用户名: 密码: 验证码:
海滨木槿不同家系对重金属Cd胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海滨木槿(Hibiscus hamabo Sieb. et Zucc.)系锦葵科(Malvaceae)木槿属(Hibiscus),落叶乔木,因极耐盐碱、水淹,抗海风,是护堤林和海岸基干林带造林先锋树种。目前对海滨木槿的育苗技术、水淹胁迫、盐胁迫等方面开展了初步研究并取得了一定成果。重金属Cd胁迫对海滨木槿家系的影响,至今罕见报道。本文以海滨木槿6家系幼苗(4月生)为材料,运用水培法研究海滨木槿对Cd(0、10、20、30 mg/L)耐性的生理生化机制及其家系间耐Cd性差异,旨在为利用木本植物修复与改善重金属污染土壤(特别是滩地)提供有益参考价值;并通过海滨木槿家系间的耐Cd性差异比较,指出重要评价指标选育优良家系,为构建东南沿海潮滩护岸林提供植物材料。结果表明:
     (1)Cd胁迫下海滨木槿家系幼苗生长和生理特性变化规律
     水培条件下,长时间(60d)的10-30mg/LCd2+胁迫,显著降低了海滨木槿家系幼苗株高净生长量和总生物量,浓度越高抑制作用越明显,胁迫初期幼苗株高净生长量增长最快,胁迫时间越长,增长幅度越小。
     Cd2+胁迫下海滨木槿SPAD、叶绿素荧光主要参数Fv/Fm、φps//、qP,随胁迫时间的延长而逐渐下降,NPQ逐渐上升,降低了PSⅡ活性,叶绿素分子减少是Fm降低的主要原因;同时,Cd2+胁迫改变了海滨木槿光合色素构成,Chla的合成对Cd2+更敏感,Car含量的降低表明Cd2+降低了海滨木槿非酶促抗氧化能力。
     随Cd2+胁迫时间的延长,海滨木槿家系幼苗叶片SOD、POD、CAT活性、SP含量均呈先升高后下降的变化趋势,它们的增加在一定程度上减轻了Cd2+的毒害作用,但它们的降低表明海滨木槿膜系统和渗透调节物质的保护作用有一定限度;SOD、CAT活性变化时间一致,POD活性被激活程度和持续时间相对长于SOD、CAT活性;SP含量到达峰值的时间较SOD、POD、CAT活性最短,表明海滨木槿幼苗SP对Cd2+更敏感,因持续时间较短易受Cd2+抑制。随Cd2+浓度增加和胁迫时间延长,海滨木槿幼苗叶片MDA含量逐步增加,细胞膜脂过氧化作用加剧。(2)海滨木槿家系幼苗根系对Cd胁迫的形态构型及生理响应
     长时间的10-30 mg/L Cd2+胁迫显著降低海滨木槿家系幼苗根系总长度、表面积、体积、根尖数和根系组成,且根系横向生长(根尖数和细根组成)受Cd2+胁迫影响大于根系纵向生长(根总长、根表面积、根体积),致使根系形态构型趋向简单化,浓度越高,根系空间结构越简单。Cd2+胁迫下根系MDA含量与形态参数呈显著性负相关(R=0.865,P<0.05),推测Cd2+引起海滨木槿幼苗根MDA含量升高是其根系形态构型发生改变(趋于简单化)的重要原因。
     随着Cd2+浓度的增加,海滨木槿幼苗根系SOD/POD、SOD/CAT均随之增大,且SOD/POD增加幅度更明显,表明海滨木槿幼苗根细胞已造成氧化损伤。海滨木槿不同家系根系耐Cd性存在差异,以家系SH3、S8表现最好,家系C25、S1表现最差。
     (3)海滨木槿家系幼苗对Cd胁迫的积累和耐受性
     10-30 mg/LCd2+胁迫60 d,不仅显著降低海滨木槿家系幼苗地上、地下生物量生产,而且明显增大幼苗根冠比,改变了其生物量分配格局。10、20、30mg/L Cd2+胁迫下,海滨木槿家系幼苗根Cd含量分别达1720、3410、4780 mg/kg,具有超高的Cd积累能力,且表现出根部富集特征。随Cd2+浓度增加,家系幼苗Cd积累量升高但生物量却降低,表明海滨木槿高生物量生产和高Cd积累能力两者不可能同时出现,Cd高积累能力会降低其潜在生物量。
     耐性指数显示,海滨木槿幼苗在水培Cd2+含量为10 mg/L时仍具有高Cd忍耐性(7i=69.30),对20、30mg/LCd2+胁迫具有中等程度忍耐性(Ti分别为55.53、35.21)。Cd2+胁迫引起海滨木槿不同家系Cd积累和耐性差异较大,表现良好家系为SH3、S8,最差家系为C25。
     (4)海滨木槿家系幼苗耐Cd性综合评价
     相关分析表明,Cd污染越严重,海滨木槿家系幼苗株高、生物量、SPAD、荧光参数Fv/Fm、φpS//、gP表现越差;Cd污染可明显提高海滨木槿植株POD活性以保护膜系统,同时也显著增大了非光化学猝灭系数NPQ和植物细胞体内MDA有害物质含量。
     主成分分析显示,Cd污染引起海滨木槿幼苗生长性状和叶绿素荧光参数的变化最明显,对土壤污染程度具有一定指示作用;POD酶活性可作为海滨木槿反映Cd污染胁迫的灵敏生理指标。此外,根系形态参数也是评价海滨木槿家系耐Cd性的有效指标。
     模糊数学隶属函数法综合评价海滨木槿6家系耐Cd性表明,同一海滨木槿家系针对不同指标,其抗Cd胁迫能力排序不尽一致。综合分析认为,海滨木槿6家系的抗Cd胁迫能力由强到弱依次为:SH3>C17>S8>SH2>S1>C25。选育和利用高耐Cd性海滨木槿优良家系不仅有利于潮滩土壤Cd污染治理,而且为东南沿海防护林建设提供了植物材料。
Hibiscus hamabo Sieb. et Zucc.is the deciduous arbor, which belongs to Hibiscus, Malvaceae. It is a pioneer tree species and it is always used as bank protection forest and the coastal backbone forest strip because of its saline tolerance, water-out tolerance, protection of sea wind. Some researches had been made and a certain achievements had been got on seedling-raising technique, waterlogging and salt trees of Hibiscus hamabo. There are rear researches on effects of Cd on Hibiscus hamabo families. This paper took 6 families seedlings of Hibiscus hamabo as the materials, used solution culture method to study the physiological and biochemical mechanism for Cd (0,10,20,30 mg/L) and the difference tolerance for Cd among different families. The purpose of this study was to provide useful reference for using woody plants to repair and improve soil (especially beach) polluted by heavy metal Establish comprehensive index system of superior family breeding and provide plant material for building bank protection forest on the southeast coastal through the comparison of different tolerances for Cd among different Hibiscus hamabo families. The results were as follows:
     (1) Growth and change of physiology of seedlings in Hibiscus hamabo families under Cd stress
