用户名: 密码: 验证码:
石羊河典型流域土地利用/覆被变化的水文生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河西地区是我国著名的商品粮基地之一,石羊河流域是河西地区农业经济较为发达的区域,也是我国西北干旱区生态极为脆弱的地带,区域内生态类型多样,但是由于独特的地理环境和气候以及人类发展过程的不合理开发的逐步影响,生态环境十分脆弱,区域内地下水位下降、土地沙化、盐渍化加重、植被退化等一系列生态环境问题,土地利用变化明显。石羊河上游水源涵养林是流域内主要的水源补给区,维系着石羊河流域的生态、经济发展的战略安全,对中、下游地区的水土保持与荒漠化防治起着举足轻重的作用。因此,深入研究石羊河上游地区土地利用/森林覆被变化的水文生态响应的研究对揭示石羊河流域森林覆被变化与流域内径流的关系和区域内生态建设具有重要价值。
     为了进一步研究西北地区森林景观格局的变化与径流的相互关系和调控作用,本论文选择石羊河上游的中部4条河,黄羊河、杂木河、金塔河、西营河四个为研究对象,位于武威城附近汇成石羊河干流流入红崖山水库后进入民勤盆地,构成“六河”水系。应用以1999-2009年Landsat/TM的为数据源,在桌面GIS支持下利用Fragstats软件解译出研究区各景观类型,通过六个水系流域土地利用变化和降水径流变化的趋势分析,阐述土地利用/森林覆被变化和降水变化对径流过程的影响,并利用分布式水文模型SWAT模拟分析流域不同土地利用/森林覆被变化的径流变化情况,以期为石羊河上游林区森林植被建设和水资源调控提供理论依据。主要研究成果如下:
     (1)研究时段内石羊河上游域呈草地增加,灌木林先增后减小,针叶林、灌木林和水域面积减少的趋势;石羊河上游流域草地、农田、居民地和裸岩增加,林地和河滩地减少的趋势;在6种土地利用类型中草地所占面积最大(草地、林地、耕地、冰川与积雪、寒漠),占整个流域面积的67%以上,灌木林有明显的增加趋势,冰川与永久积雪、草地和乔木林有所减少,农田和水域增幅都在一个百分点以内,土地利用类型转化没有呈现明显的规律性。草地的变化率是最小的,为3.46%。其次为水域、森林、冰雪、灌木、农田,最大的是裸地,其中变化率达到282.64%,草地景观的稳定性最高,裸地的变化最大,是上游景观类型中最不稳定的,从斑块的格局变化来分析:裸地的景观稳定性最高,草地次之,其次,以次为灌木、冰雪、水域、森林、农田。土地利用空间转移特征为:冰川与永久积雪→裸岩、草原→耕地、灌木→草地、水域→灌木、水域→草地、水域→农田、河滩地→居民地。
     (2)1999-2009年石羊河上游流域出山径流量在的波动中总体呈现微弱减少趋势,就四条河流的平均情况而言,1999、2000、2001、2002年为雨水枯水期,2003、2004、2005、2006为丰水期,但到2007年以来2008-2009年径流量逐渐减少。1999-2009年以来,降水整体呈明显上升趋势,降水变化倾向率为K=-0.298,自2003中期以来,降水量增加趋势非常明显。潜在的蒸发量也在波动中呈增加趋势,变化倾向率为K=-0.2026。石羊河上游流域径流量对气候变化响应明显,降水量的变化是影响径流量变化的主要因素:全球气候变暖,导致气温升高,石羊河上游流域高寒区域冰川与冰雪融水对出山径流量具有一定稳定作用。
     (3) SWAT模型在石羊河上游流域的模拟高海拔山区的径流量较为准确。对率定后模拟结果进行评价得出的径流量整体相关关系数较高,整体系数高于0.80,模拟效果良好,表明SWAT模型能够比较准确的模拟高海拔山区的径流量,具有很好的实用性。
     (4)黄羊河流域降水量、潜在蒸发量和径流量在时间上分布不均,降雨、蒸发主要集中在7、8月份,径流在7月达到峰值。降雨对径流以及气温对潜在蒸发量都有很大的影响,气温直接影响潜在蒸发量的大小;高蒸发区主要集中在北部浅山地区,该区域太阳辐射强,降雨量少、植物覆被率低等因素有关;流域内产流量主要受降雨影响,在空间分布上与降雨分布一致。
Hexi region is one of Chinese famous commodity grain bases, and the Shiyang River Basin in Hexi is a region with comparatively developed agricultural economy, as well as a region with extremely fragile ecology in the arid area of Northwest China. There are diverse ecological types within the region, but due to the unique geographical environment, climate and gradual impact of unreasonable exploitation in the process of human development, the ecological environment becomes very fragile. Worse still, a series of ecological environment problems such as groundwater recession, land sandification, aggravating salinization and vegetation degradation appear, and a change of land utilization is obvious. As the main source of water recharging in the Shiyang River Basin, forests in the upstream are key to the security of ecological and economic development in this basin and play an important role in water and soil conservation and prevention and control of desertification in the midstream and downstream basin. Therefore, in order to reveal the relations between forest coverage changes and runoff in the Basin and improve the ecological environment in the area, it has important value to do an in-depth study about the influence of land exploitation and forest coverage changes in the upper reaches of the Shiyang River on the hydrology and ecology in this area.
