主。另外,Cd、Cu、Zn在与谷胱甘肽(GSH)和半胱胺酸(Cys)的结合上有竞争。研究结论为一种植物同时修复Cd、Cu、Zn复合污染提供了可能。
     6.借助LA-ICP-MS质谱技术对富集型印度芥菜茎、叶、叶柄中Cd、P、3、K、Ca、Cu和Zn七种元素的分布特征进行原位分析。结果表明,在茎、叶柄以及主叶脉等组织中,Cd优先分布于含木质部与韧皮部的维管组织中,表明Cd在运输过程中,不易向其他贮存组织扩散。在植物叶片中,Cd主要分布于含有大型液泡的叶肉细胞中,而在上下表皮中分布较低,表明液泡可能是植物存储镉的主要场所。其他元素与Cd的相关性分析结果表Cd与Ca具有相似的分布规律,可能与二者离子半径相近、化学性质相似有关。而K和Ca、P和S的分布呈显著正相关。说明重金属元素进入植株体内并被其吸收运输过程是伴随着植物对其他元素的吸收,且具有相似的运输机制。
     7.扫描电镜结果证实胁迫浓度超过lmg/L后,细胞结构发生了变化。同时,细胞壁中镉浓度大于细胞液且远远大于细胞器,证明细胞区隔化在镉的解毒机制中具有重要的作用。
Cadmium (Cd) pollution in the soil is one of the most significant global environmental problems, as it will enter into human bodies through the accumulation of the food chain, and endangers the health of human being. Hyperaccumulator and accumulator species, which efficiently tolerate and accumulate heavy metals from the soil into shoots, have great promise in phytoremediation of contaminated environments. Understanding the mechanisms of metal tolerance and accumulation will provide insight into the identification and management of these hyperaccumulating species. Because of the analytical limit, there has not yet a common accepted conclusion on the migration mechanism of the heavy metal within the plant, as well as the detoxification mechanisms. Phytochelatins (PCn), characterized by the amino acid structure (y-Glu-Cys)n-Gly, where n ranges from2to11, are synthesized enzymatically by phytochelatin synthase (PCn) using glutathione as a substrate in the presence of many metals and metalloids.They are believed to play an important role in metal detoxification and tolerance. But few research on speciation analysis of PCn-Cd and its unstability on detoxification mechanism has been studied.
     Therefore, in order to reveal migration and transformation pattern of heavy metals and investigate the relationship between speciation and tolerance of heavy metals, some studies on Indian Mustard which was demonstrated to tolerate and accumulate considerable amounts of cadmium were carried out. The aim was to establish methods for speciation and distribution analysis of cadmium, and obtain fundamental information on heavy metals accumulation and tolerance mechanisms by investigation of the metal localization and ligand abundance. Several modern hyphenated mass spectrometric techniques, such as high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), ultra performance liquid chromatography-electrospray ilonization mass spectrometry (UPLC-ESI-MS), ultra performance liquid chromatography-time of flight mass spectrometry (UPLC-QTOFMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used.
     The main results include:
     1. Exposure concentration of Cd above1.0mg/L will bring negative effects on the normal growth of the plant, and therefore result in the decrease of the biomass. Within48hours after the stimulation, the symptoms of intoxication can be observed in the plant. With the increase of the exposure time and concentration, the concentrations of cadmium in root, leaf and stem also increases. The concentration of cadmium in the root is far more than that in stem and leave, and and the lowest in in leave.
     2. In this study, in vitro formed PCn-Cd complexes were characterized using UPLC-ESI-MSMS and UPLC-QTOFMS. These two methods have been demonstrated to be ideal and promising techniques for screening and characterizing peptide-metal complexes. It was demonstrated that both techniques had the ability to identify the formation of PCn-Cd complex.Furthermore, the increase of PC after Cd exposure demonstrated that Cd is the most efficient inducer of phytochelatin synthesis.
     3. Method based on the coupling of size-exclusion HPLC with ICP-MS was used for speciation analysis of cadmium binding non-protein thiols in extracts of Indian mustard (Brassica Juncea). In the presence of Cd stress, PCn were induced, and Cd ions in extracts were associated with the induced PCn. So four different Cd species were detected in samples:PC3-Cd、PC2-Cd、GSH-Cd and Cys-Cd, which demonstrated that PCn were enzymatically synthesised from glutathione (GSH, Glu-Cys-Gly) by the constitutive enzyme PC synthase. The results indicated that GSH-Cd exists as the main specie in leaf samples while PC2-Cd is the main specie in root samples. A non-oxidizing (Nitrogen) preparation environment and a-70℃preservation condition were employed to avoid the oxidation of sulfhydryl groups.
