用户名: 密码: 验证码:
水稻对土壤重金属镉的响应及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd)是农田土壤中主要的污染物质。随着工业的发展,Cd污染日趋严重,对农业生产和人类健康构成严重的威胁。本研究以水稻不同品种为材料,研究Cd对水稻产量和品质的影响及其生理机制,探讨通过灌溉和施肥等农艺措施减轻Cd对水稻危害的技术途径,为水稻优质安全生产提供理论依据和实践指导。主要结果如下:
     1、Cd对水稻产量和品质的影响当土壤Cd浓度为60或90 mg kg~(-1)时,扬稻6号和扬粳9538的产量与对照(土壤未加Cd处理)无显著差异。这两品种在Cd浓度为120或180 mg kg~(-1)以及武运粳7号在Cd浓度为60或120 mg kg~(-1)条件下产量均较对照显著降低。在Cd胁迫下产量降低的原因主要在于穗数或每穗颖花数的减少,Cd对结实率和千粒重无显著影响。Cd对稻米加工品质、外观品质、蒸煮品质以及蛋白质含量无显著影响。随土壤Cd浓度的增加,稻米醇溶蛋白含量增加,清蛋白和球蛋白含量则降低。当土壤Cd浓度为60和90 mg kg~(-1)时,稻米淀粉谱的最高粘度、热浆粘度、最终粘度、崩解值和消减值与对照无显著差异;当土壤Cd浓度为120和180 mg kg~(-1)时,稻米淀粉谱的最高粘度和崩解值显著降低,热浆粘度、最终粘度和消减值显著增加。在相同土壤Cd浓度下,同一器官的Cd浓度在品种间无显著差异,但扬稻6号Cd累积量高于扬粳9538。表明Cd对水稻产量的影响以及Cd在稻株的累积量在品种间存在差异,高浓度Cd可降低稻米的营养品质和食味性。
     2、水稻对Cd胁迫的生理响应Cd胁迫增加了根系和叶片自由基含量;诱导超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)同工酶小分子量的特异表达;增加了水稻根系分泌物含量;降低了水稻DNA和蛋白质含量;水稻可溶性蛋白质一维电泳和二维电泳分析结果表明,Cd胁迫后水稻可溶性蛋白质表达发生改变。Cd诱导了水稻幼苗根系10个蛋白质点和叶片8个蛋白质点的表达,抑制了根系4个蛋白质点和叶片8个蛋白质点的表达。
     3、水稻耐Cd性不同品种一些农艺与生理性状Cd处理后,耐Cd基因型(汕优63和扬粳9538)籽粒产量较CK(土壤中未加Cd)降低了6.2%~8.9%,Cd敏感基因型(扬稻6号和武运粳7号)产量较对照降低38.3%~47.1%。Cd处理后每盆穗数和每穗颖花数减少是减产的主要原因,结实率和千粒重在Cd处理与CK间无显著差异。Cd处理显著抑制了Cd敏感基因型的分蘖发生,导致整个生育期干物质积累的显著下降。Cd处理对物质运转率和收获指数无显著影响。在Cd胁迫下,分蘖至拔节期Cd敏感基因型的根系活力、叶片光合速率、超氧化物歧化酶和过氧化氢酶活性明显低于耐Cd基因型,叶片超氧自由基和过氧化氢含量、乙烯释放速率及根系伤流液中1-氨基环丙烷1-羧酸浓度则显著高于耐Cd基因型。抽穗以后Cd对上述生理指标以及整个生育时期叶片脱落酸含量无显著影响。说明Cd对水稻生长发育的影响主要在生育前期(分蘖至拔节期),此期分蘖发生多、根系活力和叶片抗氧化保护系统能力强及乙烯合成少是耐Cd基因型水稻的主要农艺和生理特征。
     4、结实期灌溉方式对水稻品质和不同器官Cd浓度与分配的影响在土壤Cd污染条件下,与水层灌溉(WW)相比,结实期轻干-湿交替灌溉(MD)可以增加产量和改善稻米的加工与外观品质,结实期重干-湿交替灌溉(SD)则降低产量和品质。MD和SD均可增加Cd在根的浓度和分配比例,降低Cd在茎叶的浓度和分配比例;MD对籽粒和精米中的Cd浓度无明显影响,但可显著降低Cd在籽粒中的分配比例,SD则增加了籽粒和精米的Cd浓度。在MD条件下,根系活力增强和叶片气孔导度降低(即蒸腾强度小)是根系Cd浓度大、茎叶Cd浓度小以及籽粒Cd分配比例低的重要原因;而在SD条件下,根系和籽粒Cd浓度大、茎叶Cd浓度小与气孔导度显著降低和茎叶Cd表观输出率大幅度增加有密切关系。
     5、全生育期干湿交替灌溉对水稻产量和品质及Cd积累的影响与保持水层(WW)相比,全生育期轻干湿交替灌溉(MD)提高了根系氧化力和光合速率,使产量增加了8.6-10%,改善了加工品质和外观品质,全生育期重干湿交替灌溉(SD)的结果则相反。MD和SD均降低了叶片蒸腾速率,SD尤为明显。MD和SD显著增加了根系中Cd的浓度,降低了稻草中Cd的浓度。MD使籽粒中Cd浓度降低了8.6-9.7%,精米中Cd浓度降低了27-31%。SD则显著增加了籽粒中Cd浓度,但降低了Cd在精米中浓度。说明全生育期轻干湿交替灌溉可以增加产量和减少Cd在水稻可食部分的含量。
     6、氮肥对水稻品质和不同器官Cd浓度与分配的影响在相同施氮量情况下,Cd处理显著降低了产量。在相同土壤Cd浓度下,产量随施氮量(0~600 kg ha~(-1))的增加而提高。施氮量和Cd处理对稻米的出糙率、精米率和整精米率无显著影响。在相同施氮量情况下,Cd处理使胶稠度增加,直链淀粉含量降低。Cd对稻米垩白率、垩白度和蛋白质含量无显著影响。随施氮量的增加,颖壳、糠层和精米中Cd浓度均随之增加,但精米Cd浓度在0N(不施氮)与MN(300 kg ha~(-1))之间无显著差异。Cd在颖壳和糠层中的分配比例也随施氮量的增加而显著提高,但Cd在精米中的分配比例则随施氮量的增加而显著降低。表明在Cd污染的稻田适当施用氮肥并不会明显增加Cd在精米中的浓度,并可降低Cd在精米中的分配比例。
Cadmium (Cd) is a major contaminating heavy metal in the agricultural field. With the development of industry, Cd pollution becomes more and more serious, and has threatened the agricultural production and human health seriously. In this study, several rice (Oryza sativa L.) cultivars were used as materials, and effects of Cd on the growth, yield, quality, and their physiological mechanisms were investigated. The ways to reduce Cd toxicity through irrigation patterns and nitrogen (N) management were studied, so as to provide a theoretical basis and practical guidance to high yield, good quality, and safe production of rice. The main results are as follows:
     1. Effect of Cd on rice yield and quality
     There were no significant differences between Cd treatment and control (no Cd addition to soil) in grain yield of Yangdao 6 and Yangjing 9538 when Cd concentration in soil was 60 mg kg~(-1) or 90 mg kg~(-1). Compared with control, Cd significantly reduced the yield of the two cultivars at Cd concentration of 120 mg kg~(-1) or 180 mg kg~(-1) and that of Wuyunjing 7 at Cd concentration of 60 mg kg~(-1) or 120 mg kg~(-1) in soil. The decrease in grain yield under Cd stress was mainly attributed to the reduction in the number of panicles or/and number of spikelets per panicle. There were no significant differences in seed-setting rate, 1000-grain weight, milling quality, appearance quality, cooking quality, and content of protein between Cd treatment and control. The content of prolamine was increased, while the contents of albumin and glutelin were reduced with the increase in Cd concentrations in soil. There were no significant differences in the maximum viscosity, hot viscosity, final viscosity, break down values, and setback values of the starch profile in grains between Cd treatment and control when Cd concentrations in soil were 60 mg kg-1 and 90 mg kg-1. Cd significantly reduced maximum viscosity and break-down values, and increased hot viscosity, final viscosity and setback values when Cd concentrations in soil were 120 mg kg-1 and 180 mg kg-1. The Cd concentration in the same organ showed no significant difference among cultivars when Cd concentration in soil was the same. However, the cultivar Yangdao 6 accumulated more Cd in plants than the cultivar Yangjing 9538. The results indicate that the effect of Cd on rice yield and the accumulation of Cd in plants varies with cultivars, and high concentration of Cd could reduce the quality of nutrition and taste of rice.