     Long time (60 d) Cd stress decreased the net height and total biomass of seedlings in Hibiscus hamabo families significantly under solution culture. This phenomenon was observed more obviously when the concentration was high. At the early stage of sreess, net height of seedlings incrased fast, the stress time longer, the increasing range became smaller.
     SPAD, Fv/Fm,φps(?), qP decreased as time of stress went on of seedlings in Hibiscus hamabo families. NPQ gradually increased which decreased the activity of PSⅡ. The decrease of chlorophyll molecule was the main reason of Fm decreasing. At the same time, stress of Cd2+ changed the composition of photosynthetic pigment, the synthesis of Chla was more sensitive to Cd2+ Decreasing content of Car indicated that Cd2+ reduced the ability of antioxidation of non-enzyme systems of Hibiscus hamabo.
     The activity of SOD, POD and CAT, content of SP in young leaves of seedlings in Hibiscus hamabo family increased first and then decreased under Cd4 stress. The increase reduced the toxicity of Cd2+ in some degree, however, their decrease indicated that there was some limit on protection of membrane system and osmoregulation substances. Change of SOD activity was consistent with CAT activity. Degree of activated of POD and duration of POD activity was longer than SOD and CAT. Time for SP content reached to the peak was shorter than SOD, POD and CAT which indicated that soluble protein in Hibiscus hamabo was more sensitive to Cd2+. Because the duration time was short, the soluble protein was inhibited easily. Content of MDA in seedling leaves increased gradually and the preoxidation activity of membrane lipids aggravated while the concentration of Cd2+ increased and stress time prolonged. (2) Root morphological and physiological pesponses of seedlings in Hibiscus hamabo families to Cd stress
     Long time Cd2+ stress (10-30 mg/L) decreased the length, surface area, volume, tips and the composition of root in seedlings of Hibiscus hamabo families significantly. Effect of Cd2+ on cross-growth of root (tips and composition of root) was more obvious than longitudinal growth of root (length, surface area and volume of root) which resulted that morphologic structure of root tended to simplification. The root system spatial structure was simpler when the Cd2+ concentration was higher. There was a significant negative correlation between MDA content and morphological parameters (R=0.865, p<0.05) under Cd2+ stress which could be conjectured that increase content of MDA in seedlings root resulted in the change of root morphologic structure (tend to simplification).
     Ratio of SOD/POD and SOD/CAT in seedlings root increased while concentra-tion of Cd2+ increased, the increasing range of SOD/POD was more obvious which indicated that the root cell of seedlings had been damaged by oxidation. There was differences among different Hibiscus hamabo families on endurance to Cd. SH3 and S8 had strong durance while C25 and S1 had weak durance. (3) Accumulation of Cd in seedlings and tolerance of seedlings in Hibiscus hamabo
     families under Cd stress
     Stress of Cd+(10-30 mg/L) for 60 d decreased biomass of seedling both above and under ground, increased the ratio of root-shoot, changed the distribution pattern of biomass. Under 10,20,30 mg/L Cd2+ stress, Cd content of root in seelding was 1720. 3410,4780 mg/kg respectively, which showed that Hibiscus hamabo had super ability to accumulate Cd and the enrichment of Cd was observed in root. The amount of Cd accumulation increased while biomass decreased when concentration of Cd increased, which indicated that high biomass of plant and super ability of accumulating Cd could not appear at the same time. High ability of accumulation decreased potential biomass of plant.