     To further study the correlation between the variation of the forest landscape pattern and the runoff in Northwest and their regulating effect, this paper selects4rivers in the central of the upstream of Shiyang River—Huangyang River, Zamu river, Jinta River, Xiying River as objects of study. The four rivers run together into Shiyang River's main stream. After flowing into Hongya Mountain Reservoir, the stream runs into Minqin Basin, forming the hydrographic system of six rivers. The application takes Landsat/TM in1999to2009as a data source. With the support of desktop GIS, it takes advantage of the software of Fragstats to interpret every landscape types. Through analyzing the variation trend of land utilization and the runoff of rain water in the six drainage basins, it elaborates the influence of the variation of land utilization, forest coverage and precipitation to the runoff formation process. Moreover, it takes advantage of the distributed hydrological model SWAT to simulate and analyze the runoff variation according to the variations of land utilization and forest coverage, hoping to offer theoretical foundations to the construction of forest coverage and the regulation of water resource in the forest region of the upstream area. The main research achievements are as follow:
     (1) During the study period, there is a tendency in the upstream area of Shiyang River that the area of grassland increases, the area of shrubwood first increases and then decreases, and the area of coniferous forest, shrubwood and water decreases. The upstream area of Shiyang River has a tendency of the grassland, farmland, settlement place and bare rocks increasing while the forest and flood land decreasing. Among the six kinds of land-use types—the grassland, the woodland, the plowland, the glacier, snows and the fell-field, the grassland takes up the largest area, which is above67%of the whole drainage area The shrubwood has an obvious tendency to increase, but the glacier and snows, the grassland and the arbor frost has reduced. The growing rates of farmland and water area are within one percentage. The conversion of land utilization has not showed the evident regularity. The grassland's rate of change is minimum, only3.46%; and the following ones are water area, forest, ice and snows, shrub and farmland. The maximum one is bare land, of which the changing rate reaches up to282.64%. The sTab.ility of grassland landscape is the highest, while the bare land changes most, turning into the least sTab.le one among the landscape types in the upstream area. Analyzing from the changing pattern of the patch, the result shows that the landscape sTab.ility of bare land is the highest, the grass ranks second. The following ones are shrubwood, ice and snows, water area, forest and farmland successively. The features of land-use space transfer is that the glacier and snows transfer to bare rocks; the grassland to plowland; the shrubwood to grassland; the water area to shrubwood, grassland and farmland; the flood land to settlement place.