     2. The physiological responses of rice to Cd stress
     Cd stress increased the content of free radical in the root and leaf of rice, induced the special expression of low molecular weight isoenzyme of the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), reduced the content of protein in roots and leaves, increased the content of organic acid in root exudates and decreased the contents of deoxyribonucleic acid (DNA) and protein in rice. The analysis of the SDS-PAGE and two-dimensional electrophoresis of proteome demonstrated that Cd stress could modify the expression of rice proteome. Cd induced ten new protein spots in roots and eight protein spots in leaves of a rice seedling, and inhibited four protein spots in the root and eight protein spots in the leaf.
     3. Agronomic and physiological traits of rice genotypes differing in Cd-tolerance
     Under the Cd treatment, the grain yield was reduced by 6.2%-8.9% for the Cd-tolerant genotypes (Shanyou 63 and Yangjing 9538) and by 38.3%-47.1% for the Cd-susceptible ones (Yangdao 6 and Wujunjing 7) when compared with their respective CKs (no Cd addition to soil). The reduction in grain yield was mainly attributed to the reduction in panicles per pot and spikelets per panicle. The differences in seed-setting rate and 1000-grain weight were not significant between the Cd treatment and CK. The Cd treatment markedly inhibited the tillering of the Cd-susceptible genotypes, resulting in the reduction in dry matter accumulation during the whole growth period. Cd little affected the translocation of non-structural carbohydrate from culms and sheaths and harvest index. For Cd-susceptible genotypes, the Cd treatment significantly reduced root oxidation activity and photosynthetic rate, activities of SOD and CAT in leaves, and obviously increased contents of superoxidate radical and hydrogen peroxide and ethylene evolution rate of leaves, and increased the concentration of 1-aminocylopropane-1- carboxylic acid in root bleedings from the tillering to jointing stages, while the Cd treatment much less affected the above physiological traits for the Cd-tolerant genotypes. The differences in the above traits at heading and afterwards and abscisic acid content in leaves during the whole growth period were not significant between the Cd treatment and CK. The results indicate that the effects of Cd on rice growth and development are mainly during the early growth period (from tillering to jointing), and more tillers, stronger root activity and antioxidative defense system, and less ethylene synthesis in the plants during this period would be considered as agronomic and physiological traits of Cd-tolerant genotypes of rice.
     4. Effect of irrigation regimes during grain filling on grain quality and Cd concentrations and distributions in rice organs
     Compared with the well-watered (WW) irrigation, alternate wetting and moderate soil-drying (MD) increased grain yield and improve milling quality and appearance quality, and alternate wetting and severe soil-drying (SD) decreased the yield and quality when rice plants were grown in Cd contaminated soil. Both MD and SD increased the concentration and distribution proportion of Cd in the root, and decreased the concentration and distribution proportion of Cd in the stem and leaf. The MD had no significant effect on Cd concentration in the grain and milled rice, but significantly reduced Cd distribution proportion in the grain, whereas SD increased Cd concentration in the grain and milled rice. Under MD, the strong root activity and the low leaf stomatal conductance (namely the low transpiration) were the main reason for the higher concentration of root, lower concentration of Cd in the stem and leaf and lower proportion of Cd in the grain. Under SD, higher Cd concentration in the root and grain, lower concentration of Cd in the stem and leaf were closely associated with the decrease in the stomatal conductance and the increase apparent transportation rate of Cd in the straw.
     5. Effect of alternate wetting and soil-drying during the whole growth period on the rice yield, quality and Cd accumulation
     Compared with the well-watered (WW) irrigation, alternate wetting and moderate soil-drying (MD) during the whole growth period of rice increased the root activity and photosynthetic rate, and increased grain yield by 8.6~(-1)0%, and improved milling quality and appearance quality, while alternate wetting and severe soil-drying (SD) during the whole growth period of rice showed an opposite effect. Both MD and SD reduced transpiration rates of leaves, with more reduction in SD. Both MD and SD increased Cd concentration in the root, and reduced Cd concentration in the straw. MD reduced the concentration of Cd in the grain by 8.6-9.7% and in the milled rice by 27-31%. SD increased Cd concentration in the grain, whereas reduced Cd concentration in milled rice. The results indicate that a moderate wetting and drying during the whole growth period could increase the grain yield and reduce the content of Cd in the diet of rice.
     6. Effect of nitrogen application on the yield, quality, and the Cd concentration and distribution in rice organs
     Under the same rate of N application, Cd treatments significantly reduced grain yield. Under the same concentration of Cd in soil, grain yield was increased with the increase in N rates (0-600 kg ha~(-1)). There were no significant effects of N rates and Cd treatments on brown rice, milled rice and head rice. The Cd treatment increased gel consistency, reduced amylose content, and had no significant effect on the chalkness and protein content under the same rate of N. The concentrations of Cd in the hull, bran, and milled rice were increased with the increase of N rates. However, there was no significant difference in the concentration of Cd in the milled rice between 0N (no nitrogen application) and MN (300 kg ha~(-1)). The distribution proportion of Cd in the hull and bran was significantly increased, whereas the distribution proportion of Cd in the milled rice was significantly decreased, with the increase of N rates. The results suggest that rational nitrogen application would not obviously increase the concentration of Cd in the milled rice and even reduced the proportion of Cd in milled rice.