     Cd tolerance index showed that Hibiscus hamabo seedlings had high Cd tolerance (Ti=69.30) when concentration of Cd2+ was 10 mg/L. Tolerance of Cd under 20 and 30 mg/L was medium and the tolerance index was 55.53,35.21 respectively. There were significant difference on Cd accumulation and Cd endurance among different Hibiscus hamabo families under Cd stress.The best two families were SH3 and S8 while the worst family was C25. (4) Comprehensive evaluation on Cd tolerance among Hibiscus hamabo families
     The height, biomass, SPAD, Fv/Fm,φPSⅡand qP of Hibiscus hamabo decreased when Cd pollution was serious. Cd pollution could increase the activity of POD in order to protect the membrane system of Hibiscus hamabo plant. At the same time, Cd pollution increased NPQ and content of MDA in plant cells significantly.
     Analysis of principal component showed that the change of growth characters and chlorophyll fluorescence parameters of Hibiscus hamabo seedlings was most obvious under Cd stress. These change had indicative function to contamination degree of soil. The activity of POD could reflect the tolerance of Hibiscus hamabo under Cd stress. Root morphological parameters could also be used to reflect the Cd tolerance of Hibiscus hamabo families.
     Comprehensive appraisal of characters on Cd tolerance among 6 Hibiscus hamabo families showed that tolerance order to Cd were different when different itms were studied in one family. It was concluded t at the tolerance order was SH3>C17>S8>SH2>S1>C25 among 6 Hibiscus hamabo families. Breeding and using Hibiscus hamabo families which had strong tolerance to Cd was benifical to control the pollution of Cd in tidal flats soil and proided valuable plant materal to construction of protection forest in southeast coast.
引文
[1]郑文教,连玉武,郑逢中,林鹏.广西英罗湾红海榄红树群落锰镍元素的累积和循环[J].厦门大学学报(自然科学版),1995,34(5):829-834.
    [2]郑文教,郑逢中,连玉武,林鹏.福建九龙江秋茄红树林铜铅锌锰元素的累积与动态[J].植物学报,1996,38(3):227-233.
    [3]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与累积[J].应用与环境生物学报,1996,2(3):207-213.
    [4]郑文教,连玉武,郑逢中,林鹏.广西英罗湾红海榄林重金属元素的累积及动态[J].植物生态学报,1996,20(1):20-27.
    [5]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的累积及分布[J].应用生态学报,1996,7(2):139-144.
    [6]郑文教,林鹏.深圳福田白骨壤红树林Cu、Pb、Zn、Cd的累积及分布[J].海洋与湖沼,1996,27(4):386-393.
    [7]Kehrig HA, Pinto FN, et al. Heavy metals and methylmercury in a tropical coastal esturary and a mangrove in Brazil[J]. Organic Geochemistry,2003,34:661-669.
    [8]Machado W, Moscatelli M, et al. Mercury zinc and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil [J]. Environ-mental Pollution,2002,120:455-461.
    [9]Tam NFY. Spatial variation of heavy metals in surface sediments of HongKong mangrove swamps[J]. Environmental Pollution,2000,11(2):195-205.
    [10]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(3):71-76.
    [11]鲁如坤,熊礼明,时正元.关于土壤一作物生态系统中福的研究[J].土壤,1992,24(3):129-132,137-141.
    [12]陈荣华,林鹏.汞和盐度对三种红树种苗生长影响初探[J].厦门大学学报(自然科学版),1988,27(1):110-115.
    [13]郑逢中,林鹏,郑文教.红树植物秋茄幼苗对Cd耐性的研究[J].生态学报,1994,14(4):408-414.
    [14]杨盛昌,吴琦.Cd对桐花树幼苗生长及某些生理特性的影响[J].海洋环境科学,2003,22(1):38-42.
    [15]MacFarlane GR, Burchett MD. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina(Forsk.) Vterh[J]. Marine Environmental Research,2002,54:65-84.
    [16]Walsh GE, Ainsworth KA, Rigby R. Resistance of red mangrove (Rhizophora mangle L.) seedings to lead, cadmium and mercury[J]. Biotropica,1979,11:22-27.
    [17]俞慈英,徐树华.海滨木槿的驯化及开发利用前景[J].林业科学研究,1999,12(2):210-213.
    [18]范文涛,海滨木槿——中国锦葵科植物一新纪录[J].浙江农业大学学报,1986,12(4):454-455.
    [19]李裕红,王荣富,应朝阳.桐花树幼苗根系对Cd胁迫的抗氧化生理响应[J].福建农业学报,2007,22.
    [20]张凤琴,王友绍,董俊德,孙翠慈,殷建平.重金属污染对木榄幼苗几种保护酶及膜脂质过氧化作用的影响[J].热带海洋学报,2006,25(2):68-69.
    [21]缪绅裕,陈桂珠.人工污水对秋茄幼苗形态及解剖构造的影响[J].植物研究,2001,21(1):57-63.
    [22]靖元孝,任延丽,陈桂珠.人工湿地污水处理系统三种红树植物生理生态特性[J].生态学报,2005,25(7):1612-1619.
    [23]Simon L. Cadmium accumulation and distribution in sunflower plant[J]. Jounal of plant nutrition,1998,21(2):341-352.
