用户名: 密码: 验证码:
黄纹竹生物学特性与土壤养分动态变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要通过对黄纹竹生物学特性,不同样地黄纹竹竹林生长状况和土壤养分动态变化的研究,探讨黄纹竹生长与土壤养分之间的关系,并对不同样地竹林生长与土壤养分状况进行综合评价。研究结果如下:
     (1)黄纹竹出笋过程可分为3个时期,即出笋初期(4月24日至5月14日)、出笋盛期(5月15日至6月11日)和出笋末期(6月12日至7月25日)。黄纹竹绝大多数退笋出现在出笋末期,退笋数量占总退笋数的94.38%。黄纹竹幼竹的高生长遵循慢—快—慢3个阶段,模拟出两个相关系数极高的竹高生长模型:
     Logistic生长曲线模型:H=638.600/1+e5.781-0.200t,R2=0.99813和Doseresp生长曲线模型:H=-5.078+645.976/1+102.445-0.085t,R2=0.99799。
     (2)将胸径与各个器官生物量指标的相关性用回归模型表现出来,结果表明,各模型经检验均呈显著相关(除枝下高以外)。因此,可以用胸径作为各器官生物量的重要估测指标。对杆重与各器官生物量指标进行回归分析,建立杆重(Y)与生物量指标(胸径X1,竹高X2,地径X3,枝下高X4,节数X5,叶重X6,枝重X7)回归模型,并采用逐步回归分析法,得出最优的线性回归模型,方程Y=-289.705+233.163X1+3.403X4+0.630 X7。
     (3)黄纹竹竹林土壤有机质和土壤全氮的含量动态是一致的,在出笋长竹后的5-8月份的含氮量大量下降,8月份以后缓慢回升,并且当年12月份的含量达到最大值,但都较前1年12月份有所下降。说明竹林地土壤全氮处于耗竭状态。土壤水解氮是土壤近期供氮能力的指标,含量最低的仍是出笋长竹后的5-8月份,说明这是黄纹竹氮利用的高峰期,但含量最高的不是出现在12月份,而是在大年的3月份。有效磷与有机质、全氮等变化有所不同,从5月至10月土壤有效磷都处于很低水平,要到12月份才回升,3月份达到最高值。速效钾含量的最高时期出现在3月份,这和水解氮、有效磷是一致的。
     (4)通过样地聚类分析,可将12块样地分为4类,第一类为样地10、样地11、样地9、样地12、样地4、样地7、样地5;第二类为样地8;第三类为样地1、样地2、样地3;第四类为样地6。综合评价可以得出:第四类样地6,不管在竹林生长状况还是在土壤养分上都是最优的。
This paper primarily through the study of the biological characteristics and dynamic changes of soil nutrient of Phyllostachys.vivax cv.huanwenzhu. Discuss the relationship between the bamboo growth and soil nutrient, and then give a comprehensive evaluation of different sample plots and soil nutrient condition. The conclusion as follows:
     (1) The process of Bamboo shoots out can be divided into three periods:beginning period(from April 24 to May 14), peak period(from May 15 to June 11)and final period(from June 12 to July 25).A large number of shoots back appear in the final period, the number of bamboo shoots back account for 94.38% of the total. The high growth of young bamboo follows three stages:slow-fast-slow. Simulate two growth models of high correlation coefficient: Growth curve model of Logistic:H= 638.600/1+e5.781-0.200t, R2=0.99813; Growth curve model of Doseresp:H=-5.078+645.976/1+102.445-0.085t,R2=0.99799.
     (2) DBH and relevance of each organ biomass indexes shown with the regression model. The result shows that each model present a significant correlation (Except of under the high branches). Therefore, DBH can be used as an important index of estimation biomass. Through linear regression analysis of rod weight and the biomass indexes, then establish multiple linear regression equation of rod weight (Y) and biomass indexes (DBH X1, Penny X2, leading thread X3, under the high branches X4, sessions X5, leaf weight X6, branch weight X7), and use the stepwise regression analysis, then derive the optimal linear regression model, equation: Y=-289.705+233.163X1+3.403 X4+0.630X7.
     (3) Dynamic content of bamboo forest soil organic matter and soil total nitrogen are consistent. From May to August, the content of nitrogen declined substantially, and then began to rise after August and reach maximum level in December, all decreased somewhat as compared with those in last December. It shows that the soil total nitrogen is in the state of exhaustion. Soil hydrolysable nitrogen is the nitrogen-supplying capacity of soil indicators. From May to August, the content of hydrolysable nitrogen is lowest, that is the peak period of the use of the nitrogen. The highest content is not in December, but in next March. The changes in available phosphorus are different from organic matter and total nitrogen. From May to October, the phosphorus of soil is in a very low level, it will rise in December and reach the highest value in March. The maximum period of available potassium appears in March. It is consistent with hydrolysis of nitrogen and phosphorus.