     4. Root and leaf samples were submitted to0(control),2.0,4.0,6.0,8.0,10.0mg L-1and harvested after1,2,3and4days exposure. Results indicated lower Cd stress levels were generally associated with higer PCn-Cd production. Higher stress induced the reduction of PCn-Cd, which proved that thiol based tolerance was only efficient in lower degrees of stress. Increasing exposure time also induced decreased PCn-Cd pordution indicated PCn may only had a partial role in metal resistance. Under continuous higher stress, plants maybe trigger other mechnisms to tolerate heavy metal toxicity. Our results suggested the concentration and time of exposure are important factors that must be taken into consideration when evaluating the true role of PCn in heavy metal detoxification.
     5. Method based on the coupling of size-exclusion HPLC with ICP-MS was used for speciation analysis of Cd, Cu and Zn binding non-protein thiols in extracts of Indian mustard(Brassica Juncea). In the presence of Cd, Cu and Zn stress, PCn were induced, and metal ions in extracts were associated with the induced PCn. So four different species were detected in stem and root:PC3-Cd(Cu,Zn), PC2-Cd(Cu,Zn), GSH-Cd(Cu,Zn) and Cys-Cd(Cu,Zn). Moreover, results indicated the existence of complexation competition for GSH and cysteine between Cd, Cu and Zn.
     6. Imaging of trace metal distribution in tissue sections by laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS) is typically performed using spatial resolutions of25μm, including Cd, P,S, K,Ga,Gu-and Zn elements. The-results showed that Cd was preferentially distributed in vascular tissue. The high relationship between Ca and Cd distribution indicating a very similar sequestration of the two elements within Indian Mustard.
     7. Method based on ICP-MS was used for subcellular distribution of cadmium in extracts of Indian mustard(Brassica Juncea). Brassica Juncea were submitted to0,0.5,1.0,3.0,5.0,10.0mg L-1and harvested after1,5,7,10and14days exposure. Cells were separated into three fractions:cell wall, soluble fraction and organelle containing fraction using differential centrifugation technique. Results indicated that higher subcellular cadmium in both leaf and root samples was found as exposure level and exposure time increase, but Cadmium concentration differs slightly under1.0mg/L exposure. Results of TEM under different exposure also demonstrate it. Subcellular fractionation of Cd-containing tissues indicated that about50-62%of the element was localized in cell walls and22-32%in soluble fraction, and the lowest in cellular organelles. It could be suggested that subcellular compartment played an important role in Cd detoxification.
引文
[1]Smith S R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int,2009,35:142-156.
    [2]Sneller F E C, Noordover E C M, Ten Bookum W M, et al. Quantitative relationship between phytochelatin accumulation and growth during prolonged exposure to cadmium in Silene vulgaris. Ecotoxicology,1999,8(3):167-175.
    [3]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响.生态学杂志,2005,23(4):69-71.
    (4] 李国良,何俊瑜,王阳阳,等.镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响.生态环境学报,2009,18(5):1863-1868.
    [5) 郭智,王涛,奥岩松.镉对龙葵幼苗生长和生理指标的影响.农业环境科学学报,2009,28(4):755-760.
    (6)宋阿琳,李萍,李兆君,等.镉胁迫下两种不同小白菜的生长、镉吸收及其亚细胞分布特征.环境化学,2011,30(6):1075-1080.
    [7) 张军,束文圣.植物对重金属镉的耐受机制.植物生理与分子生物学学报,2006,32(1):1-8.
    (8)刘传平,郑爱珍,田娜,等.外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报,2004,7(4):26-30.
    [9]Prasad M N V. Inhibition of maize leaf chlorophylls, carotenoids and gas exchange functions by cadmium. Photosythetica,1995,31:635-640.
    [10]陈良,隆小华,郑晓涛,等.镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究.草业学报,2011,6:60-67.
    [11]Zhang F Q, Shi W Y, Jin Z X, et al. Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity. J Plant Nut,2003,26(9):1779-1788.
    [12]黄辉,李升,郭娇丽.镉胁迫对玉米幼苗抗氧化系统及光合作用的影响.农业环境科学学报,2010,29(2):211-215.
    [13]杨居荣,久保井撤镐.铜对植物细胞的毒性及元素吸收特性的影响.环境科学学报,1991,11(3):381-386.
    [14]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报,2000,6(2):112-116.
    [15]Kong X S. Effects of Cd toxicity on cell membrane permeability and protective enzyme activity maize seedling. Agro-Protection,1999,18(3):133-134.
    [16]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(ZeamaysL)幼苗细胞超微结构的变化.中国环境科学,1991,11(6):426-431.
    [17]Roderer G. On the toxic effects of tetraethyl lead and its derivatives on the Chrysophyte PoterioochRomonas malhamensis-V. electron microscopical studies. Environmental and Experimental Botany,1984,24(1):17-30.
    [18]Vallee B L, Ulmer D D. Biochemical effects of mercury, cadmium, and lead. Annual Review of Biochemistry,1972,41:91-128.