引文
1.鲁如坤,熊礼明,时正元.关于土壤-作物生态系统中镉的研究.土壤, 1992,24(3):129-132,137
    2.吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态的研究.生态学报,1989,9(1):21-25
    3.刘立群.赣南土壤污染的防治途径.资源开发与保护杂志, 1990,6(2):100-102
    4.周根娣,盛沛麟,何七勇.农业生产对土壤重金属含量的影响.农业环境保护,1993,12(6):274-275
    5.王存宝,宁安茶,常晓冰,武九昆.太原市汾河流域五大粮食作物污染监测评价.农业环境保护,1993,12(5):208-212
    6.陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002. pp 46
    7.余文涛.我国乡镇企业发展对农村环境的影响及发展趋势分析.环境科学丛刊,1988,9(5):1-24
    8.彭光寿.贵州省乡镇企业发展与环境保护预测和对策.环境科学,1988,9(1):62-67
    9.吴燕玉.辽宁省土壤元素背景值.北京:中国环境科学出版社,1994. pp 562
    10.许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,1995. pp 24-26
    11.魏复盛,陈静生,吴燕玉.中国土壤背景值研究.环境科学,1991,12(4):12-19
    12. Yu M H. Environmental toxicology: impacts of environmental toxicants on living systems. Lewis Publishers, 2000
    13. Campbell P G C, Stokes P M, Galloway J N. Effects of atmospheric deposition on the geochemical cycling and biological availability of metals. In: Heavy metals in the environment. Edinburgh: Heidelberg International Conference CEP consultants, 1983. pp 760-763
    14. Sterekeman T,Douay F,Proix N, Fourrier H. Vertical distribution of Cd,Pb,and Zn in soils near smelters in the North of France. Environ Pollu,2000,107:377-389
    15.郑喜坤,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法.土壤与环境,2002,11:79-84
    16. Guvenc N,Alagha O,Tuncel G. Investigation of soil multi-element composition in Antalya. Turkey Envir on International,2003,29:631-640
    17. Athur E, Crews H , Morgan C. Optimizing plant genetic strategies for minimizing environmental on contamination in the food chain. Inter J .Phytoremed,2000,2:1-21
    18. Zhi Y L.The source and fate of Pb in central Sweden. Sci Total Environ, 1998,209:47-58
    19. Wong C S,Lia X D,Zhang G,Qi S H,Peng X Z. Atmospheri deosition of heavy metals in The Pearl River Delta. China Atmosph Environ,2003,37:767-776
    20. Jensen D L,Holm R E,Christensen T H. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities. Waste Manage Res,2000,18:52-63
    21. Kondo K .Incidence of minamata disease in communities along the Agano river,Niigata,Japan-patem of the exposure and official diagnosis of patients. Nipon Eisegaku Zasshi,1996,51:599-611
    22.王贵玲,蔺文静.污水灌溉对土壤的污染及其整治.农业环境科学学报,2003,22(2):163-166
    23.李森照.中国污水灌溉与环境质量控制.北京:气象出版社,1995
    24. Nan Z R,Zhao C Y,Li J J,Chen F H,Sun W. Relations between soil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils. Water Air Soil Pollut,2002,133:205-213
    25.周立祥,胡蔼堂,戈乃玢,胡忠明.城市污泥土地利用研究.生态学报,1999,19(2):185-193
    26. Anthony C. Methyl mercury contamination and emission of the atmosphere from soil amended with municipal sewage sludge. J Environ Qual,1997,26:1650-1655
    27. Illera V,Walter I,Souza P,CalaV. Short-term effects of biosolids and municipal solid waste applications on heavy metals distribution in a degraded soil under a semiarid environment. Sci Total Environ,2000,255:29-44
    28. Walter I, Martínez F, Alonso L, de Gracia J, Cuevas G. Extractable soil heavy metals following the cessation of biosolids application to agricultural soil. Environ pollut, 2002,117:315-321
    29. Bloemen M-L,Markert B,Lieth H. The distribution of Cd,Cu,Pb and Zn in topsoils of Osnabruck in relation to land use. Sci Total Environ,1995,166:137-148
    30. McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safety issues. Field Crops Res, 1999,60:143-163
    31.陈怀满,郑春荣.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134
    32. Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au-Agmine. Korea Applied Geochem, 2001,16:1369-1375
    33.高拯民.土壤-植物系统污染生态研究进展.土壤-植物生态系统污染研究,北京:中国科学技术出版社,1986. pp 1-13
    34.夏立江,王宏康.土壤污染及其防治.上海:华东理工大学出版社,2001. pp 40-178
    35.宋菲,郭玉文,刘孝义,张玉龙.镉、锌、铅复合污染对菠菜的影响.农业环境保护,1996,15(1):9-14
    36. Elinder C G, J?nsson L, Piscator M, Rahnster B. Histopathological changes in relation to cadmium concentration in horse kidneys. Environ Res, 1981,26:1-21
    37.鲁如坤,时正元,熊礼明.我国磷矿磷肥中镉的含量及其对生态环境影响的评价.土壤学报,1992,29(2):150-157
    38. Lagerwerff, J. V. Cadmium. In:Mortvedt J J, Giordano P M, Lindsay W L ed.Micronutrients in agriculture. Soil Science Society of America Incorporated, Madison, Wisconsin, USA. 1972. pp 619-639
    39. Environment Agency, the Government of Japan. Control of Cadmium-Induced Environmental Pollution. Environment Agency, Tokyo, Japan, 1972. pp 166–168 (in Japanese)
    40. Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants: a review. Environ Pollu, 1998,98:29-36
    41. Haag-Kerwer A, Schafer H J, Heiss S, Walter C, Rausch T. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot,1999,50:1827-1835
    42.周青,黄晓华,屠昆岗,黄纲业,张建华,曹玉华,La对Cd伤害大豆幼苗的生态生理作用.中国环境科学,1998,18(5):442-445
    43.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17:199-205
    44.孔祥生,郭秀璞,张妙霞.镉胁迫对玉米幼苗生长及生理生化的影响.华中农业大学学报,1999,18(2):111-113
    45.周青,张辉,黄晓华,陆敢超,梁婵娟,陆天虹.镧对镉胁迫下菜豆(Phaseolus vulgaris)幼苗生长的影响.环境科学,2003,24(4):46-53
    46.洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响.华北农学报,1991,6(3):70-75
    47.段昌群,王焕校.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究.环境科学,1992,13:31-35
    48.常学秀,王焕校,文传浩. Cd2+、A13+对蚕豆胚根根尖细胞遗传学毒性效应研究.农业环境保护,1999,18:1-3
    49. Fiskesjo G. The Allium test as a standard in environmental monitoring. Heraditas,1985,102:99-112
    50.赵博生.镉对蒜根尖细胞分裂的影响.曲阜师范大学学报,1996,22:93-97
    51.张义贤,李晓玲.镉对大麦细胞分裂和染色体形态的影响.山西大学学报(自科版),1994,17 (4):411-418
    52.施国新,杜开和,解凯彬,丁小余,常福辰,陈国祥.汞、镉对黑藻叶细胞伤害的超微结构研究.植物学报,2000,42(4):373-378
    53. Tarhanen S. Ultrastructural responses of the Lichen Bryoria fuscescens to simulatedacidrain and heavy metal deposition. Annals of Bot, 1998,82:735-746
    54. Diannelidis B-E,Delivopoulos S G. The effects of zinc,copper and cadmium on the fine structure of Ceramium ciliatum (Rhodophyceae,Ceramiales). Marine Environ Res,1997,44:124-134
    55.王焕校.污染生态学.北京:高等教育出版社,1999. pp 44-68
    56.赵菲佚,翟禄新,陈荃,张明泉,曾福礼. Cd、Pb复合处理下2种离子在植物体内的分布及其对植物生理指标的影响.西北植物学报,2002,22(3):595-601
    57.马成仓. Hg对油菜叶细胞膜的损伤及细胞的自身保护作用.应用生态学报,1998,9:323-326
    58.刘春生,张福锁.过量铜对苹果树生长及代谢的影响.植物营养与肥料学报, 2000,6(4):451-456
    59.李荣春. Cd,Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响.植物生态学报,2000,24:238-242
    60.杨丹彗.重金属离子对高等植物光合膜结构与功能的影响.植物学通报,1991,8:26-29
    61. Pagliano C, Raviolo M, Vecchia F D, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, Rocca N L. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B: Biology, 2006,84:70-78
    62. Van Assche F, Clijsters H. Effects of metal on enzyme activity in plants .Plant Cell Environ, 1990,13:195-206