    [24]Moreno-caselles J., R.Moral, A.Perez-Espinosa and M. D. Perez-Murcia. Cadmium accumulation and distribution in cumuber plant[J]. Jounal of plant nutrition,2000, 23(2):243-250.
    [25]杨若明主编.环境中有毒有害化学物质的污染与检测[M].中央民族大学出版社,北京,2001:77-80.
    [26]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995:201.
    [27]徐爱春.柳树无性系Cd积累和生理变化规律研究[D].北京:中国林业科学研究院,2007.
    [28]曹仁林,贾晓葵.关于我国土壤重金属污染对农产品安全性影响的思考[J].第七次全国土壤与环境学术讨论会文集,2001,11:2-5.
    [29]任继平,李德发,张丽英.Cd毒性研究进展[J].动物营养学报,2003,IS(1):1-6.
    [30]常晋娜.长江口潮滩重金属污染现状研究及其污染源的识别[D].广东:华东师范大学,2006.
    [31]Yang M, Sanudo-Wihelmy SA. Cadmium and manganese distributions in the Hudson river estuary:Interannual and seasonal variability[J]. Earth and Planetary Science Letters,1998,160:403-418.
    [32]Martin J. Attrill, R. Myles Thomes. Heavy metal concentrations in sediment from the Thames estuary, UK[J]. Marine Pollution Bulletin,1995,30(11):742-744.
    [33]陈振楼,许世远,柳林等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-6490.
    [34]U.弗斯特纳,GT.W维特曼主编(土忠玉,姚重华主译).水环境的金属污染[M].北京:海洋出版,1987:89.
    [35]Ramamoorthy S., Rust B R. Heavy metal exchange processes in sediment-water systems[J]. Environmental Geology,1978,2(3):165-172.
    [36]Windom H., Wallace G, et al. Behavior of copper in southeastern United States estuaries[J]. Marine Chemistry,1983,12(23):183-193.
    [37]Tessler M, Campbell P G C, Usson M. Sequencial extraction procedure for the speciation of particulate trace metal [J]. Analy, Chem,1979,51:844-851.
    [38]赵中秋,朱永官,蔡云龙.Cd在土壤—植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    [39]何振立.污染及有益兀素的土壤化学平衡[M].中国环境科学出版社.1998.
    [40]王晶,张旭东,李彬,等.腐殖酸对土壤中Cd形态的影响及利用研究[J].土壤通报,2002,33(3):185-187.
    [41]蒋先军,骆永明,赵其国.Cd污染土壤的植物修复及其EDTA调控研究Ⅱ EDTA对Cd的形态及其生物毒性的影响[J].土壤,2001,(4):202-204
    [42]李瑛,张桂银,李洪军等.根际土壤中Cd、Pb形态转化及其植物效应[J].生态环境,2004,13(3):316-319.
    [43]方利平,章明奎,符娟林.外源铅铜Cd在长三角和珠三角农业土壤中的转化[J].生态环境,2005,14(6):843-846.
    [44]贾中民,魏虹等.秋华柳和枫杨幼苗对Cd的积累和耐受性[J].生态学报,2011,31(1):0107-0114.
    [45]吴海燕,台培东等.馒头柳对Cd的耐性、运输途径和累积特征[J].生态学杂志,2011,30(6):1222-1228.
    [46]Robinson BH, Mills TM, Petit D, et al. Natural and induced cadmium-accumulation in poplar and willow:Implications for phytoremediation[J]. Plant and Soil,2000,227:301-306.
    [47]胡焕斌,周民华,王桂珍,等.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,78(3):17-18.
    [48]方晰,田大伦,项文化,等.广西马尾松人工林对重金属元素的吸收、累积及动态[J].广西植物,2004,24(5):437-442.
    [49]梁景森,尚鹤,李柏忠等.北京市房山区绿化树种对镉(Cd)的吸收作用[J].林 业科学研究,1998,11(2):142-146.
    [50]王文卿,郑文教等.九龙江口红树植物叶片重金属元素含量及动态[J].台湾海峡,1997,16(2):243-238.
    [51]林鹏.中国红树林研究进展[J].厦门大学学报,2001,40(2):592-603.
    [52]李裕红,章幼玉.重金属污染对红树植物影响的研究综述与展望[J].海峡科学,2007,(6):140-142.
    [53]Chen GI, Miao SY, Tan NFY, et al. Effect of synthetic was tewater on young Kandelia candel plants growing under greenhouse conditions [J]. Hydrobiologia, 1995,295:263-273.
    [54]Chiu CY, Hsiw FS, Chen SS, et al. Reduced toxicity of Cu and Zn to mangrove seedlings in saline environments [J]. Bot Bull Acad Sin,1995,36:19-24.
    [55]Chu HY, Chen NC, Yeung MC,et al. Tide-take system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater[J]. Water Science Technology,1998,38(1):361-368.
    [56]MacFarlane GR, Burchett MD. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh[J]. Marine Pollu Bullt,2001,42(3):233-240.
    [57]MacFarlane GR, Pulkownik A, Burchett MD. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.:biological indication potential [J]. Environ Pollut,2003,123:139-151.