    [19]杨金凤, 卜玉山,邓红艳.镉、铅及其复合污染对油菜部分生理指标的影响.生态学杂志,2009,28(7):1284-1287.
    [20]Begonia G B, Davis C D, Begonia M F T, et al. Growth responses of Indian mustard [Brassica juncea(L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bulletin in Environmental Contamination Toxicology,1998,61:38-43.
    [21]Bennett L E, Burkhead J L, Hale K L, et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality,2003,32: 432-440.
    [22]Misra V, Tiwari A, Shukla B, et al. Effects of soil amendments on the bioavailahility of heavy metals from zinc mine tailings. Environmental Monitoring Assessment,2009,155(1-4):467-475.
    [23]Wu L H, Luo Y M, Xing X R. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems and Environment,2004,102(3):307-318.
    [24]Hauser L, Tandy S, Schulin R, et al. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science Technology,2005,39(17): 6819-6824.
    [25]Chaney R L, Green C E, Filcheva E, et al. Sewage sludge:Land utilization and the environment. In: Clapp C E, Larson W E, Dowdy R H(eds). Effect of iron, manganese, and zinc enriched biosolids compost on uptake of cadmium by lettuce from cadmium-contaminated soils. American Soc. Agron, Madison, WI.1994.205-207.
    [26]Blaylock M J, Huang J W. Phytoextraction of metals. In:Raskin I, Ensley B D(eds). Phytoremediation of toxic metals:using plants to clean-up the environment. Wiley, New York. 2000.53-70.
    [27]Zhao F J, Hamon R E, Lombi E, et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany.2002, 53(368):535-543.
    [28]Salt D E, Wagner G J. Cadmium transport across tonoplast of vesicles from oat root. The Journal of Biological Chemistry,1993,268(17):12297-12302.
    (29)Merkl N, Schultze-Kraft R, Infante C. Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids. Environmental Pollution,2005,138(1): 86-91.
    [30]Kramer U. Metal hyperaccumulation in plants. Annual Review of Plant Biology,2010,61(1): 517-534.
    [31]Thomine S, Wang R, Ward J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4991-4996.
    [32]Van Aken Benoit. Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opinion in Biotechnology,2009,20(2):231-236.
    [33]Cohen C K, Fox T C, Garvin D E, et al. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology,1998,116(3):1063-1072.
    [34]Colangelo E P, Guerinot M L. Put the metal to the petal:metal uptake and transport throughout plants. Current Opinion in Plant Biology,2006,9(3):322-330.
    [35]Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America,1996,93(11):5624-5628.
    [36]Pence N S, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4956-4960.
    [37]Curie C, Alonso J M, Jean M L, et al. Involvement of NRAMP 1 from Arabidopsis thaliana in iron transport. The Biochemical Journal,2000,347(3):749-755.
    [38]Thornton J D, Eisenreich S J. Impact of land-use on the acid and trace element composition of precipitation in the North Central U.S. Atmospheric Environment,1982,16(8):1945-1955.
    [39]Montanini B, Blaudez D, Jeandroz S, et al. Phylogenetic and functional analysis of the Cation Diffusion Facilitator(CDF) family:improved signature and prediction of substrate specificity. BMC Genomics,2007,8:107.
    [40]Antosiewicz D M, Sirko A, Sowi'nski P. Trace element transport in plants. In:Prasad M N V(Ed.). Trace Elements as Contaminants and Nutrients. John Wiley and Sons Inc. Hoboken, NJ. 2008.413-448.
    [41]Williams L E, Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta,2000,1465(1-2):104-126.
    [42]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiology,1995,109(4):1427-1433.
    [43]Lasat M M. Phytoextraction of toxic metals:a review of biological mechanisms. Journal of Environmental Quality,2002,31(1),109-120.
    [44]Mishra S, Srivastava S, Tripathi R D, et al. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere,2006,65(6):1027-1039.
    [45]Seth C S, Chaturvedi P K, Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassicajuncea L. Ecotoxicology and Environmental Safety,2008,71(1):76-85.
    [46]Pollard A J, Powell K D, Harper F A, et al. The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences,2002,21(6):539-566.
    [47]Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat II.Oxalic acid detoxifies aluminum internally. Plant Physiology,1998,117(3):753-759.
    [48]Grill E, Loeffler S, Winnacker E L, et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America,1989,86(18):6838-6842.
    [49]Hall J L. Cellular mechanism for heavy metal detoxification and tolerance. Journal of Experimental Botany,2002,53(366):1-11.
    [50]Vernoux T, Wilson R C, Seeley K A, et al. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell,2000,12(1): 97-110.
    [51]Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell,2005,17(7):1866-1875.
    [52]Rausch T, Gromes R, Liedschulte V, et al. Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biology(Stuttgart),2007,9(5):565-572.