     (4) Through the cluster analysis of sample plots, the twelve pieces of sample plots can be divided into four kinds, The first kind:sample plot ten, sample plot eleven, sample plot nine, sample plot twelve, sample plot four, sample plot seven and sample plot five; the second kind: sample plot eight; the third kind:sample plot one, sample plot two and sample plot three; the fourth kind:sample plot six. It can be drawn from the comprehensive evaluation:no matter in the bamboo growing condition or on the soil nutrient status, sample plot six is optimal.
引文
[1]张培新.竹子园林[M].西泠印社出版社,2006:92-93.
    [2]周芳纯.竹林培育学[M].中国林业出版社,1998,1-31.
    [3]李正才,傅懋毅,谢锦忠,等.毛竹竹阔混交林群落地力保持研究[J].竹子研究汇刊,2003,22(1):32-37.
    [4]陈松河.10种园林竹类植物出笋及幼竹高生长节律[J].东北林业大学学报,2007,35(11):11-13.
    [5]欧小平,冯小虎,翟敬宇,范卓敏.北京地区早园竹高生长规律及出笋长竹期的养护技术.世界竹藤通讯,2008,6(2):18-21.
    [6]付建生,董文渊,韩梅,等.撑绿竹出笋规律探析[J].林业科技开发,2007,21(3):42-45.
    [7]林阿平.吊丝单竹、云南甜竹、大头典竹出笋规律研究[J].世界竹藤通讯,2009,7(1):7-11.
    [8]陈玉华,宋丁全.篌竹出笋成竹生长规律研究[J].南京林业大学学报(自然科学版),2005,29(4):109-112.
    [9]方伟,林新春,洪平,等.苦竹生长发育规律研究[J].浙江林学院学报,2005,22(1):1-5.
    [10]高贵宾,顾小平,吴晓丽,等.绿竹出笋规律与散生状栽培技术[J].浙江林学院学报,2009,26(1):83-88.
    [11]周本智.麻竹出笋和高生长规律的研究[J].林业科学研究,1999,12(5):461-466.
    [12]潘寅辉,高立旦,虞敏之,盛方清.四季竹发笋及幼竹高生长规律研究[J].竹子研究汇刊,2006,25(1):27-29.
    [13]朱志建,屠永海,钮为民,等.浙江淡竹出笋和幼竹高生长规律的研究[J].竹子研究汇刊,2003,22(4):13-17.
    [14]苏文会,顾小平,岳晋军,吴晓丽,朱如云,林开搜.大木竹秆形结构的研究[J].林业科学研究,2006,(1):9-11.
    [15]王晶,丁德蓉,何丙辉,彭华,许红艳.三峡库区撑绿竹护岸林生物量结构研究[J].竹子研究汇刊,2004,23(3):31-36.
    [16]王太鑫.巴山木竹种群生物学研究[D].南京林业大学,2005.
    [17]周玉卿.井冈寒竹种群生物量结构初步研究[J].西北农业学报,2004,(4):32-35.
    [18]郑郁善,梁鸿桑,游兴早.绿竹生物量模型研究[J].竹子研究汇刊,1997,16(4):43-46.
    [19]郑郁善,梁鸿桑.台湾桂竹各器官生物量模型研究[J].竹子研究汇刊,1998,17(1):37-41.
    [20]林益明,李惠聪,林鹏,等.麻竹种群生物量结构和能量分布[J].竹子研究汇刊,2000,19(4):36-41.
    [21]林益明,林鹏,叶勇.绿竹种群生物量结构研究[J].竹子研究汇刊,1998,17(2):9-13.
    [22]梁达丽,黄克福.台湾桂竹叶面积指数与生物量关系的研究[J].竹子研究汇刊,1994,13(3):10-13.
    [23]林新春,方伟,李贤海,周昌平,钟晓峰,胡超宗.苦竹种群生物量结构研究[J].竹子研究汇刊,2004,23(2):12-14.
    [24]郑容妹,郑郁善,丁闽锋,林国新,陈礼光,王进丁.苦竹生物量模型的研究[J].福建林学院学报,2003,22(01):14-17.
    [25]张雪芳,陈启椿,朱勇.石竹地上部分生物量的研究[J].竹子研究汇刊,1999,18(3):59-61.