     (2) From the general view, there was a weak decreasing trend for the runoff flowing away from mountains in the upstream area of Shiyang river basin during1999-2009. As to the average runoff of four rivers, there were drought periods in1999,2000,2001, and2002while in the year2003,2004,2005and2006there were rich precipitation. But the annual runoff slightly declined in two consecutive years (2008-2009) since2007. The precipitation showed a clear increase with the tendency rate of minus0.298(i.e. K=-0.298) from1999to2009as a whole. The rising trend is obvious since the mid of2003. The increasing trend of potential evaporation, with the tendency rate of minus2.206(i.e. K=-2.206). The runoff in the upstream of the Shiyang River gives an obvious response to climate change and the variation of runoff mainly depends on the precipitation; global warming causes the temperature to rise; the melt of the alpine glaciers and snows in the upstream of the Shiyang River basin plays a sTab.le role on the runoff flowing away from mountains.
     (3) In simulating the runoff of high elevation mountains on the upstream area of Shiyang River, the SWAT model is relatively accurate. According to evaluate simulating results after calibration, it proves to be that the overall correlation coefficient is relatively high, which is higher than0.8and the simulating effect is favorable. It indicates that SWAT model with its good practicability can be more accurate to simulate the runoff of high elevation mountains.
     (4) In the Huangyang River Basin, the precipitation, the potential evaporation and the volume of runoff are unevenly distributed in terms of time. Much rainfall and evaporation are in July and August while top runoff always comes in July. The precipitation has a significant impact on the runoff; so does the temperature on the evaporation. high evaporation is mainly in the northern low mountain range, because of the strong solar radiation, little precipitation and low forest coverage there; and the runoff is largely affected by the precipitation and shares the same spatial distribution with it.
引文
1.陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析[J].生态学报,1996,16(4):337-344.
    2.陈仁升,康尔泗,张济世.小波变换在河西地区水文和气候周期变化分析中的应用[J].地球科学进展,2001,16(3):339-345.
    3.陈隆亨,曲耀光.1992.河西地区水土资源及其合理开发利用.北京:科学出版社.
    4.丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报,1999,54(5):431-437.
    5.丁一汇.中国西北环境变化的预测[M].北京:科学出版社,2002:38-72.
    6.丁宏伟,魏余广,李爱军,等.疏勒河出山径流量变化特征及趋势分析[J].干旱区研究,2001,13(3):48-53.
    7.戴枫勇.SWAT模型在环太湖丘陵地区非点源污染研究中的应用[D].南京:河海大学,2007
    8.康尔洒,李新,张济世,等.甘肃河西地区内陆河流域荒漠化的水资源间题[J].冰川冻土,2004,26(6):657-667.
    9.胡隐樵.1990.河西戈壁小气候和热量平衡特征的初步分析.高原气象,9(2):197-206.
    10.聂中青,贾冰,丁贞玉,等.近50a葫芦河流域气候变化特征[J].兰州大学学报:自然科学版,2009,45(2):7-19.
    11.李文华.前言.自然资源学报,森林的水文气候效应学术研讨会专集,2001,(5):397
    12.李庆云.黄土区气候变化和高强度人类活动下流域径流泥沙响应研究[D].北京:北京林业大学博士论文.2011.
    13.李秀彬,马志尊,姚孝友等.北方土石山区水土流失现状与综合治理对策[J].中国水土保持研究,2008,6(1):9-15.
    14.李秀彬.全球环境变化研究的核心领域—土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-559.
    15.李月臣,何春阳.中国北方土地利用履盖变化的情景模拟与预测[J],2008,53(6):713-723.
    16.李占玲,徐宗学,巩同梁.雅鲁藏布江流域径流特性变化分析[J].地理研究,2008,27(2):353-361.
    17.李志,刘文兆,郑粉莉.基于CA-Markov模型的黄土塬区黑河流域土地利用变化[J].农业工程学报,2010,26(1):346-352.