    [53]Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Sciences,2000,5(5):193-198.
    [54]Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Letters, 2006,580(4):1183-1191.
    [55]Freeman J L, Persans M W, Nieman K, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell,2004,16(8):2176-2191.
    [56]Cobbett C S, May M J, Howden R. et al. The glutathione-deficient, cadmium-sensitive mutants, cad2-1, of Arabidopsis thaliana is deficient in y-glutamylcysteine synthetase. The Plant Journal, 1998,16(1):73-78.
    [57]Noctor G Arisi A C M, Jouanin L, et al. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiology,1998,118(2):471-482.
    [58]Eeva T, Lehikoinen E. Local survival rates of the pied flycatchers(Ficedula hypoleuca) and the great tits(Parus major) in an air pollution gradient. Ecoscience,1998,5(1):46-50.
    [59]Janssens E, Dauwe T, Pinxten R, et al. Effects of heavy metal exposure on the condition and health of nestlings of the great tit(Parus major), a small songbird species. Environmental Pollution,2003, 126(2):267-274.
    [60]Dauwe T, Janssens E, Kempenaers B, et al. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs. Environmental Pollution,2004,129(1):125-129.
    [61]Dauwe T, Janssens E, Eens M. Effects of heavy metal exposure on the condition and health of adult great tits(Parus major). Environmental Pollution,2006,140(1):71-78.
    [62]Binz P A, Kagi J H R. In Klaassen C D(ed.). Metallothionein IV. Birkh user Verlag, Basel.1999. 7-13.
    [63]夏丽华,李斌,张莹,等.镉生物标志物的研究进展.职业卫生与应急救援,2011,29(6):298-301.
    (64)张海燕,徐文忠,戴文韬,等.大蒜金属硫蛋白家族新成员AsMT2b在镉离子胁迫下的功能分析.科学通报,2006,51(3):309-315.
    [65]Grispen V M J, Irtelli B, Hakvoort H W J, et al. Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environmental and Experimental Botany,2009,66(1):69-73.
    [66]Gekeler W, Grill E, Winnaeker E L, et al. Survey of the plant kingdom for the ability to bind heavy metals through Phytochelatins. Zeitschrift Fur Naturforschung,1989,44c:361-369.
    [67]Rauser W E. Phytochelatins and related peptides:structure, biosynthesis, and function. Plant Physiology,1995,109(4):1141-1149.
    [68]Rauser W E. Structure and function of metal chelators produced by plants:the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics,1999,31(1): 19-48.
    [69]Zenk M H. Heavy metal detoxification in higher plants:a review. Gene,1996,179(1):21-30.
    [70]Yang X E, Yang M J, Shen Z Y, et al. Some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyper-accumulating plant species(Thlaspi). Development in Plant and Soil Sciences,2002,92:444-455.
    [71]Pinto E, Sigaud-Kutner T C S, Leitao M A S, et al. Heavy metal-induced oxidative stress in algae. Journal of Phycology,2003,39(6):1008-1018.
    [72]Grill E, Winnaeker E L, Zenk M H. Phytochelatins:the principal heavy-metal complexing peptides of higher plants. Science,1985,230(4726):674-676.
    [73]Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy,1993,51:173-212.
    [74]Howden R, Goldsbrough P B, Andersen C R, et al. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology,1995,107(4):1059-1066.
    [75]Salt D E, Rauser W E. MgATP-dependent transport of phytochelatin across the tonoplast of oat roots. Plant Physiology,1995,107(4):1293-1301.
    [76]Abrahamson S L, Speiser D M, Ow D W. A gel electrophoresis assay for phytochelatins. Analytical Biochemistry,1992,200(2):239-243.
    [77]Vogeli-Lange R, Wagner G J. Relationship between cadmium, glutathione and cadmium-binding peptides(phytochelatins) in leaves of intact tobacco seedlings. Plant Science,1996,114(1):11-18.
    [78]Kneer R, Zenk M H. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry,1992,31(8):2663-2667.
    [79]Krotz R M, Evangelou B P, Wagner G J. Relationships between cadmium, zinc, cd-peptide, and organic acid in tobacco suspension cells. Plant Physiology,1989,91(2):780-787.
    [80]Leita L, De Nobili M, Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean. Journal of Plant Nutrition,1996,19(3-4):527-533.
    [81]Cobbett C S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology,2000, 123(3):825-832.
    [82]Seth C S, Chaturvedi P K, Misra V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environmental Toxicology,2007,22(6):539-549.
    [83]Hou W H, Chen X, Song G L, et al. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed(Lemna minor). Plant Physiology and Biochemistry,2007, 45(1):62-69.
    [84]Allen R D. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology,1995, 107(4):1049-1054.
    [85]Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal,1997,16(16):4806-4816.