    [26]黄宗安.石竹各器官生物量回归模型研究[J].竹子研究汇刊,2000,19(4):54-57.
    [27]郑金双,曹永慧,代全林,等.茶秆竹林叶面积指数与生物量关系的研究[J].竹子研究汇刊,2001,20(1):53-57.
    [28]郑金双,曹永慧,肖书平,等.茶秆竹生物量模型研究[J].竹子研究汇刊,2001.20(4):67-71.
    [29]徐秋芳,姜培坤,董敦义,等.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49.
    [30]高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征[J].浙江林学院学报,2006,23(3):248-254.
    [31]黄芳,蔡荣荣,孙达.集约经营雷竹林土壤氮素状况及氮平衡的估算[J].植物营养与肥料学报,2007,13(6):1193-1196.
    [32]徐祖祥,陈丁红,李良华等.临安雷竹种植条件下土壤养分的变化[J].中国农学通报,2010,26(13):247-250.
    [33]郑蓉.绿竹不同产地土壤养分含量的综合分析[J].西南林学院学报,2009,29(5):46-50.
    [34]高志勤,傅懋毅.毛竹林土壤速效养分的季节变化特征[J].竹子研究汇刊,2008,27(2):25-31.
    [35]江泽慧主编.世界竹藤[M].辽宁科学技术出版社,2002,3-6.
    [36]周芳纯.竹林培育学[M].中国林业出版社,1998,1-31.
    [37]周芳纯.20世纪竹业的回顾和21世纪的展望[J].竹子研究汇刊,1999,18(4):1-4.
    [38]Grosser D, Liese W. on the anatomy of Asian bamboos with special reference to their Vascular bundles[J]. Wood Sci.Technol.1971,16(5):290-312.
    [39]马乃训.我国的竹类科学研究[J],竹子研究汇刊,1989,8(1):76-83.
    [40]周芳纯.中国观赏竹种简介[J].竹类研究,1993,49(2):68-87.
    [41]蒋亚芳.园林用竹的研究[J].竹类研究,1996,54(1):24-27.
    [42]周芳纯.世界竹类资源[J].竹类研究,1998,9(1):4-10.
    [43]梁泰然.中国竹林类型与地理分布特征[J].竹子研究汇刊,1990,9(4):1-16.
    [44]谭宏超,谭汝学,唐建明.甜龙竹生物学特性初探[J].云南林业调查规划设计,1998,7(1):39-41.
    [45]普晓兰.巨龙竹生物学特性的研究[J].南京林业大学学报,2004,12(2):93-96.
    [46]杨宇明,辉朝茂.莉竹生物学特性的研究[J].林业科学研究,1998,11(3):265-270.
    [47]董文渊.筇竹生长发育规律的研究[J].南京林业大学学报,2002,26(3):43-47.
    [48]金爱武,邵小根,邱永华,等.水竹的生物学特性[J].浙江林学院学报,1999,8(3):238-241.
    [49]胡超宗,张建明,胡明强.雷竹生物学特性研究[J].浙江林学院学报,1992,9(2):133-143.
    [50]张遵强.紫竹生物学特性研究[J].竹子研究汇刊,1999,(1):15-18.
    [51]辉朝茂.黄竹生物学特性的研究[J].西南林学院学报,1989,9(2):108-111.
    [52]刘庆,钟章成.斑苦竹无性系种群生长规律的研究[J].竹类研究,1997,56(1):71-76.
    [53]全国土壤普查办公室.中国土种志[M].农业出版社,1993:348-352.
    [54]杨剑虹.土壤农化分析[M]中国大地出版社,2008:26-75.
    [55]宇传华.SPSS与统计分析[M].电子工业出版社,2006:200-507.
    [56]Gami S K, Ladha J K, Pathak H, et al. Long-termchanges in yield and soil fertility in a twenty-year rice-wheat experimental in Nepal [J].Biol. Fertil. Soils,2001,34:73-78.
    [57]Mazzarino M J, Bertiller M B, Sain C et al. Soil nitrogendynamics in Northeastern Patagonia steppe under different precipitation regimes [J]. Plant and Soil,1998,202,125-131.
    [58]Stern W R.Nitrogen fixation and trasfer in intercropsystems[J].Field Crop Research,1993,34:335-356.
    [59]史作民,刘世荣.内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征[J].林业科学,2004,40(2):21-27.
    [60]徐秋芳,杨芳.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49.
    [61]俞元春.苏南丘陵不同林分类型土壤养分的动态特性[J].浙江林学院学报,1998,15(1):32-36.