    18.李子君,李秀彬,余新晓.基于水文分析法评估水保措施对潮河上游年径流量的影响[J].北京林业大学学报,2008,30(1):101-107.
    19.李子君,李秀彬,朱会义.降水变化与人类活动对密云水库入库泥沙量的影响[J].2008,30(1):101-107.
    20.李子君,李秀彬.近45年来降水变化和人类活动对潮河流域年径流量的影响[J].地理科学,2008,28(6):709-813.
    21.高前兆,王润.中国西北地区的水系统与环境问题[A].中国地理学会冰川冻土分会.第五届全国冰川冻土大会论文集[C].兰州:甘肃文化出版社,1996.901-909.
    22.马金珠,干刚,等.民勤盆地沙漠化、贫困化与水资源开发利用[J].自然资源学报.2006,21(4):551-58.
    23.任建民,怜彦卿,贡力.人类活动对内陆河石羊河流域水资源转化的影响[J].干旱区资源与环境.2007,21(8):7-11.
    24.程工菲,李元红,胡想全等.石羊河流域水资源利用及其对生态环境的影响[J].中国农村水利水电.2009,(10):15-8.
    25.王根绪,程国栋.干旱内陆河流域景观生态的空间格局分析—以黑河流域中游为例[J].兰州大学学报(自然科学版),1999,35(1):211-217.
    26.张建明.石羊河流域土地利用/土地覆被变化及其环境效应[D].兰州:兰州大学资源环境学院,2007.
    27.许娟,张百平,谭靖.青藏高原植被垂直带与气候因子的空间关系[J].山地学报,2009,27(6):663-670.
    28.刘绿柳,肖风劲.黄河流域植被NDVI与温度、降水关系的时空变化[J]生态学杂志,2006,25(5):477-481.
    29.魏伟,赵军,王旭峰.天祝高寒草原区NDVI、DEM与地表覆盖的空间关系[J].干旱区研究,2008,25(3):394-401.
    30.余新晓,牛健植,关文彬等.景观生态学[M].北京:高等教育出版社,2006.
    31.朱丽,秦富仓,姚云峰等SWAT模型灵敏性分析模块在中尺度流域的应用—以密云县红门川流域为例[J],水土保持研究,2011,18(1):161-165.
    32.罗格平,周成虎,陈曦.干早区绿洲景观斑块稳定性研究:以三江河流域为例[J].科学通报,2006,5(21):73-80.
    33.魏国孝,杨佳丽,徐涛,等.甘肃葫芦河流域径流变化的SWAT模型模拟[J].兰州大学学报:自然科学版.2009,45(S):1-7.
    34.周华坤,周立,赵新全等.青藏高原高寒草甸生态系统稳定性研究[J].科学通报,2006,1(51):63-69.
    35.任建民,怜彦卿,贡力.人类活动对内陆河石羊河流域水资源转化的影响[J].干旱区资源与环境.2007,21(8):7-11.
    36.毋兆鹏.艾比湖流域绿洲稳定性研究[J].干旱区资源与环境,2008,6(22):44-50.
    37.程工菲,李元红,胡想全等.石羊河流域水资源利用及其对生态环境的影响[J].中国农村水利水电.2009,(10):5-8.
    38.张国威,吴素芬,王志杰.西北气候环境转型信号在新疆河川径流变化中的反应[J].冰川冻土,2003,25(2):183-187.
    39.李小冰.基于SWAT模型的秃尾河流域径流模拟研究[D].西北农林科技大学硕士论 文.2010.
    40.李小雁.流域绿水研究的关键科学问题[J].地球科学进展,2008,23(7):707-712.北京林业大学学报,2008,30(增刊2):6-11.
    41.李子君,凌峰.潮河流域水土流失治理成效及存在问题分析[J].水土保持通报,2008,(3):189-192.
    42.梁国付.伊洛河流域景观动态及其径流效应研究—以伊河上游地区为例[D].河南:河南大学博士论文,2010.