    [86]Polle A. Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology,2001,126(1):445-462.
    [87]Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. In:Kyle D L, Osmond C B, Arntzen C J(eds). Photoinhibition. Elsevier Scientific Publishers. Amsterdam. 1987.227-287.
    [88]Howden R, Goldsbrough P B, Andersen C R, et al. Cadmium-sensitive, cad1, mutants of arabidopsis thaliana are phytochelatin deficient. Plant Physiology,1995,107(4):1059-1066.
    [89]Karpinski S, Escobar C, Karpinska B, et al. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell,1997;9(4):627-640.
    [90]Iannelli M A, Pietrini F, Fiore L, et al. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiology and Biochemistry,2002,40(11):977-982.
    [91]Rivetta A, Negrini N, Cocucci M. Involvement of Ca2+-calmodulin in Cd2+toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant, Cell & Environment,1997,20(5): 600-608.
    [92]Meharg A A. The role of the Plasmalemma in metal tolerance in angiosperms. Physiologia Plantarum,1993,88(1):191-198.
    [93]Costa G, Michaut J C, Guckert A. Amino acids exuded from axenic roots of lettuce and white lupin seedlings exposed to different cadmium concentrations. Journal of Plant Nutrition,1997,20(7/8): 883-900.
    [94]Nishizono H, Kubota K, Suzuki S, et al. Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats. Plant and Cell Physiology,1989,30(4):595-598.
    [95]Brewin L E, Mehra A, Lynch P T, et al. Mechanisms of copper tolerance by Armeria maritima in Dolfrwyong Bog, north Wales --initial studies. Environmental Geochemistry and Health,2003, 25(1):147-156.
    [96]Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiology,1998,117(2):651-658.
    [97]Schoffl F, Key J L. An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. Journal of Molecular and Applied Genetics,1982,1(4):301-314.
    [98]Edelman L, Czarnecka E, Key J L. Induction and accumulation of heat shock-specific poly(A-) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiology, 1988,86(4):1048-1056.
    [99]Neumann D, Lichtenberger O, Gunther D, et al. Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta,1994,194(3):360-367.
    [100]Jungmann J, Reins H A, Schobert C, et al. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature,1993,361(6410):369-371.
    [101]Delhaize E, Robinson N J, Jackson P J. Effects of cadmium on gene expression in cadmium-tolerant and cadmium-sensitive Datura innoxia cells. Plant Molecular Biology,1989, 12(5):487-497.
    [102]Urwin P E, Groom Q J, Robinson N J. Characterization of two cDNAs and identification of two proteins that accumulate in response to cadmium in cadmium-tolerant Datura innoxia (Mill.) cells. Journal of Experimental Botany,1996,47(301):1019-1024.
    [103]Fuhrer J. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant, Cell & Environment,1982,5(4):263-270.
    [104]Rodecap K D, Tingey D T, Tibbs J H. Cadmium-induced ethylene production in bean plants. Zeitschrift fiir Pflanzenphysiologie,1981,105(1):65-74.
    [105]Bhattacharjee S. Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biologia Plantarum,1997,40(1):131-135.
    [106]Pennazio S, Roggero P. Effect of cadmium and nickel on ethylene biosynthesis in soybean. Biologia Plantarum,1992,34(3-4):345-349.
    [107]Fuhrer,J., Geballe, G.T., Fries, C.,1981. Cadmium-induced change in water economy of beans: involvement of ethylene formation. Plant Physiol.67,55.
    [108]Orvar B L, Ellis B E. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. The Plant Journal,1997,11(6): 1297-1305.
    [109]Whitelaw C A, Le Huquet J A, Thurman D A, et al. The isolation and characterization of type Ⅱ metallothionein-like genes from tomato (Lycopersicon esculentum L.). Plant Molecular Biology, 1997,33(3):503-511.
    [110]Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration,1977,7:49-57.
    [111]Lasat M M. Phytoextraction of metals from contaminated soil:A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research,2000,2(5):1-25.
    [112]Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology,2005,56:15-39.
    [113]Sanit'a di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany,1999,41(2):105-130.
    (114)汤叶涛,关丽捷,仇荣亮,等.镉对超富集植物滇苦菜抗氧化系统的影响.生态学报,2010,30(2):324-332.
    (115)刘威,束文圣,蓝崇枉.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物.科学通报,2003,48(19):2046-2049.
    [116]魏树和,周启星,任丽萍.球果蔊菜对重金属的超富集特征.自然科学进展,2008,18(4):406-412.
    [117]侯伶龙,黄荣,周丽蓉,等.鱼腥草对土壤中镉的富集及根系微生物的促进作用.生态环境学报,2010,19(4):817-821.
    [118]Jin X F, Yang X E, Islam E, et al. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials,2008,156(1-3):387-397.