    [58]Wong YS, Tam NFY, Chen GZ, Ma H. Response of Aegiceras corniculatum to synthetic sewage under simulated tidal condition[J]. Hydrobiologia,1997,352: 89-96.
    [59]章金鸿,李玫,潘南明.深圳福田红树林对重金属Cu, Pb, Zn, Cd的吸收,累积与循环[J].云南环境科学,2000,19(增刊):54-55.
    [60]田晓锋.重金属Cd对金丝柳和香根草的生长及光合生理的影[D].西南大学硕士学位论文,2008.
    [61]周伟.Cd和铅污染土壤对桑树生长的影响[J].蚕业科学,1995,21(4):265-266.
    [62]Gussarsson M, Asp H, Adalsteinsson S, et al. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO)[J]. Journal of Experimental Botany,1996,47(2):211-215.
    [63]周青,黄晓华,屠昆岗等.La对Cd伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18(5):442-445.
    [64]Vallee B I. Biochemical effects of mercury, cadmium and lead[J]. Annu. Rev Biochem.1972,41:91-981.
    [65]Klobus G, Buczek J. Chlorophyll content, cells and chlorop last number and cadmium distribution in Cd2+ treated Cu2+ cumber plants[J]. A cta P by siolog iae Plantarum,1985,7 (3):139-147.
    [66]Gil J, moral R, et al. Effects of cadmium on physiological and nutritional aspects of tomato plant. I. Chlorophyll (a and b) and carotenoids[J]. Fresenius Environ Bull, 1995,4:430-435.
    [67]孙赛初,王焕校.水生维管束植物受Cd污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    [68]李元,王焕校,吴玉树.Cd, Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [69]Stobart A K,Griffiths W T.The effect of Cd2+on the biosynthesis of chlo-rophyll in leaves of barley[J]. Phy siol Plant,1985,63:293-2981.
    [70]Raquel E G, Alicia V V. Fluorescence quenching inhibition of substituted indoles by neutral and ionized cyclodextrins nanocavities[J]. Journal of Photochemistry and Photobiology A:Chemistry,2007, (187):356-362.
    [71]孙建云,沈振国.Cd胁迫对不同甘蓝基因型光和特性和养分吸收的影响[J].应用生态学报,2007,18(11):2605-2610.
    [72]慈敦伟,姜东,戴廷波.Cd毒害对小麦幼苗光合及叶绿素荧光特性的影响[J].麦类作物学报,2005,25(5):88-91.
    [73]曹玲,王庆成,崔东海.土壤Cd污染对四种阔叶树苗木叶绿素荧光特性和生长的影响[J].应用生态学报,2006,17(5):769-772.
    [74]石贵玉,康浩,段文芳.重金属Cd对红树植物白骨壤和桐花树幼苗生理特性的影响[J].广西植物,2009,29(5):644-647.
    [75]王兴明,涂俊芳,李晶等.Cd处理对油菜生长和抗氧化酶系统的影响[J].应用生态学报,2006,17(1):102-106.
    [76]韦颖,石贵玉,李佳枚.Cd胁迫对罗汉果幼苗生理生化特性的影响[J].安徽农业科学,2011,39(1):15-17,58.
    [77]覃光球,严重玲,韦莉莉.秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量Cd胁迫的响应[J].生态学报,2006,26(10):3366-3371.
    [78]吴桂容,严重玲.Cd对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [79]Mendoza-Cozatl D, Devars S, Loza-Tavera H, et al. Cadmium accumulation in the chloroplast of Euglena gracilis[J]. Physiologia Plantarum,2002,115:276-283.
    [80]Cosio C, Desantis L, Frey B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. Journal of Experimental BotanS,2005,56(412):765-775.
    [81]Basile A, Cogoni AE, Bassi P, et al. Accumulation of Pb and Zn in gametophytes and sporophytes of the moss Funaria hygrometrica(Funariales)[J]. Annals of Botany,2001,87:537-543.
    [82]Nishizono H. The role of the root cell wall in the heave metal tolerance of Athyrium yokoscense[J]. Plant and Soil,1987,101:15-20.
    [83]Molone C, Koeppe DE, Miller RJ. Localization of lead accumulation by corn plats[J]. Plant Physiol,1974,3:388-394.
    [84]Nishizono H, Kubota K, Suzuli S, et al. Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats[J]. Plant and Cell Physiology,1989,30(4):595-598.
    [85]Cosio C, Martinoia E, Keller C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level[J]. Plant physiology,2004,134:716-725.
    [86]Wang J, Evangelou BP, Nielsen MT, et al. Coputer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles I cadmium[J]. Plant Physiology,1991,97:1154-1160.
    [87]Kupper H, mijovilovich A, Meyer-Klaucke W, et al. Tissue- and age-dependent differences in the complexationof cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspr caerulescens(Ganges ecotype) revealed by X-ray absorption spectroscopy[J]. Plant Physiology,2004,134:748-757.
    [88]Persans MW, Nieman K, David E. Functional activity and role of canon-efflux family members in Ni hyperaccumulation in Thlaspi goesingense[J]. PNAS,2001, 98:9995-10000.
    [89]Vogeli-Lange R, Wagner GJ. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides[J]. Plant Physiology,1990,92:1086-1093.