    43.谢高地,甄霖,杨丽,等.泾河流域景观稳定性与类型转换机制[J].应用生态学报,2005,16(9):1693-1698.
    44.张杰、李栋梁.祁连山及黑河流域降雨量的分布特征分析[J].高原气象,2004,23(1):81-88.
    45.刘勇,邹松兵.祁连山地区高分辨率气温降水量分布模型[J].兰州大学学报(自然科学版).
    46.张立杰,赵文智,何志斌,胡广录.祁连山典型小流域降水特征及其对径流的影响[J].冰川冻土.2008.(30)5.
    47.崔保山,刘兴土.三江平原挠力河流域沼泽湿地生态特征变化研究[J].自然资源学报,2001,12(2):107-114.
    48.罗先香.三江平原挠力河流域沼泽湿地水系统研究[D].北京:中国科学院研究生院,2002.
    49.郭良才,白虎志,岳虎,等.祁连山区空中水汽资源的分布特征及其开发潜力[J].资源科学,2007,29(2):68-72.
    50.张士锋,贾绍风.降水不均匀性对黄河天然出山径流量的影响[J].地理科学进展,2001,12(4):354-363.
    51.张国威,吴素芬,王志杰.西北气候环境转型型号在新疆河川径流变化中的反应[J].冰川冻土,2003,25(2):183-187.
    52.马岚,魏晓妹.石羊河下游年径流序列的变异点分析[J].干旱地区农业研究,2006,24(2):174-177.
    53.杨建平,丁永健,陈仁升.长江黄河源区水文和气候序列周期变化分析[J].中国沙漠,2005,25(3):351-355.
    54.张士峰,华东,孟秀敬等.三江源气候变化及其对径流的驱动分析[J].地理学报,2011,66(1):12-24.
    55.蒋艳,夏军.塔里木河流域径流变化特征及其对气候变化的响应[J].资源科学,2008,28(1):83-88.
    56.康尔泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学D辑:地球科学,1999,29(增刊1):47-54.
    57.王钧,蒙古军.黑河流域近60年来径流变化及影响因素[J].地理科学,2008,28(1):83--88.
    58.徐宗学,李占玲.石羊河流域主要气象要素及径流变化趋势分析[J].资源科学,2007,29(5):121-128.
    59.王绍武.现代气候学研究进展[M].北京:气象出版社.2001.
    60.刘俊萍,田峰魏,黄强.黄河上游河川径流变化多时间尺度分析[J].应用科学学报,2003,21(2):117-121.
    61.施雅风,沈永平,李栋梁等.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社,2003.
    62.施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的型号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    63.杨针娘.中国冰川水资源[M].兰州:甘肃科学出版社,1991.
    64.徐国昌,董安祥.我国西部降水量的准三年周期[J].高原气象,1982,1(2):11-16.
    65.康尔泗,李新,张济世等.甘肃河西地区内陆河流域荒漠化的水资源问题[J].冰川冻土,2004,26(6):657-667.
    66.丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报.1999,54(5):431-436.
    67.徐国昌,董安详.我国西部降水量的准三年周期[J].高原气象.1982,1(2):11-16.
    68.秦大河.青藏高原的冰川与生态环境(M).气象出版社,1999,150-159.
    69.陈军锋,李秀彬.土地覆被变化的水文响应模拟研究.应用生态学报.2004,15(5):833-836.
    70.张银辉.SWAT模型及其应用研究进展.地理科学进展.2005,24(5):121-129.
    71.王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究.地理科学进展.2003,22(1):79-86.
    72.李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟.地理学报.2004,59(4):565-573.
    73.张永勇,夏军,王刚胜,蒋艳,赵长森.淮河流域闸坝调控对河流水质的影响分析.武汉大学学报(工学版).2007,40(4):31-35.
    74.李占玲,徐宗学.黑河流域上游山区径流模拟及模型评估[J].北京师范学报,2010,46(3):344-348.
    75.黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报,2004,28(2):22-25.