    [119]Sun R L, Zhou Q X, Sun F H, et al. Antioxidative defense and proline/phytochelatin accumulation in a newly-discovered Cd-hyperaccumulator, Solatium nigrum L. Environmental and Experimental Botany, 2007,60(3):468-476.
    [120]January M C, Outright T J, Keulen H V, et al. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe:Can Helianthus animus hyperaccumulate multiple heavy metals? Chemosphere, 2008,70(3):531-537.
    [121]Wqjcik M, Skorzynska-Polit E, Tukiendorf A. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation,2006, 48(2):145-155.
    [122]Zhao L, Sun Y L, Cui S X, et al. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere,2011,85(1):56-66.
    [123]Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal:for Cell and Molecular Biology,2002,32(4):539-548.
    [124]McCarthy I, Romero-Puertas M C, Palma J M, et al. Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant, Cell & Environment,2001,24(10):1065-1073.
    [125]Sarry J E, Kuhn L, Ducruix C, et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics,2006,6(7): 2180-2198.
    [126]Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 2007,29(3):177-187.
    [127]Kieffer P, Dommes J, Hoffmann L, et al. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics,2008,8(12):2514-2530.
    [128]Kieffer P, Planchon S, Oufir M, et al. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. Journal of Proteome Research,2009,8(1):400-417.
    [129]蒋先军,骆永明,赵其国,等.重金属污染土壤的植物修复研究Ⅰ.金属富集植物Brassica juncea对铜、锌、镉、铅污染的响应.土壤,2000,32(2):71-74.
    [130]蔡美芳,刘玉荣,党志.植物修复重金属污染土壤的研究进展.重庆环境科学,2003,25(11):174-180.
    [131]任旭喜.土壤重金属污染及防治对策研究.环境保护科学,1999,25(5):31-33.
    [132]张春桂,许化夏,姜晴楠.污染土壤生物恢复技术.生态学杂志,1997,16(4):52-58.
    [133]陈志良,仇荣亮,张景书,等.重金属污染土壤土壤的修复技术.环境保护,2002,29(6):21-23.
    [134]Raskin I, Ensley B D. Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment. Wiley. New York.2000.
    [135]Axelsson T, Bowman C M, Sharpe A G, et al. Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome,2000,43(4):679-688.
    [136]Kumar N P B A, Dushenkov V, Motto H, et al. Phytoextraction:The use of plants to remove heavy metals from soils. Environmental Science & Technology,1995,29(5):1232-1238.
    [137]孙涛,张玉秀,柴团耀.印度芥菜(Brassica juncea L.)重金属耐性机理研究进展.中国生态农业学报,2011,19(1):226-234.
    [138]Speiser D M, Abrahamson S L, Banuelos G, et al. Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiology,1992,99(3):817-821.
    [139]Singh P K, Tewari R K. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology,2003,24(1):107-112.
    [140]Schiitzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany,2002,53(372): 1351-1365.
    [141]Wang S H, Yang Z M, Yang H, et al. Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica,2004,45(3):203-212.
    [142]Punshon T, Guerinot M L, Lanzirotti A. Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Annals of Botany,2009,103(5):665-672.
    [143]Kutsenogyi K P, Makarikova R P, Milyutin L I, et al. The use of X-ray fluorescence analysis with synchrotron radiation to measure elemental composition of phytomass and soils. Nuclear Instruments and Methods in Physics Research Section A,2007,575(1-2):214-217.
    [144]Isaure M P, Fayard B, Sarret G, et al. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(12):1242-1252.
    [145]Fukuda N, Hokura A, Kitajima N, et al. Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. Journal of Analytical Atomic Spectrometry,2008,23(8): 1068-1075.
    [146]Kupper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta,2000,212(1):75-84.
    [147]Sarret G, Schroeder W H, Marcus M A, et al. Localization and speciation of Zn in mycorrhized roots by μ-SXRF and μ-EXAFS. Journal De Physique Ⅳ,2003,107(12):1193-1196.
    [148]Yan X L, Chen T B, Liao X Y, et al. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L. Environmental Science & Technology,2008,42(5): 1479-1484.
    [149]Sarret G, Willems G, Isaure M P, et al. Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist, 2009,184(3):581-595.
    [150]Tian_S K, Lu L-L, Yang X E,et al.Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environmental Science & Technology,2010,44(15):5920-5926.
    [151) 白琦锋,王文华,袁涛.同步辐射技术在环境污染监测及生态毒理研究中的应用.生态学杂志,2012,31(7):1855-1861.
    [152]Kupper H, Mijovilovich A, Meyer-Klaucke W, et al. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology,2004,134(2):748-757.
    [153]Manceau A, Nagy K L, Marcus M A, et al. Formation of metallic copper nanoparticles at the soil-root interface. Environmental Science & Technology,2008,42(5):1766-1772.