    [62]陈立新.人工林土壤质量演变与调控[M].北京:科学出版社,2004.
    [63]郑郁善,陈礼光,洪伟.毛竹杉木混交林生产力和土壤性状研究[J].林业科学,1998,34(专刊1):16-24.
    [64]彭九生,黄小春,程平,等.江西毛竹林土壤肥力变化规律初探[J].世界竹藤通讯,2003,1(4):37-42.
    [65]徐秋芳,俞益武,钱新标,等.湖州市材用笋用毛竹林土壤理化性质比较分析[J].浙江林学院学报,2003,20(1):102-105.
    [66]楼一平,吴良如,邵大方,等.毛竹纯林长期经营对林地土壤肥力的影响[J].林业科学研究,1997,10(2):125-129.
    [67]Jungka,Claassen N.Availability in soil and acquisition by plants asthe basis for phosphorus and potassium supply to plants[J]. Z PflanzenernaerBodenk,1989,152:151-157.
    [68]蒋文伟,周国模,余树全,等.安吉山地主要森林类型土壤养分状况的研究[J].水土保持学报,2004,18(4):73-76.
    [69]王政权.森林土壤化学元素与环境因子关系的研究[J].东北林业大学学报,1989,17(5):20-25.
    [70]徐秋芳,姜培坤,董敦义,等.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49.
    [71]曾曙才,俞元春,徐锦才,等.枫树山林场不同林分类型土壤养分状况[J].江西林业科技,1997(3):27-29.
    [72]杨万勤,钟章成.缙云山森林土壤速效N、P和k时空特征研究[J].生态学报,2001,21(8):56-61.
    [73]郑郁善,洪伟编著.毛竹经营学[M].厦门大学出版社,1998.
    [74]曾希柏,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报1999,19(1):90-95.
    [75]刘燕,刘宇庆,左海军,等.扬州市邗江区耕地肥力质量状况分析[J].安徽农学通报,2009,15(7):99-100.
    [76]郭宝林,杨俊霞,李永慈,等.主成分分析法在仁用杏品种主要经济性状选种上的应用研究[J].林业科学,2000,36(6):53-56.
    [77]Narukawa,Y.,Yamamoto,S. Effects of dwarf bamboo and forest floor microsites on conifer seeding recruitment in a subalpine forest[J],Japan.Forest Ecology and Management..2002,63(1):61-70.
    [78].Taylor,A.H.,Reid,D.G.,et al. Spatial patterns and environmental associates of bamboo(bashania faugiana Yi)after mass-flowering in southwestern China[J]. Bulletin of Torrey Botany Club.1991,118:247-254.
    [79]Taylor, A.H., Qin, Z.S. Temperate bamboo forest dynamics and panda conservation in China, in G. Chapman, The Bamboos[M].New York:Academic Press.1997.
    [80]Taylor, A.H., Qin, Z.S. Ageing bamboo culms to assess bamboo population dynamics in panda habitat[J]. Environment Conservation.1993,20:76-79.
    [81]Taylor A.H., Qin Z.S. Tree regeneration after bamboo die-back in Chinese Abies-Betula forests[J]. Journal of Vegetation Science.1992,3:253-260.
    [82]Berndtsson R, BahriA, JinnoK.Spatial dependence ofgeochemical elements in asemiarid agricultural field[J].Geostatistical properties SoilSci SocAm J,1993,57:1323-1329.
    [83]郭晓敏,牛德奎,郭熙,等.奉新毛竹林土壤养分空间变异性研究[J].植物营养与肥料学报,2006,12(3):420-425.
    [84]Franzen D W, Hofman V L.Halvorson A D eta.l Sampling for sitespecitic farming:Topograghyand nutrient conside rations[J]. BetterCrops,1996,80(3):14-18.
    [85]杨伟真,吴明,陈双林.人工经营竹林生态效益发挥与维护研究述评[J].竹子研究汇刊,2003,22(2):41-43.
    [86]李宝林,李香兰.黄土高原林区土壤肥力综合评价排序方法探讨[J].水土保持学报,1995,9(1):64-70.
    [87]Berndtsson R, BahriA and JinnoK. Spatial dependence of geochemi-cal elements in a semiarid agricultural field IIGeo-statistical proper-ties [J]. SoilSc.i Soc.Am. J.1993,57:1323-1329.
    [88]Stolt M H, Baker J C, Simpson TW. Soil-landscape relationship sinVirginia I. Soil variability and parentmaterial uniformity [J]. Soil SciSocAm J,1993,57:414-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700