    63.孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探.植物生理学报,1985,11:113-121
    64.陈平,余土元,陈惠阳,周厚高.硒对镉胁迫下水稻幼苗生长及生理特性的影响.广西植物,2002,22(30):277-282
    65. Llamas A,Ullrich C I,Sanz A. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice ( Oryza sativa L.) roots. Plant Soil,2000,219:21-28
    66.葛才林,络剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石.重金属对水稻呼吸速率及相关同工酶影响的研究.农业环境科学学报,2005,24(2):222-226
    67. Noctor G,Foyer C H. Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:249-279
    68. Halliwell B, Gutteridge J M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem and Biophy, 1986,246:501-514
    69. Imlay J A, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 1988,240:640-642
    70. Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci, 1996,121:151-159
    71. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot , 2002,53:1351-1365
    72.周红卫,施国新,徐勤松. Cr6+和Cr3+对水花生几种生理生化指标的影响比较.农村生态环境,2003,18:35-40
    73.罗立新,孙铁晰,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响.中国环境科学,1998,18:72-75
    74.杨明杰,林咸永,杨肖娥. Cd对不同类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94
    75. Verkleij J A C, Schat H. Mechanisms of metal tolerance in higher plants. In: Shaw J A ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, FL, 1989. pp179-193
    76. Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot,2002,53:1-11
    77. Salt D E, Pickering I J, Prince R C, Gleba D, Dushenkov S, Smith R D, Raskin I. Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol, 1997,31:1636-1644
    78.杨志敏,郑绍建,赵秀兰,胡霭堂.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响.环境科学学报,1999,19(6):693-695
    79.杨居荣,黄翌.植物对重金属的耐性机理.生态学杂志, 1994,13(6)20-26
    80. Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil,1987,101:15-20
    81. Dickinson N M, Lepp N W. Metals and trees: impacts, responses to exposure and exploitation of resistance traits. In: Prost R ed. Contaminated Soils: The 3rd International Conference on the Biogeochemistry of Trace Elements. Paris, 1997. pp 247-254
    82.杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探.中国环境科学,1999,19(6):500-504
    83. Grill E, Winnacker E L, Zenk M H. Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science, 1985,230:674-676
    84. Grill E,Winnacker E L,Zenk M H . Phytochelatins,a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Pro Natl Acad Sci USA, 1987,84:439-443
    85. Goldsbrough P B. The role of phytochelatins and metallothioneins: Phytoremediation of Contaminated Soil and Water. In: Terry N, Banuelos G ed. Metal tolerance in plants, Lewis Publishers, 2000. pp 221 - 235
    86. De Kneeht J A,Van Dillen M, Koevoets P L M, Schat H, Verkleij J A C, Ernst W H O. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain lengthdistribution and sulfide incorporation). Plant Physiol,1994,104:255-261
    87. Ebbs S, Lau I, Ahner B, Kochian L Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Planta, 2002,214:635-640
    88. Kromer U. Cadmium for all meals-plants with an unusual appetite. New Phytologist, 2000,145:1-5
    89. Shen Z G, Zhao F J, Mc Grath S P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ, 1997,20:898-906
    90. Radotic K, Ducic T, Mutavdzic D. Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentration of cadmium. Environ Exp Bot, 2000,44:105-113
    91.常学秀,段昌群,王焕校.根系分泌物与植物对重金属毒害的抗性.应用生态学报,2000,11:315-320
    92. Basu U, Godbold D, Taylor G J. Aluminum resistance in Triticum aestivum associated with enhanced exudation of malate. J.Plant Physiol, 1994,144:747-753
    93. Huang J W, Pellet D M, Papernik L A, Kochian L V. Aluminum interaction with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum sensitive and tolerant wheat cultivars. Plant Physiol , 1996,110:561-569
    94.刘文菊,张西科,张福锁.根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响.生态学报,2000,20(3):448-451
    95. Cie?liński G, Van Rees K C J, Szmigieska A M, Krishnamurti G S R, Huang P M. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil, 1998,203:109-117
    96.李花粉,张福锁,李春俭,毛达如. Fe对不同品种水稻吸收Cd的影响.应用生态学报,
    1998,9(1):110-112
    97. Rauser W E. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys,1999,31:19-48
    98. Wagner G. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 1993,51:173-212
    99. Baker A J M. Metal tolerance. New phytologist, 1987,106(suppl.):93-111
    100. Chen Y X, He Y F, Yang Y, Yu Y L, Zheng S J, Tian G M, Luo Y M, Wong M H. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere, 2003,50:781-787
    101. Blaszkowski J. Effects of five Glomus spp.(Zygomycetes) on growth and mineral nutrition of Triticum aestivum L. Acta Mycol, 1993,28:201-210
    102. Jungmann J,Reins H A,Sehobert C, Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent Proteolysis. Nature,1993,361:369-371
    103. Tanaka K. Proteasones: structure and biology. J Biochem,1998,123:195-204
    104. Jungmann J, Reins H A, Schobert C, Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature, 1993,261:369-371
    105. Takimoto I, Christensen A H, Quail P H, Uchimiya H, Toki H. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Molecular Biology, 1994,26:1007-1012
    106. Arlorio M, Ludwig A, Boller T, Bonafonte P. Inhibition of fungal growth by plant chitinases andβ-1,3-glucanases:a morphological study. Protoplasma, 1992,171:34-43
    107. Burketova L, Stillerova K, Feltlova M. Immunohistological growth by plant chitinase andβ-1,3-glucanases in rihizomania-diseased and benzoathiadiazole treated sugar beet roots. Physiological and Molecular Plant Pathology, 2003,63:47-54
    108. Park C J, Kim K J, Shin R, Park J M, Shin Y C, Paek K H. Pathogenesis-related protein 10 ioslated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J, 2004,37:186-198
    109. Opassiri R, James R, Cairns K, Akiyama T, Waraaswapati O, Svasti J, Esen A. Characterization of a riceβ-glucosidase highly expressed in flower and germinating shoot. Plant Sci, 2003,165:627-638
    110.利容千,王建波.植物逆境细胞生理学.湖北:武汉大学出版社,2002,302-319
    111. Kahle H. Response of roots of trees to heavy metals. Environ Exp Bot, 1993,33:99-119
    112. Smeyer-Verbeke J, Graeve de M, Francois M, Jaegeref R de, Massart D L. Cd uptake by intact wheat plants. Plant Cell Environ, 1978,1:291-296
    113. Hart J J, Welch R M,Norvell W A, Sullivan L A, Kovhian L V. Characterization of cadmium binding, uptake, and translocation in intact seedling of bread and durum wheat culticars. Plant Physiol,1998,116:1413-1420