    [154]Leopold I, Gunther D. Investigation of the binding properties of heavy-metal-peptide complexes in plant cell cultures using HPLC-ICP-MS. Fresenius Journal of Analytical Chemistry,1997, 359(4-5):364-370.
    [155]Leopold I, Gunther D, Neumann D. Application of high performance liquid chromatography-inductively coupled plasma mass spectrometry to the investigation of phytochelatin complexes and their role in heavy metal detoxification in plants. Analusis,1998,26(6):28-31.
    [156]Vacchina V, Polec K, Szpunar J. Speciation of cadmium in plant tissues by size-exclusion chromatography with ICP-MS detection. Journal of Analytical Atomic Spectrometry,1999,14(10): 1557-1566.
    [157]Wei Z G, Wong J W C, Chen D Y. Speciation of heavy metal binding non-protein thiols in Agropyron elongation by size-exclusion HPLC-ICP-MS. Microchemical Journal,2003,74(3): 207-213.
    [158]Navaza A P, Montes-Bayon M, LeDuc D L, et al. Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd in wild type and genetically modified Brassica juncea plants. Journal of Mass Spectrometry,2006,41(3):323-331.
    [159]Baralkiewicz D, Kozka M, Piechalak A, et al. Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC-ICP-MS and HPLC-ESI-MS. Talanta,2009, 79(2):493-498.
    [160) 杨红霞,刘崴,李冰,等.体积排阻高效液相色谱-电感耦合等离子体质谱法同时测定印度芥菜(Brassica Juncea)中镉铜锌形态.岩矿测试,2010,29(1):9-13.
    [161]Sadi B B M, Vonderheide A P, Gong J M, et al. An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences,2008,861(1):123-129.
    [162]倪才英,李华,骆永明,等.铜、镉及其交互作用对泡泡草细胞超微结构的影响.环境科学学报,2004,24(2):343-348.
    [163]Xiao X, Feng Q Y, Ding Y, et al. The effect of Cd on ultrastructure of wheat. Procedia Earth and Planetary Science,2009,1(1):1253-1257.
    [164]李大辉,施国新.Cd2+或Hg2+水污染对菱体细胞的细胞核及叶绿体超微结构的影响.植物资源与环境,1999,8(2):43-48.
    [165]Krupa Z, Skorzynska E, Maksymiec W, et al. Effect of cadmium treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. Photosynthetica,1987, 21:156-164.
    [166]Fu X P, Dou C M, Chen Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials,2011,186(1):103-107.
    [167]施国新,杜开和,解凯彬,等.汞、镉污染对黑藻叶细胞伤害的超微结构研究.植物学报,2000,42(4):373-378.
    [168]Bleiner D, Bogaerts A. Computer simulations of sample chambers for laser ablation inductively coupled plasma spectrometry. Spectrochimica Acta Part B:Atomic Spectroscopy,2007,62(2): 155-168.
    [169]Tomoaki O, Kato J, Mori J, et al. Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. Science of The Total Environment,2004, 330(1-3):145-158.
    [170]Lee Y L, Chang C C, Jiang S J. Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil. Spectrochimica Acta Part B:Atomic Spectroscopy, 2003,58(3):523-530.
    [171]汪奇,张文,王立云,等.激光剥蚀-电感耦合等离子体质谱测定植物样品中的元素.光谱学与光谱分析,2011,31(12):3379-3383.
    [172]王云霞,杨连新,Walter J H.重金属复合处理对小麦锌铜镍镉积累和分布的影响.农业环境科学学报,2011,30(11):2145-2151.
    [173]田生科,超积累东南景天(Sedum alfredii Hance)对重金属(Zn/Cd/Pb)的解毒机制.杭州,浙江大学博士学位论文,2010.
    [174]Meuwly P, Rauser W E. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium:adaptation and developmental cost. Plant Physiology,1992,99(1):8-15.
    [175]Wei Z G, Wong J W C. Zhao H Y, et al. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biological Trace Element Research,2007,118(2):146-158.
    [176]Bae W, Mehra R K. Properties of glutathione-and phytochelatin-capped CdS bionanocrystallites. Journal of Inorganic Biochemistry,1998,69(1-2):33-43.
    [177]Polec-Pawlak K, Huzik R, Abramski K, et al. Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Analytica Chimica Acta,2005,540(1): 61-70.
    [178]Leopold I, Gunther D, Schmidt J, et al. Phytochelatins and heavy metal tolerance. Phytochemistry,1999,50(8):1323-1328.
    [179]Yang H X, Liu W, Li B, et al. Speciation analysis of Cadmium in Indian mustard(Brassica Juncea) by size exclusion chromatography-high performance liquid chromatography-inductively coupled plasma mass spectrometry (SEC-HPLC-ICP-MS), Chinese Journal of Analytical Chemistry,2009,37(10):1511-1514.
