用户名: 密码: 验证码:
采煤沉陷区受损根系菌根修复机理及其生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究丛枝菌根真菌在修复植物受损根系中的机理,分析丛枝菌根真菌在野外大田条件下微生物复垦的生态效应,本文通过在室内设计量化伤根试验和在野外大田对接菌紫穗槐动态监测分析相结合的方法对其进行了详细研究。首先,在参阅大量国内外文献的基础上,分析了菌根修复受损根系的研究现状,讨论了丛枝菌根真菌在矿区生态修复监测中存在的实际问题和应用前景。针对采煤沉陷区植物根系存在机械拉伤的实际情况,提出基质内和基质外两种模拟伤根方式并利用五室培养法研究丛枝菌根真菌修复植物受损根系的机理;结果表明菌根真菌能够减缓根系损伤对菌根-植物共生体的负面影响。其次,在野外大田条件下对紫穗槐接种菌根真菌进行了微生物复垦实地应用,系统分析了2009-2012年间接菌和对照区紫穗槐的地上生物量、地下菌丝网络和土壤理化性状的变化规律;利用遥感数据与实地土壤和植物样品采集分析相结合的方法动态监测了微生物复垦的生态效应;引入主成分分析法对微生物复垦的生态效果进行了评价,结果表明接菌有利于矿区植被的恢复和生态重建。最后,对丛枝菌根真菌未来的研究方向,提出了参考建议。
In order to study the mechanism of arbuscular mycorrhizal fungi in repair of damaged plant root system, analyse the microbial reclamation ecological effect of arbuscular mycorrhizal fungi in the open field conditions, this paper through the indoor design quantitative root damage experiment and in the open field vaccinating on amorpha fruticosa various dynamic monitoring analysis method carries out combined detail study. Firstly, on the basis of referring to extensive foreign and domestic literature, analysis present research situation of arbuscular mycorrhizal repair damaged root, summarizes the ecological and physiological processes and characteristics, and discusses the the problems and application prospects in the mining area ecological restoration. According to the coal mining subsidence area plant roots exist mechanical strain of the actual circumstance, design the in/out matrix root damage mode test for arbuscular mycorrhizal fungi on plant root repair damaged mechanism research; the results show that mycorrhizal fungi can reduce the negative influence on mycorrhizal-plant symbionts. Secondly, in the open field conditions for various inoculation mycorrhizal fungi on the microbial reclamation field application, the system analyzed in the long period in2009-2012; and then bacteria and control area of various aboveground biomass, underground hypha network and physicochemical properties of soil changes in law, using remote sensing data and the field soil and plant sample collection and analysis method of combining the dynamic analysis of the microbial reclamation ecological effect, the introduction of principal component analysis to microbial reclamation ecological effect was evaluated, the results show vaccinating arbuscular mycorrhizal fungi is helpful to the vegetation restoration and ecological reconstruction in mining area. Finally, some suggestions are presented on the future direction of the arbuscular mycorrhizal fungi research.
引文
[1]杨逾,刘文生,冯国才.注充宽条带跳采全采采煤方法[J].煤矿开采,2005,10(5):1-3.
    [2]白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报.2006.22(6):67-70.
    [3]杨逾,刘文生,缪协兴,等.我国采煤沉陷及其控制研究现状与展望[J].中国矿业.2007,16(7):43-46.
    [4]张平仓,王文龙,唐克丽,等.神府—东胜矿区采煤塌陷及其对环境影响初探[J].水土保持研究,1994,1(4):35-44.
    [5]陈龙乾.矿区土地复垦与使用制度改革探讨[J].中国煤炭,1998,16(6):12-15.
    [6]周瑞平.鄂尔多斯地区采煤塌陷对风沙土壤性质的影响[D].呼和浩特:内蒙古农业大学,2008.
    [7]毕银丽,吴福勇,武玉坤丛枝菌根在煤矿区生态重建中的应用[J].生态学报,2005,25(8):2068-2073.
    [8]张曦沐,张国锋,马靖华.关于采煤沉陷区人居环境建设的思考[J].建筑科学.2010,20(11):103-105.
    [9]毕银丽,全文智,柳博会.;煤矸石堆放的环境问题及其生物综合治理对策fJ];金属矿山;2005,(12):61-64.
    [10]吴立新.论MGIS技术及制约煤炭工业可持续发展的三大外在因素[J].谢和平主编《可持续发展与煤炭工业工业报告文集》[M].北京:煤炭王业出版社,1998,4:40-48.