    [90]Yamaguchi H, Nishizawa N, et al IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J. Exp. Bot,2002,53:727-735.
    [91]Baccio DD, Kopriva S, Sebastiani L, et al. Does glutathione metabolism have a role in the defence of poplar against zine excess[J]? New Phytologist,2005,167(2): 73-80.
    [92]Goldsbrough PB. Metal tolerance in plants:the role of phytochelatins and metallothioneins. In:Terry N, Banuel GS. Phytoremediation of trace elements. Michigan:Ann Arbor Press,1998.
    [93]Ernst WHO, Vekleij JAC, Schat H. Metal tolerance in plants [J]. Acta Bot Neerl, 1992,41:229-248.
    [94]Ma JF, Hiradate S, et al. High aluminum resistance in buck wheat Ⅱ Oxalic acid detoxifies aluminum internally [J]. Plant Physiol,1998,117:753-759.
    [95]Meharg AA. Integrated tolerance mechanisms:Constitutive and adaptive plant responses to elevate metal concentration in the environment [J]. Plant Cell Environ, 1994,17:989-993.
    [96]Gekeler W, Grill E. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins[J]. Zeit natur-for Sec C. Biosci,1989,44:361-369.
    [97]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004:169.
    [98]Orzech KA, Burke JJ. Heat shock and the protection against metal toxicity in wheat leaves[J]. Plant, Cell and Environment,1988,11(8):711-714.
    [99]Prass M NV. Cadmium toxicity and tolerance in vascular plants[J]. Envie Exper Botany,1995,35(4):525-545.
    [100]吕朝晖,王焕校.镉铅对小麦脱氢酶(ADH)基因表达的初步研究[J].环境科学学报,1998,18(15):500-503.
    [101]孔庆跃,费行海.海滨木槿育苗技术研究[J].现代农业科技,2011,(19):219-220.
    [102]李秀芬,朱建军等.60Co-r辐射对锦葵科3种树种发芽及幼苗生长的影响[J].上海农业学报,2010,26(2):66-69.
    [103]王秀丽.海滨木槿耐盐机理的研究[D].上海交通大学硕士论文,2010.
    [104]薄鹏飞.NaCl胁迫对海滨木槿种子萌发及幼苗生理特性的影响[J].山东师范大学,2008.
    [105]商宏艳.盐离子在海滨木槿体内运输与分配机制研究[D].山东师范大学,2010.
    [106]李会欣.海滨木槿光合生理及生态适应性研究[D].南京林业大学,2010.
    [107]李影丽.NaCl胁迫对4树种生理生化和光合特性影响的研究[D].浙江林学院,2008.
    [108]魏秀君,殷云龙等.NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性综合评价[J].植物资源与环境学报,2011,20(2):35-42.
    [109]黄超群,屠娟丽等.盐胁迫对海滨木槿叶片生理指标的影响[J].浙江农业科 学,2010,(4):773-774,778.
    [110]王宗星.海滨木槿和蜡杨梅对海水胁迫的光合生理响应[D].中国林业科学研究院,2011.
    [111]崔大练,马玉心.Zn2+对海滨木槿种子萌发及根伸长抑制效应的研究[J].种子,2011,30(2):45-48.
    [112]崔大练,马玉心.Cd2+对海滨木槿种子萌发及根伸长抑制效应的研究[J].安徽农业科学,2011,39(8):4591-4593.
    [113]Wilkins D A. The measurement of tolerance to edaphic factors by mean of root growth[J]. New Phytologist,1978,80:623-633.
    [114]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2006.
    [115]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.
    [116]Massimo Z, Fabrizio P, Giuseppe S M, Valentina I, Lucia P, Angelo M. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution,2009,197:23-34.
    [117]Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetlands plants I.Duckweed[J]. Journal of Environmental Quality,1998,27: 715-721.
    [118]van Kooten O, Snel JFH. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research,1990,25:147-150.
    [119]Lu Q T, Li W H, et al. Studies on the characteristics of chlorophyll fluorescence of winter wheat flag leaves at different developing stages[J]. Acta Botanica Sinica, 2001,43(8):801-804.
    [120]Ruban AV, Horton P. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Australian Journal of Plant Photosynthetica,1995,41: 321-330.
    [121]余苹中,廖柏寒,宋稳成.模拟酸雨和Zn对四季豆根与叶酶活性的影响[J].农业环境科学学报,2004,23(5):917-920.
    [122]余苹中,廖柏寒等.模拟酸雨和Cd对小白菜、四季豆生理生化特性的影响[J].农业环境科学学报,2004.23(1):43-46.
    [123]罗立新,孙铁珩,靳月华.Cd胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495-499.
    [124]Shah K, Kum ar R G, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidan tenzymes in growing rice seedlings[J]. Plant Science,2001,161:1135-1144.
    [125]Webster E A, Murphy A J, Chudek J A, Gadd G M. Metabolism-independent binding of toxic metals by Ulva lactuca:cadmium binds to oxygencontaining groups, as determined by NMR[J]. Biometals,1997,10(2):105-117.
    [126]Kumar M, Kumari P, Gupta V, Anisha P A, Reddy C R K, Jha B. Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta) [J]. Biometals,2010,23(2):315-325.