    114. Lasat M M, Baker A J M,Kochian L V. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and non-accmulator species of Thlapi. Plant Physiol, 1996,112:1715-1722
    115. Grotz N. Fox T, Connolly E, Park W, Guerinot M L, Eide D. Identification of a family of zinc transport genes from Arabidopsis that respond to zinc deficiency. Porc Natl Acad Sci. USA. 1998,95:7220-7224
    116. Maathuis F J M, Sanders D. Plasma membrane transport in context making sense out of complexity. Curr Opin Plant Biol, 1999,2:236-243
    117. Pence N S, Larsen P B, Ebb S D, Letham D L D, Lasat M M, Garvin D F, Eide D, Kochian L V. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thaspi caerulesecens. Proc Natl Acad Sci. SUA, 2000,97:4945-4960
    118. Lombi E, Zhao E J, Dunham S J, McGrath S P. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol, 2000,145:11-20
    119. Zhao F J, Hebmon R E, Lombi E, McLaughlin M J, McGreth S P. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot, 2002,53:535-543
    120.曾翔.水稻镉积累和耐性机理及其品种间差异研究.湖南农业大学博士学位论文,2006. pp 7
    121. Prasad M N V. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot, 1995,34(4):525-545
    122.夏汉平.土壤-植物系统中的镉研究进展.应用与环境生态学报,1997,3(3):289-298
    123. Florijn P J, Van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines: Effect of pH and level Cd supply. Plant Soil, 1993,153:79-84
    124. Leita L, Nobili M D, Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean. J Plant Nutri, 1996,19(3&4):527-533
    125. Petit C M, Van De Gejin S C. In vivo measurement of cadmium (135Cd) transport andaccumulation in the stems of intact tomato plants (Lycopersicon esculentum,Mill). I. Long distance transport and local accumulation. Planta,1978,138:137-143
    126.周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应.应用生态学报,1994,5(4):438-441
    127.夏增禄.土壤环境容量及其应用.北京:气象出版社. 1988. pp143-147
    128.王新,吴燕玉.重金属在土壤-水稻系统中的行为特性.生态学杂志,1997,16(4):10-14
    129.王焕校.污染生态学基础.云南:云南大学出版社. 1990. pp71-148
    130. Lombi E, Zhao E J, McGrath S P, Yong S D, Sacchi G A. Physiological evidence for a high-affinity cadmium transporter highly expressed in Thlaspi caerulescens ecotype. New Phytologist, 2001,149(1):53-61
    131. Xiong Y H, Yang X E, Ye Z Q, He Z L. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health, 2004,39(11-12):2925-2940
    132. Bingham F T, Page A L, Strong J E. Yield and cadmium content of rice grain in relation to addition rates of cadmium, copper, nickel and zinc with sewage and liming. Soil Sci, 1980,3:32-38
    133. Chuan C N, Shu G Y, Liu J C. Solubility of heavy metal in a contaminated soil: effect of redox potential and pH. Water Air Soil Pollution, 1996,90:534-556
    134. Reddy C N, Patrick W H. Effect of redox potential and pH on the uptake of cadmium and lead. J. Environ Qual, 1977,6:259-262
    135.陈涛.张士灌区镉土改良和水稻镉污染防治研究.环境科学,1980,1(5):7-11
    136.李花粉.根际重金属污染.中国农业科技导报,2000,2(4):54-59
    137.苏玲,张永松,林咸永,罗安程.维管植物的镉毒和耐性机制.植物营养与肥料学报,2000,6(1):106-112
    138.朱亮,邵孝侯.耕作层中重金属Cd形态分布规律及植物有效性研究.河海大学学报,1997,25(3):50-56
    139. Kitagishi K, Yamane I. Heavy metal pollution in soil of Japan. Japan Science Society Press, Tokyo, 1981. pp 302
    140.熊礼明.石灰对土壤吸附镉行为及有效性的影响.环境科学研究,1994,7(1):35-38
    141.陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究.农业环境科学学报,2003,22(5):549-552
    142.李瑞美,王果,方玲.石灰与有机物料配施对作物镉铅吸收的控制效果研究.农业环境科学学报,2003,22(3):293-296
    143.华珞,陈世宝,白玲玉,韦东普.有机肥对镉锌污染土壤的改良效应.农业环境保护,1998,17(2):55-59,62
    144.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996. pp1-2
    145.朱庆森,黄丕生.水稻节水栽培研究论文集.北京:中国农业科技出版社,1995
    146.杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110-114
    147.杨建昌,王维,王志琴,刘立军,丁志家,朱庆森.水稻旱秧大田需水特性与节水灌溉指标研究.中国农业科学,2000,33(2):34-42
    1. Campbell P G C, Stokes P M, Galloway J N. The effect of atmospheric deposition on the geochemical cycling and biological availability of metals. In: Heavy metals in the environment. Edinburgn: Heidelberg International Conference CEP consultants, 1983. pp 760-763
    2. Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au-Agmine. Korea Applied Geochem, 2001,16:1369-1375
    3. Salt D E, Smith R D, Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol,1998,49:643-668
    4. Yu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ, 2006,370:302-309
    5. Juwarkar A A, Nair A, Dubey K V, Sing S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2007,68:1996-2002
    6. Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants: a review. Environ Pollu, 1998,98:29-36
    7. Haag-Kerwer A, Schafer H J, Heiss S. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on Photosynthesis. J Exp Bot,1999,50:1827-1835
    8.周青,黄晓华,屠昆岗,黄纲业,张建华,曹玉华,La对Cd伤害大豆幼苗的生态生理作用.中国环境科学,1998,18(5):442-445
    9.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17:199-205
    10.杨居荣,贺建群,黄翌,蒋婉茹.农作物Cd耐性的种内和种间差异Ⅱ.种内差.应用生态学报,1995,6(supp):132-136
    11.邵国胜,Muhammad Jaffar Hassan,章秀福,张国平.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响.中国水稻科学,2004,18(3):239-241
    12.中华人民共和国农业部标准.稻米品质测定方法(NY83-88).北京:中国标准出版社, 1988. pp 28
    13.陈毓荃.生物化学研究技术(植物生理生化及农科各专业用).全国高等院校教材,1995.pp 196-197
    14.邹琦.植物生理学实验指导.北京:中国农业出版社,2000. pp 122-123
    15.舒庆晓,吴殿星,夏英武,高明尉,Anna McClung.稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,1998,31(3):25-29
    16. Khush G S. Innovative approaches for improving the yield and grain quality of rice. Proceedings of the 3rd Asian Crop Science Conference, Taichung, Taiwan, 1998. pp 436-450
    17. Aina R, Labra M, Fumagalli P. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007,59:381-392
    18. Lin A J, Zhang X H, Chen M M. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci, 2007,19:569-602
    19.杨建昌,常二华,张文杰,王志琴,刘立军.根系化学讯号与稻米品质的关系.中国农业科学,2006,39(1):38-47
    20. Davies P J. The plant hormones: their nature, occurrence and function. In: DaviesPJ eds. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht: Kluwer Academic Publishers, 2004. pp 1-15
    21. Liang Y L, Lur H S. Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci, 2002,42:1217-1224
    22.杨建昌,朱庆森,王志琴,曹显祖.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系.作物学报,1997,23(4):385-392
    23. Yang Jianchang, Zhang Jianhua, Kai Liu, Wang Zhiqin, and Liu Lijun. Involvement of polyamines in the drought resistance of rice. J Exp Bot, 2007,58:1545-1555
    24.王志琴,张耗,王学明,张自常,杨建昌.水稻籽粒多胺浓度与米质的关系.作物学报,2007,33(12):1922-1927
    1. Haag-Kerwer A, Schafer H J, Heiss S. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on Photosynthesis. J Exp Bot,1999,50:1827-1835