    [180]Ortiz D F, Ruscitti T, McCue K F, et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. The Journal of Biological Chemistry,1995,27(9): 4721-4728.
    [181]Rauser W E. The role of thiols in plants under metal stress. In:Brunold C, Rennerberg H, De Kok L J, et al (eds). Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt, Bern, Switzerland.2000.169-183.
    [182]Piechalack A, Tomaszewska B, Baralkiewicz D, et al. Accumulation and detoxification of lead ions in legumes. Phytochemisty,2002,60(2):153-162.
    [183]Mehra R K, Kodati R, Abdulah R. Chain-length-dependent (PbⅡ) coordination in phytchelatins. Biochemical and Biophysical Research Communications,1995,215(2):730-736.
    [184]Reese R N, White C A, Winge D R. Cadmium-sulfide crystallites in Cd-(y-EC)nG peptide complexes from tomato. Plant Physiol,1992,98(1):225-229.
    [185]Zhao F J, Wang J R, Barker J H A, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist,2003,159(3):403-410.
    [186]Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist,2009,181(4):759-776.
    [187]Ebbs S, Lau I, Ahner B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. And C. Presl). Planta,2002,214(4):635-640.
    [188]Sun Q, Ye Z H, Wang X R, et al. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology,2007,164(1):1489-1498.
    [189]Kawakami S K, Gledhill M, Achterberg E P. Determination of phytochelatins and glutathione in phytoplankton from natural waters HPLC with fluorescence detection. Trends in Analytical Chemistry,2006,25(2):133-142.
    [190]Ellman G L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics,1959,82(1): 70-77.
    [191]Grill E, Gekeler W, Winnacker E L, et al. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing fabales.FEBS Letters,1986,205(1):47-50.
    [192]Newton G L, Fahey R C. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods in Enzymology,1995,251:148-166.
    [193]Sneller F E C, Heerwaarden L M V, Koevoets P L M., et al. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium:Comparison of derivatization with Ellman's reagent and monobromobimane. Journal of Agricultural and Food Chemistry,2000,48(9):4014-4019.
    [194]Shimada K, Mitamura K. Derivatization of thiol-containing compounds. Journal of Chromatography B:Biomedical Sciences and Applications,1994,659(1-2):227-241.
    [195]Zu Y B. Molecular and nanoparticle postcolumn reagents for assay of low-molecular-mass biothiols using high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications,2009,877(28):3358-3365.
    [196]Tholey A, Schaumloffel D. Metal labeling for quantitative protein and proteome analysis using inductively-coupled plasma mass spectrometry. Trends in Analytical Chemistry,2010,29(5): 399-408.
    [197]Wesenberg D, Kruass G J, Schaumloffel D. Metallo-thiolomics:investigation of thiol peptide regulated metal homeostasis in plants and fungi by liquid chromatography-mass spectrometry. International Journal of Mass Spectrometry,2011,307(1-3):46-54.
    [198]Bramanti E, Toncelli D, Morelli E, et al. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection. Journal of Chromatography A,2006,1133(1-2):195-203.
    [199]Brautigam A, Bomke S, Pfeifer T, et al. Quantification of Phytochelatins in Chlamydomonas reinhardtii using ferrocene-based derivatization. Metallomics,2010,2(8):565-570.
    [200]Raab A, Ferreira K, Meharg A A, et al. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuusl Journal of Experimental Botany,2007,58(6): 1333-1338.
    [201]Bluemlein K, Raab A, Feldmann J. Stability of arsenic peptides in plant extracts:off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.Analytical and BioanalylicaT Chemistry,2009,393(1):357-366.
    [202]Tian S K, Lu L L, Yang X E, et al. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytologist,2009,182(1):116-126.
    [203]Vollenweider P, Cosio C, Gunthardt-Goerg M S, et al. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (salix viminalis L.):Part II microlocalization and cellular effects of cadmium. Environmental and Experimental Botany,2006,58(1-3):25-40.
    [204]Cosio C, DeSantis L, Frey B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens. Journal of Experimental Botany,2005,56(412):765-775.
    [205]Wang X, Liu Y G, Zeng G M, et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud.. Environmental and Experimental Botany,2008,62(3):389-395.
    [206]Brooks R R. Geobotany and hyperaccumulators. In:Brooks R R ed. Plants that hyperaccumulate heavy metals. CAB International, New York.1998.55-94.
    [207]Frey B, Keller C, Zierold K. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell & Environment,2000,23(7):675-687.
    [208]Kupper H, Lombi E, Zhao F J, et al. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany,2001,52(365):2291-2300.
    [209]Ma J F, Ueno D, Zhao F J, et al. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta,2005,220(5):731-736.
    [210]McNear D H, Peltier E, Everhart J, et al. Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environmental Science & Technology,2005,39(7):2210-2218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700