    [127]吴坤,吴中红等.Cd胁迫对烟草叶激素水平、光合特性、荧光特性的影响[J].生态学报,2011,31(16):4517-4524.
    [128]蒋运生,柴胜丰等.光照强度对广西地不容光合特性和生长影响[J].广西植物,2009,29(6):792-796.
    [129]蒋和平,郑青松等.条浒苔和缘管浒苔对Cd胁迫的生理响应比较[J].生态学报,2011,31(16):4525-4533.
    [130]刘周莉,何兴元等.Cd胁迫对金银花生理生态特征的影响[J].应用生态学报,2009,20(1):40-44.
    [131]Niyogi K K. Photoprotection revised:genetic and molecular approaches[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50: 333-359.
    [132]李晓,冯伟等.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [133]温国胜,王林和,张国盛.在干旱胁迫下圆柏的气体交换叶绿素荧光特征[J].浙江林学院学报,2004,21(4):361-365.
    [134]李亚藏,梁彦兰,王庆成.Cd对茶条槭和五角槭光合作用和叶绿素荧光特性的影响[J].西北植物学报,2009,29(9):1881-1886.
    [135]刘俊祥,孙振元等.结缕草对重金属Cd的生理相应[J].生态学报,2011,31(20):6149-6156.
    [136]尤鑫,龚吉蕊等.两种杂交杨品系光合系统Ⅱ叶绿素荧光特征[J].生态学报,2008,28(11):5641-5648.
    [137]李伶,袁琳,宋娜等.Cd对浮萍叶绿素荧光参数的影响[J].环境科学学报,2010,30(5):1062-1068.
    [138]Vassilev A, Yordanov I. Reductive analysis of factors limiting growth of cadmium-treated plants:a review[J]. Bulgarian Journal of Plant Physiology,1997, 23(3/4):114-133.
    [139]Demmig-Adams B, Adams W W, Heber U, et al. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy disspation by dithiothreitol in spinach and chloroplast[J]. Plrarzt Physiol,1990,92:293-301.
    [140]苏玲,章永松,林咸永等.维管植物的Cd毒和耐性机制[J].植物营养与肥料学报,2000,6(1):106-112.
    [141]Mittler R, Vanderauwera S, Gollery M, van Breusegem F. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9(10):490-498.
    [142]曾庆平,郭勇.植物的逆境应答与系统性诱导[J].生命的化学,1997,17(3):31-33.
    [143]徐向华,徐福德等.玉米幼苗对Cd、菲单一与复合污染的生理生化响应[J].环境科学,2011,32(5):1471-1476.
    [144]Somashekaraiah B V, Padmaja K, et al. Phytotoxicity of cadmium ions on germinating seedlings of mungbean (Phaseolus vulgaris):involvement of lipid peroxides in chlorophyll degradation[J]. Physiologia Plantarum,1992,85:85-89.
    [145]Bowler C, Van Montagu M, et al. Superoxide dismutase and stress to lerance[J]. Annual Review of Plant Physiology and Plant Molecu lar Biology,1992,43: 83-116.
    [146]Dixit V, Pandey V, Shyam R. Differential oxidative responses to cadmium in roots and leaves of pea (P isum sativum L. cv. A zad) [J]. Journal of Experimental Botany,2001,52:1101-1109.
    [147]Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:A free floating freshwater macrophyte[J]. Plant Physiology and Biochemistry,2003,41:391-397.
    [148]李元,王焕校,吴玉树.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-154.
    [149]Blinda A, Abou-M andour A, A zarkovich M, Brune A, Dietz K J. Heavy metal-induced changes in peroxidase activity in leaves, roots and cell suspension cultures of Hordeum vulgare L. C. Obinger Ued. Plant Peroxidases:Biochemistry and Physiology, University of Geneva,1996,374-379.
    [150]王松华,张华等.柱状甜头菇菌丝对Cd胁迫的抗氧化响应[J].应用生态学报,2007,18(8):1813-1818.
    [151]Jita P, Braha B P. A comparison of biochemical responses to oxidative and metal stress in seedings of barley[J]. Hordeum Vulgara L. Environmental Pollution,1998, 101:99-105.
    [152]朱晓红,显祖.花药中生长素的积累与过氧化物酶活性的关系[J].植物生理 学通讯,1996,32(4):254-257.
    [153]Fry S C. Isodityrosinc, a diphenyl-either cross-link in plant cell wall glycoprotein [J]. Methods in Enzymology,1984,107:388-397.
    [155]王晓蓉,罗义,施华宏等.分子生物标志物在污染环境早期诊断和生态风险评价中的应用[J].环境化学,2006,25(3):320-325.
    [156]Wang C, Wang X, Tian Y, et al. Oxidative stress, defence response and early biomarkers for lead-contaminated soil in Vicia faba seedlings[J]. Environmental Toxicology and Chemistry,2008,27(4):970-977.
    [157]Liu X, Zhang S, Shan X, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate cocontamination[J]. Ecotoxicology and Environmental Safety,2007, 68(2):305-313.
    [158]Schutzendubel A, Polle A. Plant responses to abiotic stress:heavy metal induced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany,2002,53:1351-1365.
    [159]郭晓音,严重玲.Cd锌复合胁迫对秋茄幼苗渗透调节物质的影响[J].应用与环境生物学报,2009,15(3):308-312.