    2.赵博生.镉对蒜根尖细胞分裂的影响.曲阜师范大学学报,1996,22:93-97
    3.施国新,杜开和,解凯彬,丁小余,常福辰,陈国祥.汞、镉污染对黑藻叶细胞伤害的超微结构研究.植物学报,2000,42(4):373-378
    4.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17:199-205
    5.马成仓. Hg对油菜叶细胞膜的损伤及细胞的自身保护作用.应用生态学报,1998,9:323-326
    6. Salekdeh G H, Siopongco J, W L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002,2(9):1131-1145
    7. Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005,5(1):235-244
    8. Cui S, Huang F, Wang J, Ma X, Chen Y S, Liu J, Dr. A Proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005,5(12):3162-3172
    9. Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteomic analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza Sativa L.) seedlings. Proteomics, 2002,2(8):947-959
    10. Srivalli B, Sharma G, Khanna-chopra R. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant,2003,119:503-512
    11.上海植物生理学会编.植物生理学实验手册.上海:上海科学技术出版社,1985
    12.汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    13. Beauchanmp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem,1971,44(1):276-287
    14.胡能书,万贤国.同工酶技术及其应用.长沙:湖南科技出版社,1985. pp 74-75
    15.董洒建,刘昌玲.一种鉴定过氧化氢酶活性的铁染色法.生物化学与生物物理进展,1996,23(1):86-88
    16.李琳,焦新之.应用蛋白染色剂考马斯蓝G-250测定蛋白质的方法.植物生理学通讯,1980,6:52-55
    17. Higa A, Hidaka T, Minai Y, Matsuoka Y, Haga M. Active oxygen radicals induce peroxidase activity in rice blade tissues. Biosci Biotechnol Biochem, 2001,65(8):1852-1855
    18.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报, 1999,10(3):379-382
    19.杨仁斌,曾清如,周细红.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护, 2000,19(3):152-155
    20.常学秀,王焕校,文传浩. Cd2 +、Al3+对蚕豆胚根根尖细胞遗传学毒性效应研究.农业环境保护, 1999,18(1):1-3
    21.杨居荣,贺建群,蒋婉茹. Cd污染对植物生理生化的影响.农业环境保护,1995,14(5):193-197
    22.王泽港. 1,2,4-三氯苯和萘对水稻生长和产量的影响及其机理研究.扬州大学博士学位论文,2006. pp 110-111
    1. Hu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ, 2006,370:302-309
    2.赵其国,周炳中,杨浩.江苏省环境质量与农业安全问题研究.土壤,2002,1:1-8
    3.王凯荣.镉对不同基因型水稻生长毒害影响的比较研究.农村生态环境, 1996,12(3):18-23
    4.顾继光,周启星.镉土壤污染治理及植物修复.生态科学,2002,21(4):352-356
    5.李坤权,刘建国,陆小龙,杨建昌,朱庆森.水稻不同品种对镉吸收及分配的差异.农业环境科学学报,2003,22(5):529-532
    6.吴启堂,陈卢,王广寿.水稻不同品种对镉的吸收差异和机理的研究.生态学报, 1999,19(1):104-107
    7.赵步洪,张洪熙,奚岭林,朱庆森,杨建昌.杂交水稻不同器官镉浓度与累积量.中国水稻科学,2006,20(3):306-312
    8. Wu F B, Dong J, Jia G X, Zheng S J, Zhang G P. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China, 2006,5(1):68-76
    9. Juwarkar A A., Nair A, Dubey K V, Singh S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2007,68:1996-2002
    10. Pagliano C, Raviolo M, Vecchia F D, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, Rocca N L. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B: Biology, 2006,84:70-78
    11. Liu J G, Liang J S, Li K Q, Zhang Z J, Yu BY, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 2003,52:1467-1473
    12.奚岭林.镉和铅对水稻产量和品质的影响及其在植株内的分配.扬州大学硕士学位论文,2006. pp20-24
    13. Srivalli B, Sharma G, Khanna-chopra R. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant, 2003,119:503-512
    14.何钟佩.农作物化学控制试验指导.北京:中国农业出版社,1993. pp 60-68
    15. Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol, 1988,132:262-265
    16. Beltrano J, Carbone A, Montaldi E R, Guiamet J J. Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Reg, 1994,15:107-117
    17. Cheng C Y, Lur H S. Ehtylene may be involved in abortion of the maize caryopsis. Physiol Plant, 1996,98:245-252
    18. Ramasamy S, ten Berge H F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res,1997,51:65-82
    19. Yoshida S, Shioya S. Photosynthesis of rice plant under water stress. Soil Sci Plant Nutr, 1975,21(2):169-180
    20. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007,59:381-392
    21. Lin A J, Zhang X H, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci, 2007,19:596-602
    22. Murata Y, Matsushima S. Rice. In: Evans L T ed. Crop Physiology. Cambridge: Cambridge University Press, 1975. pp 75-99
    23. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A V, Vangronsveld J. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem, 2005,43:437-444
    24. Nouairi I, Ammar W B, Youssef N B, Daoud D B M, Ghorbal M H, Zarrouk M. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci, 2006,170:511-519
    25. Gomes-Junior R A, Moldes C A, Delite F S, Pompeu G B, Gratao P L, Mazzafera P, Lea P J, Azevedo R A. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere, 2006,65:1330-1337
    26. Davies P J. The plant hormones: their nature, occurrence and function. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004. pp 1-15
    27. Wilkinson S, Davies W J. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ, 2002,25:195-210
    28. Yakimova E T, Kapchina-Toteva V M, Laarhoven L J, Harren F M, Woltering E J. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol Biochem, 2006,44:581-589
    29. Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjarvi J. Ozone-sensitive Arabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell, 2000,12:1849-1862
    30. Tambussi E A, Bartoli C G, Beltrano J, Guiamet J J, Araus J L. Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum asetivum). Physiol Plant, 2000,108:398-404
    31. Liu J G, Zhu Q S, Zhang Z J, Xu J K, Yang J C, Wong M H. Variations in cadmium accumulation among rice cultivars and types and selection of cultivars for reducing cadmium in the diet. J Sci Food Agric, 2005,85:147-153
    1. Yuan S, Xi Z, Jiang Y, Wan J, Wu C, Zhen Z, Lu X. Adsorption of copper and cadmium from soils enhanced by organic acids. Chemosphere, 2007,68:1289-1297
    2. Forijn P J, Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant Soil, 1993,150:25-32
    3. Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M. Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ, 2006,359(1-3):156-166
    4. Satarug S, Baker J R, Urbenjapol S, Haswell-Elkins M, Reilly P E B, Willianms D J. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett, 2003,137:65-83
    5.顾继光,周启星.镉土壤污染治理及植物修复.生态科学,2002,21(4):352-356
    6.李坤权,刘建国,陆小龙,杨建昌,朱庆森.水稻不同品种对镉吸收、分配的差异农业环境科学学报,2003,22(5):529-532
    7. Wu F B, Dong J, Jia G X, Zheng S J, Zhang G P. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China, 2006,5(1):68-76
    8.赵步洪,张洪熙,奚岭林,朱庆森,杨建昌.杂交水稻不同器官镉浓度与累积量.中国水稻科学,2006,20(3):306-312
    9. Smeets K, Cuypes A, Lambrechts A, Semane B, Hoet P, Laere A V, Vangronsveld J. Induction of oxidative stress and antioxidative mechanisms in phaseolus vulgaris after Cd application.Plant Physiol Biochem, 2005,43:437-444