    76.孙瑞,张雪芹.基于SWAT模型的流域径流模拟研究进展[J].水文,30(3):28-31.
    77.于磊,朱新军.基于SWAT的中尺度流域土地利用变化水文效应研究[J].水土保持研究,2007,14(4):53-56.
    78.王宏,娄华君,田延山等.SWAT/GAMS联合模型在华北平原地下水库研究中的应用[J].世界地质,2005,24:368-372.
    79.张东,张万昌,朱利等.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434-440.
    80.刘昌明,李道峰,田英等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学 进展,2003,22(5):437-445.
    81.刘昌明,钟俊襄.黄土高原森林对年径流量影响的初步分析[J].地理学报,1978,33(2):113-126.
    82.庞靖鹏.非点源污染分布式模型—以密云水库水源地保护为例[D].北京:北京师范大学水科学研究院,2007.
    83.马荣田,周雅清等.晋中近49年气候变化特征及对水资源的影响[J].自然资源学报,2007.33(1):107-111.
    84.万荣荣,杨佳山.流域土地利用/覆被变化的水文效应及洪水响应[J].湖波科学,2004,16(3):259-264.
    85.任建民,忤彦卿,贡力.人类活动对内陆河石羊河流域水资源转化的影响[J].干旱区资源与环境,2007,21(8):7-11.
    86.南阳春,李国华.黄冈市水资源分析与利用[J].气象,2004,30(7):47-51.
    87.王海军,张勃等.基于GIS的祁连山区气温和降水的时空变化分析[J].中国沙漠,2009,29(6):1196-1202.
    88.邓慧平.气候和土地利用变化对水文水资源的影响研究[J].地球科学进展.2001,16(3):436-441.
    89.尹雄锐,夏军,张翔等.水文模拟与预测中的不确定性研究现状与展望[J].水力发电,2006,32(10):27-31.
    90.刘淑燕.黄土区典型流域土地利用和气候变化的水文生态响应研究[D].北京,北京林业大学博士学位论文,2010.
    91.邱海军,曹明明.土地利用景观格局指数的粒度效应——以黄龙县为例[J].地域研究与开发,2011,30(1):126-129.
    92.唐寅.运用SWAT模型研究小流域气候及土地利用变化的水文响应[D].北京林业大学硕士论文,2011.
    93. Alcamo,J. E.Kreileman, and R.Leemans (eds). Integrated scenarios of global change.Global Environmental Change[M]. Pergamon Press:London.1996.
    94. Andras Szollosi-Nagy Pierre Najlis,Gunilla Bjorklund.Assessing the world's Freshwater resources[J].Nature and Resources,1998,34(1):8-18.
    95. Braswell, H., Sehimel,5., LinderE. etal.TheresPonseofglobalterrestrial Eosystemst to in terannualtem Peraturevariability [J].Science.1997,278:868-872.
    96. BENISTON M. Climatic change:implications for thehydrological cycle and for water management(M). Dordrecht:Kluwer Academic Pubishers,2002.
    97. Buttle J M, Creed IF, Pomeroy J W.Advances in Canadian forest hydrology: 1995-1998[J].Hydrol Process,2000,14(9):1551-1578.
    98. BONAN G B.lang-atmosphere interactions for climate modele:coupling biophysical,biogeochemical,and ecosystem dynamic process(J).remote Sensing of Environmnt,1995,51(1):57-65.
    99. Beldring S.Multi-criteria validation of a precipitation-runoffrnodel[J]. Journal of Hydrology, 2002,257:189-201.
    100. C.Nunes and J.I. Auge(eds). Land-Use and Land-Cover Change (LUCC):Implementation Strategy[M].1999.
    101. Carter J M, Driscoll D G. Estimating recharge using relations between precipitation and yield in a mountainous area with large variability in precipitation[J]. Journal of Hydrology,2006,316:71-83.
    102. Carter J M, Driscoll D G. Estimating recharge using relations between precipitation and yield in a mountainous area with large variability in precipitation[J].Journal of Hydrology,2006,316: 71-83.