    [11]胡俊波.微生物对粉煤灰的改良及采煤塌陷地复垦的生态效应[D].杨凌:西北农林科技大学,2009.
    [12]冯广达.微生物联合对煤矿区固体废弃物的综合作用研究[D].杨凌:西北农林科技大学,2008.
    [13]胡振琪,刘杰,蔡斌,等.菌根生物技术在大武口洗煤厂矸石山绿化中的应用初探[J].能源环境保护.2006,(01):14-22.
    [14]臧荫桐,汪季,丁国栋,等.采煤沉陷后风沙土理化性质变化及其评价研究[J].土壤学报,2010,47(2):262-269.
    [15]刘润进,李晓林.丛枝菌根及其应用.北京:科学出版社,2000.
    [16]Frost S M, Stah D D, Williams S E. Long-term reestablishment of arbuscularmycorrhizal fungi in a drastical disturbed semiarid surface mine soil[J]. Arid Land Research and Management,2001,15(1):3-12.
    [17]冯固,杨茂秋,白灯莎.盐胁迫对菌根形成的影响及接种VA菌根真菌对植物生长的效应[J].应用生态学报,1999,10(1):77-82.
    [18]王燕.儿菜MAX途径相关基因的克隆及表达分析[D].重庆:重庆大学,2011.
    [19]Smith, S E. Read.j MycorrhirM symbiosis,2nd Ed San Diego. New York:Academic Press,1997.
    [20]张福锁,李春俭,等.根际微生态学-研究植物-土壤相互关系的新兴学科.土壤与植物营养研究新动态(第三卷).张福锁等主编.北京:中国农业出版社,1995,98-110.
    [21]Curl, E.A. and Truelobr, B. The Rhizosphere, Berlin Sprinyer Berlag.1986.
    [22]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [23]Rambelli, A. The Rhizosphere of mycorrhizae. In:Ectomycorrhizae (Marks, GL. and Koslowski, T.T., Eds.), 1973, pp.299-343. Academic Press, New York.
    [24]Johansson J, Paul L, Finlay RD. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture [J]. FEMS Microbiology Ecology.2004; 48:1-12.
    [25]Gianinazzi S, Schtlepp H, Barea JM, et al. Mycorrhizal technology in agriculture:from genes to bioproducts. Birkhauser,2002, Basel.
    [26]Mugnier J, Mosse B. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically [J]. Phytopathology 1987,77:1045-1050.
    [27]Paszkowski, U., Jakovleva, L. Boller, T. Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis [J]. Plant J.2006,47,165-173.
    [28]Genre, A., Chabaud, M., Faccio, A. et al. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota [J]. Plant Cell,2008,20(5) 1407-1420. ISSN:1040-4651.
    [29]Zocco D, Ingrid M. Van Aarle, et al. Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi Mycorrhiza [J].2011,21(5):363-374.
    [30]Kistner, C. et al. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis[J]. Plant Cell,2005,17,2217-2229.
    [31]Sally E. Smith, Facelli E, Suzanne Pope. Plant performance in stressful environments:interpreting new and established knowledge of the roles of arbuscular mycorrhizas [J]. Plant and Soil-PLANT SOIL,2010,326, (1):3-20.
    [32]Finlay, R. D. Ecological aspects of mycorrhizal symbiosis:with special emphasis on the functional diversity of interactions involving the extraradical mycelium [J]. J. Exp. Bot.2008,59,1115-1126.
    [33]Solaiman, M. D, Saito, M. Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry [J]. New Phytol.1997,136,533-538.
    [34]Wu Fasi, Dong Maoxing, Liu Yongjun, et al. Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China[J]. Plant and Soil-PLANT SOIL 2011,342(1):233-247.
    [35]van der Heijden, MGA, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature,1998,396:69-72.
    [36]Horton, T.R. van der Heijden. The role of symbiosis in seedling establishment and survival. Seedling Ecology and Evolution (Eds M.A.Leck, V.T. Parker & R.L. Simpson).2008, pp.189-214, Cambridge University Press, Cambridge, UK.
    [37]Simard, S.W.. Perry, D.A., Smith, J.E. et al. Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii[J]. New Phytologist,1997,136,327-340.
    [38]James D. Bever, Ian A. Dickie, Evelina Facelli, et al. Rooting theories of plant community ecology in microbial interactions[J]. Trends in Ecology and Evolution,2010,25(8):468-478.