    10. Pagliano C, Raviolo M, Vecchia F D, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, Rocca N L. Evidence for PS II donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B: Biology, 2006,84:70-78
    11. Juwarkar A A, Nair A, Dubey K V, Singh S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2007,68:1996-2002
    12. Hu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ, 2006,370:302-309
    13. Garbisu C, Hernandez-Allica J, Barrutia O. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health, 2002,17(3):173-188
    14. Karthikeyan R, Kulakow P A. Soil plant microbe interactions in phytoremediation. Adv Biochem Eng Biotechnol, 2003,78:51-74
    15. Bouman B A M, Toung T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001,49:11-30
    16. Cheng W, Zhang G, Zhao G, Yao H, Xu H. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Res, 2003,80:245-252
    17. Liu J G, Liang J S, Li K Q, Zhang Z J, Yu BY, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 2003,52:1467-1473
    18. Liu J G, Zhu Q S, Zhang Z J, Xu J K, Yang J C, Wong M H. Variations in cadmium accumulation among rice cultivars and types and selection of cultivars for reducing cadmium in the diet. J Sci food Agric, 2005,85:147-153
    19. Liu J G, Li K Q, Xu J K, Liang J S, Lu X L, Yang J C, Zhu Q S. Interaction in different rice cultivars and genotypes. Field Crop Res, 2003,83:271-281
    20.刘建国.水稻品种对土壤重金属镉铅吸收分配的差异及其机理.扬州大学博士学位论文,2004. pp 97-121
    21. Yang J, Zhang J, Wang Z, Liu L, Zhu Q. Postanthesis water deficit enhance grain filling in two-line hybrid rice. Crop Sci, 2003,43:2099-2108
    22. Ben-Asher J, Tsuyuki I, Bravdo B A, Sagi M. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag, 2006,83(1-2):13-21
    23. Liu J, Cai G, Qian M, Wang D, Xu J, Yang J, Zhu Q. Effect of Cd on the growth, dry matter accumulation and grain yield of different rice cultivars. J Sci Food Agric, 2007,87(6):1088-1095
    24. Aina R, Labra M, Fumagalli P. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007,59:381-392
    25. Lin A J, Zhang X H, Chen M M. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci, 2007,19:596-602
    1. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobiawith the MTL4 and the PCS genes. Chemosphere , 2007,66:1670-1676
    2. Yuan S, Xi Z, Jiang Y, Wan J, Wu C, Zhen Z, Lu X. Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere , 2007,68:1289-1297
    3. Ross S M. Toxic Metals in Soil-Plant System. Willey, New York, 1994. pp 469
    4. Satarug S, Baker J R, Urbenjapol S, Haswell-Elkins M, Reilly P E B, Willianms D J. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett, 2003,137:65-83
    5. Liu J, Cai G, Qian M, Wang D, Xu J, Yang J, Zhu Q. Effect of Cd on the growth, dry matter accumulation and grain yield of different rice cultivars. J Sci Food Agric, 2007a,87:1088-1095
    6. Salt D E, Smith R D, Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:643-668
    7. Yu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ, 2006,370:302-309
    8. Juwarkar A A, Nair A, Dubey K V, Singh S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2007,68:1996-2002
    9. IRRI (International Rice Research Institute). Rice Almanac (2nd Edition). IRRI, Los Ba?os, Philippines, 1997. pp 181
    10. Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M. Cadmium and lead in southeast China. Sci Total Environ, 2006,359:156-166
    11.顾继光,周启星.镉污染土壤的治理及植物修复.生态科学, 2002,21:352-356
    12. Ebbs S D, Lasat M M, Brady D J, Cornish J, Gordon R, Kochian L V. Phtoextraction of contamination in japonica rice grains and its variation among the different locations cadmium and zinc from a contaminated site. J Environ Qual, 1997,26:1424-1430
    13. Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res, 2003,83:271-281
    14. Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong M H. Variations in cadmium accumulation among rice cultivars and types and selection of cultivars for reducing cadmium in the diet. J Sci food Agric, 2005,85:147-153
    15. Bouman B A M, Toung T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001,49:11-30
    16. Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag, 2004,65:193-210
    17. Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Res, 1997,52:231-248
    18. Bouman B A M, Peng S, Castaňeda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag, 2005,74:87-105
    19. Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res, 2006,95:1-12
    20. Xu G, Zhang Z, Zhang J, Yang J. Much improved water use efficiency of rice under non-flooded mulching cultivation. J Inte Plant Biol, 2007,49:1527-1534
    21. Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Inte Plant Biol, 2007,49:1445-1454
    22. der Vliet L V, Peterson C, Hale B. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apolastic bypass. J Exp Bot, 2007,58:2929-2947
    23. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Res, 2001,71:47-55
    24.国家质量技术监督局.中华人民共和国国家标准,优质稻谷. GB/T17891-1999, 1999
    25. Kobata T, Takami S. Maintenance of the grain growth in rice subjected to water stress during the early grain filling. Jpn J Crop Sci, 1981,50:536-545
    26.蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报, 2002,28:601-608
    27.刘建国.水稻品种对土壤重金属镉铅吸收分配的差异及其机理.扬州大学博士学位论文, 2004. pp 212
    28. Liu J, Qian M, Cai G, Zhu Q, Wong M H. Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health, 2007b,29:189-195
    29.赵步洪,张洪熙,奚岭林,朱庆森,杨建昌.杂交水稻不同器官镉浓度与累积量.中国水稻科学,2006,20(3):306-312
    30. Wong S S, Cowan I R, Farquhar G D. Stomatal conductance correlates with photosynthesiscapacity. Nature, 1979,282:424-426
    31. Wong S S, Cowan I R, Farquhar G D. Leaf conductance in relation to rate of CO2 assimilation. II. Influences of water stress and photoinhibition. Plant Physiol, 1985,78:830-834
    32. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982,33:317-345
    1.李森照.中国污水灌溉与环境质量控制.北京:气象出版社,1995
    2. Nan Z R,Zhao C Y,Li J J,Chen F H,Sun W. Relations between soil properties and selected heavy metal concentrations in spring wheat (Trifcum aestivwn L.) grown incontaminated soils. Water Air Soil Pollution,2002,133:205-213
    3. Wong C S,Lia X D,Zhang G,Qi S H,Peng X Z. Atmospheric deosition of heavy metals in The Pearl River Delta,China Atmosph Environ,2003,37:767-776
    4. Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res, 2003,83:271-281