    103. Cahill A T. Significance of AIC differences for precipitation intensity distributions [J]. Advances in Water Resources,2003,26:457-46.
    104. Cahill A T. Significance of AIC differences for precipitationintensity distributions [J]. Advances in Water Resources,2003,26:457-46.
    105. Cruise J F, Limaye A S, Al-Abed N. Assessment ofimpacts of climate change on water quality in the south-eastern United States[J]. Journal of the American Wa-ter Resources Association,1999,35(6):1539-1550.
    106. Carter J M, Driscoll D G. Estimating recharge using relationsbetween precipitation and yield in a mountainous area withlarge variability in precipitation[J]. Journal of Hydrology,2006,316: 71-83.
    107. MA X,YASUNARI T, OHATA T, et,al. Hy-drological regime analysis of the Selenge riverbasin, Mongolia(J). Hydrol Processes,2003,17(14).
    108. Houghton, R.A. The worldwide extent of land-use change[M]. Bio-science,1994.44:305-313. Huang Bingwei. Modern Natural Geography[M]. Beijing:Science Press,1999:32-34.
    109. Turner II, B.L., W.B.Meyer and D.L.Skole. Global land use/landcover change:towards an integrated programof study[J]. Ambio,1994,23(1):91-95.
    110. WALKERB,STEFEN.W.The Terrestrial Biosphere and global change:implication for natural and managed ecosystem,a synthesis of GCTE and related research(m).IGBP Science,No,I,Stock-holm:IGBP.1997.
    111.Primo C, Galvan A, Sordo C M,et al. Statistical linguisticcharacterization of variability in observed and synthetic dailyprecipitation series[J]. Physica A,2007,374:389-402.
    112. Stanley A C, Misganow D. Detection of changes in stream flow and floods resulting from climate change fluctuations and land use drainage changes. Climate Change,1996, 32(4):411-421.
    113. Gassman P W, Reyes M R, Green C H, Arnold J G.The soil and water assessment tool:historical development,application,and future research direction.Transaction of the ASABE,2007,50(4):1211-1250.
    114. Arnold J G, Srinivasan, R, Muttiah R S, et al. Largearea hydrologic modeling and assessment part I:modeldevelopment[J]. Journal of the American Water Re-sources Association, 1998,34(1):73-89.
    115. Arnold J G, Fohrer N. SWAT2000:current capabilitiesand research opportunities in applied watershed model-ling[J]. Hydrological Processes,2005,19:563-572.
    116. Eckhardta K, Ulbrichb U. Potential impacts of climatechange on groundwater recharge and streamflow in acentral European low mountain range[J]. Journal of Hydrology, 2003,284:244-252.
    117. Rosenberg N J, Epstein D L, Wang D, et al. Posible impacts of global warming on the hydrology of the Ogal-lala aquifer region[J]. Climatic Change,1999,42(4):677-692.
    118. Hotchkiss R H, Jorgensen S F, Stone M C, et al. Reg-ulated river modeling for climate change impact assess-ment:the Missouri river[J]. Journal of the American Water Resources Association,2000,36(2):375-386.
    119. Luo Yi, He Chan -sheng, Sophocleous M, et al. Assessment of crop growth and soil water modules in S WAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin[J].Journal of Hydrology,2008,352:139-156.
    120. Fohrer N, Haverkamp S, Frede H GAssessment of the effects of land use patterns on hydrologic landscape functions:Develop-ment of sustainable land use concepts for low mountain range ar-eas[J].Hydrological Processes,2005,19 (3):659-672.
    121. Weber A, Fohrer N, Moller D. Long-term land use changes in a mesoscale watershed due to socio -economic factors effects on landscape structures and functions[J].Ecological Modeling,2001,140:125-140
    122. STOCKER T F, RAIBLE C C.Water cycle shifts gear(J). Nature,2005,434:830-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700