    [160]吴桂容,严重玲.Cd对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [161]徐爱春,陈益泰,王树凤,吴天林.Cd胁迫下柳树5个无性系生理特性的变化[J].生态环境,2007,16(2):410-415.
    [162]Traverso N, Menini S, Maineri E P, et al. Malondialdehyde, a Lipoperoxidation-Derived Aldehyde, Can Bring About Secondary Oxidative Damage TO Proteins [J]. Journals of Gerontology Series A:Biological Sciences and Medical Sciences, 2004,59:890-895.
    [163]杨居荣,架建群等.农作物Cd耐性的种内和种间差异Ⅰ.种间差[J].应用生态学报,1994,5(2):192-196.
    [164]杨居荣,架建群.农作物Cd耐性的种内和种间差异Ⅰ.种间差[J].应用生态学报,1995,6(增):132-136.
    [165]吴启堂,陈卢等.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107.
    [166]杨梅,黄晓露等.4个桉树优良无性系的耐铝性评价指标分析[J].中南林业科技大学学报,2011,31(9):28-33.
    [167]田生科,李廷轩,彭红云等.铜胁迫对海州香薷和紫花香薷根系形态及铜富 集的影响[J].水土保持学报,2005,19(3):97-100.
    [168]乔海涛,杨洪强等.平邑甜茶根系形态构型对氯化Cd处理的响应[J].林业科学,2010,46(1):56-60.
    [169]蒋先军,骆永明,赵其国.Cd对富集植物印度芥菜的毒性[J].土壤,2001,4:197-201.
    [170]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1):14-24.
    [171]彭鸣,王焕校.Cd、Pb诱导的玉米(Zea mays L)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    [173]袁祖丽,马新明,韩锦峰等.Cd污染对烟草叶片超微结构及部分元素含量的影响[J].生态学报,2005,25(11):2919-2927.
    [174]王涛,郭智,敖岩松等.Cd对龙葵幼苗生长的影响及Cd富集特性研究[J].上海交通大学学报(农业科学版),2009,27(3):200-205.
    [175]陈吉虎,余新晓,有祥亮等.不同水分条件下银叶椴根系的分形特征[J].中国水土保持科学,2006,4(2):71-74.
    [176]张军,束文圣.植物对重金属Cd的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8.
    [177]赵世杰,许长城,邹琦.19911植物组织中丙二醛测定方法的改进[J].植物生理学通讯,30(3):207-210.
    [178]何俊瑜,任艳芳等.不同耐性水稻幼苗根系对Cd胁迫的形态及生理响应[J].生态学报,2011,31(2):522-528.
    [179]Ekmekciy, Tanyolac.D, Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars[J]. Journal of Plant Physiology,2008,165(6):600-611.
    [180]杨居荣,贺建群,张国祥等.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91.
    [181]Baker A M J, Walker P L. Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity[J]. Chemical Speciation and Bioav-ailability,1989,1:7-17.
    [182]王业社,刘可慧.美人蕉(Canna indica Linn)Cd胁迫的抗氧化机理[J].生态学报,2009,29(5):2710-2715.
    [183]冯丽,张景光等.腾格里沙漠人工固沙植被中油蒿的生长及生物量分配动态[J].植物生态学报,2009,33(06):1132-1139.
    [184]杨卫东,陈益泰.不同杞柳品种对镉(Cd)吸收与忍耐的差异[J].林业科学 研究,2008,21(6):857-861.
    [185]Lux A, ottn kov A, Opatrn J, Greger M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity[J]. Physiologia Plantarum,2004,120:537-545.
    [186]Dickinson N M, Pulford I D. Cadmium phytoextraction using short-rotation coppice Salix:The evidence trail[J]. Environment International,2005,31:609— 613.
    [187]Bella D A. Tidal flats in estuarine water quality analysis[J]. Ecological Series Report, Environ. Prot. Agency, Corvallis, Oregon,1975,186.
    [188]Riddell-Black D. Heavy metal uptake by fast growing willow species//Aronsson P, Perttu K. Willow Vegetation Filters for Municipal Wastewaters and Sludges. A Biological Purification System. Uppsala:Swedish University of Agricultural Sciences,1994:145-151.
    [189]Banuelos G S, Ajwa H A. Trace elements in soils and plants:an overview[J]. Journal of Environmental Science and Health, Part A,1999,34(4):951-974.
    [190]林鹏.中国红树林生态系统[M].北京:科学出版社,1997,297-316.
    [191]王文卿,林鹏.红树林生态系统重金属污染的研究[J].海洋科学,1999,3:45-48.
    [192]Teas H J. The biosaline concept[J]. Plenum Publishing Corporation,1979,117.
    [193]杨哗,陈英旭,孙振世.重金属胁迫下根际效应的研究进展[J].农业环境保护,2001,20(01):55-58.
    [194]Prasad M N V. Heavy Metal Stress in Plants:From Biomolecules to Ecosystems[J]. Second edition. Berlin:Springer Press,2004,19.
    [195]陈瑛,李廷强,杨肖娥.Cd对不同基因型小白菜根系生长特性的影响[J].植物营养与肥料学报,2009,15(1):170-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700