    5. Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong M H. Variations in cadmium accumulation among rice cultivars and types and selection of cultivars for reducing cadmium in the diet. J Sci food Agric, 2005,85:147-153
    6. Eriksson J E. Effect of nitrogen-containing fertilizer on solubility and plant uptake of cadmium. Water Air Soil Pollution, 1990,49:355-368
    7. Willaert G, Verloo M. Effect of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil. Pedologie, 1992,42:83-91
    8. Florijn P J, Nelemans J A, Beusichem M L. The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. J. Plant Nut, 1992,15:2405-2416
    9.曾清如,周细红,毛小云.不同氮肥对铅锌尾矿污染土壤中重金属的溶出及水稻苗吸收的影响.土壤肥料,1997,3:7-11
    10.张敬锁,李花粉,张福锁,姚广伟.不同形态氮素对水稻体内镉形态的影响.中国农业学报,1998,3(5):90-94
    11.楼玉兰,章永松,林咸永.氮肥形态对污泥农用土壤中重金属活性及玉米对其吸收的影响.浙江大学学报(农业与生命科学版), 2005,31(4):392-398
    12.刘建国.水稻品种对土壤重金属镉铅吸收分配的差异及其机理.扬州大学博士学位论文,2004. pp 212
    13. Liu J, Qian M, Cai G, Zhu Q, Wong M H. Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health, 2007b,29:198-195
    14. Yu H, Wang J, Fang W, Yuan J, Yang Z. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ, 2006,370:302-309
    15.傅庆林,余劲炎,陈英旭.氮素营养对水稻干物质和氮分配的影响及氮肥需求量.浙江大学学报(农业与生命科学),2000,26(4):399-403
    16.彭少兵,黄见良.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    17. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot, 2007,59:381-392
    18. Lin A J, Zhang X H, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci, 2007,19:596-602
    19.杨居荣,何孟常,查燕,刘虹,张平.稻、麦籽实中Cd的结合形态.中国环境科学,2000,20(5):404-408
    20. White C N, Rivin C J. Characterization and expression of a cDNA encoding seed-specific metallothionein in maize. Plant Physiol, 1995,8:831-832
    21. Hsien H M, Liu W K, Chang A, Huang P C. RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Molecular Biology, 1996,32:525-529
    1 Kende H,Zeevaart J A D. The five“classical”plant hormones. Plant Cell,1997,9:1197-1210
    2 Brenner M L,Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In:Davies PJ,ed. Plant hormones,physiology,biochemistry and molecular biology. Dordrecht,The Netherlands:Kluwer Academic Publishers,1995. pp 649-670
    3 Davies P J. Introduction. In:Davies P J,ed. Plant Hormones,Biosynthesis,Signal Transduction,Action! Dordrecht,The Netherlands:Kluwer Academic Publishers,2004. pp 1-35
    4 Zhang Z J,Zhou W J,Li H Z. The role of GA,IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Physiol Plant,2005,27:363-369
    5 Kiyota H,Oritani T,Kuwahara S. Synthesis and biological evaluation of abscisic acid,jasmonic acid, and its analogs. ACS Symposium Series,2005,892:246-254
    6 Srivastava A,Handa A K. Hormonal regulation of tomato fruit development: A molecular perspective. J Plant Growth Reg,2005,24:67-82
    7 Animoto E. Regulation of root growth by plant hormones-Roles for auxin and gibberellin. Crit Rev Plant Sci,2005,24:249-265
    8 Del Pozo J C,Lopez-Matas M A,Ramirez-Parra E. Hormonal control of the plant cell cycle. Physiol Plant,2005,123:173-183
    9 Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Reg,2005,47:91-110
    10 Xie Z J,Jiang D,Cao W X. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Reg,2003,41:117-127
    11 Akihiro T,Mizuno K,Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA.Plant and Cell Physiology,2005,46:937-946
    12 Lee B H,Henderson D A,Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell,2005,17:3155-3175
    13 Kangasjarvi J,Jaspers P,Kollist H. Signalling and cell death in ozone-exposed plants. Plant Cell and Environment,2005,28:1021-1036
    14 Cowan A K,Taylor N J,van Staden J. Hormone homeostasis and induction of the small-fruit phenotype in 'Hass' avocado. Plant Growth Reg,2005,45:11-19
    15 Yamanishi H,Yamazaki H,Koshioka M. Low temperature effects on levels of some plant hormones at the flowering stage in rice panicles. Plant Physiol,1997,114(Suppl):818-818
    16 Devos S,Vissenberg K,Verbelen J P. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytologist,2005,166:241-250
    17 Suarez-Lopez P. Long-range signalling in plant reproductive development. International Journal of Developmental Biology,2005,49:761-771
    18 Thomas S G,Rieu I,Steber C M. Gibberellin metabolism and signaling. Vitamins and Hormones-Advances in Research and Applications,2005,72:289-338
    19 Hou X L,Wu P,Jiao FC. Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell and Environment,2005,28: 353-364
    20 Alcazar R, marco F, Cuevas J C, Patron M, Ferrando A, Carrasco P, Tiburcio A F, Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotech Lett, 2006,28:1867-1876
    21 Bais H P, Ravishankar G A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ culture, 2002,69:1-34
    22 Kuehn G D, Phillips G C. Roles of polyamines in apoptosis and other recent advances in plant polyamines. Crit Rev Plant Sci, 2005,24:123-130
    23 Tomosugi M, Ichihara K, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta, 2006,223:349-358
    24 Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Reg, 2001,100:675-688
    25 Liu H P, Dong B H, Zhang Y Y, Liu Z P, Liu Y L. Relationship between osmotic stress andthe levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004,166:1261-1267
    26杨建昌,常二华,张文杰,王志琴,刘立军.根系化学讯号与稻米品质的关系.中国农业科学,2006,39(1):38-47
    27 Jungmann J,Reins H A,Sehobert C, Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent Proteolysis. Nature,1993,361:369-371
    28 Tanaka K. Proteasones: structure and biology. J Biochem,1998,123:195-204
    29 Takimoto I, Christensen A H, Quail P H, Uchimiya H, Toki H. Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Molecular Biology, 1994,26:1007-1012
    30 Arlorio M, Ludwig A, Boller T, Bonafonte P. Inhibition of fungal growth by plant chitinases andβ-1,3-glucanases:a morphological study. Protoplasma, 1992,171:34-43
    31 Burketova L, Stillerova K, Feltlova M. Immunohistological growth by plant chitinase andβ-1,3-glucanases in rihizomania-diseased and benzoathiadiazole treated sugar beet roots. Physiological and Molecular Plant Pathology, 2003,63:47-54
    32 Park C J, Kim K J, Shin R, Park J M, Shin Y C, Paek K H. Pathogenesis-related protein
    10 ioslated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J, 2004,37:186-198
    33 Opassiri R, James R, Cairns K, Akiyama T, Waraaswapati O, Svasti J, Esen A. Characterization of a riceβ-glucosidase highly expressed in flower and germinating shoot. Plant Sci, 2003,165:627-638
    34利容千,王建波.植物逆境细胞生理学.湖北:武汉大学出版社,2002,302-319
    35常二华.根系化学讯号与稻米品质的关系及其调控技术.扬州大学博士学位论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700