    [39]Leake, J.R., Johnson, D.. Donnelly, D.P., et al. Networks of power and influence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning [J]. Canadian Journal of Botany, 2004,82,1016-1045.
    [40]Frey-Klett P, Churin JL, Pierrat JC, et al. Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries[J]. Soil Biology and Biochemistry,1599,31:1555-1562.
    [41]Genre, A., Chabaud, M., Timmers, T., et al. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection [J]. Plant Cell,2005,17,3489-3499.
    [42]Siciliano, V. et al. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus [J]. Plant Physiol,2007,144,1455-1466.
    [43]Genre, A., Chabaud, M., Faccio, A., et al. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota[J]. PlantCell,2008,20,1407-1420.
    [44]Gus-Mayer, S., Naton, B., Hahlbrock, K. et al. Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc. Natl Acad. Sci. USA 1998,95,8398-8403.
    [45]Mosse B...The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Transactions of the British Mycological Society,1959, 42:273-286.
    [46]Besserer A, Becard G, Jauneau A. GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism [J]. Plant Physiology-PLANT PHYSIOL,2008,148(1):402-413.
    [47]Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas [J]. Plant Physiology 2000,124:949-958.
    [48]Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching [J]. Nature,2008, 455(7210):189-194.
    [49]Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J].. Nature,2008,455(7210):195-200.
    [50]Catherine Rameau. Strigolactones, a novel class of plant hormone controlling shoot branchingComptes Rendus Biologies-C R BIOL [J].2010,333(4):344-349.
    [51]Akiyama K, Hayashi H. Strigolactones:chemical signals for fungal symbionts and parasitic weeds in plant roots [J]. Ann Bot (Lond),2006,97(6):925-931.
    [52]David R. Nelson. Plant cytochrome P450s from moss to poplar Phytochemistry Reviews-PHYTOCHEM REV [J].2006,5(2):193-204.
    [53]Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea [J]. Genes Dev,2003,17(12):1469-1474.
    [54]陈彩艳,邹军煌,张淑英,等.独角金内酯能抑制植物的分枝并介导植物与枞枝真菌及寄生植物间的相互作用[J].中国科学C辑:生命科学,2009,39(6):525-533.
    [55]Elias K S, Safir G R. Hyphal elongation of glomus fasciculatus in response to root exudates [J]. Appl Environ Microbiol,1987,53(8):1928-1933.
    [56]Daei G, Ardekani M., Rejali F, Teimuri S., Miransari M. Alleviation of salinity stress on wheat yield, yield components,and nutrient uptake using arbuscular mycorrhizal fungi under field conditions[J]. Journal of Plant Physiology,2009,166,217-225.
    [57]Miransari M., Smith D.L. Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures [J].Journal of Plant Interactions,2008,3,287-295.
    [58]Evelin H.. Kapoor R., Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:a review [J]. Annals of Botany,2009,104,1263-1280.
    [59]张淑彬.土壤中重金属镉铅对丛枝菌根真菌生长的直接影响研究[D].北京:中国农业大学,2005.
    [60]Rivera-Becerril F., van Tuinen D., Martin-Laurent F.,et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress[J]. Mycorrhiza,2005,16,51-60.
    [61]Wulf A, Manthey K, Doll J, Perlick A, et al. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula[J], Molecular Plant-Microbe Interactions,2003,16,306-314.
    [62]Sudova R., Doubkova P., Vosatka M. Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress:combination of plant clones and fungal isolates from contaminated and uncontaminated substrates [J]. Applied Soil Ecology,2008,40,19-29.
    [63]Cardoso I.M., Kuyper T.W. Mycorrhizas and tropical soil fertility [J]. Agriculture, Ecosystems and Environment,2006,116,72-84.
    [64]Massoumou M., Van Tumen D, Chatagnier O, Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota[J]. Mycorrhiza,2007, 17(3):223-234.
    [65]Rillig M.C. Arbuscular mycorrhizae and terrestrial ecosystem processes [J]. Ecological Letters,2004,7, 740-754.
    [66]Bedini S, Turrini A, Rigo C, et al.Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice [J]. Soil Biology & Biochemistry,2010,42(5):758-765.
    [67]冯欣欣,唐明;龚明贵,等.黄土高原狼牙刺丛枝菌根与球囊霉素的空间分布[J].西北农林科技大学学报(自然科学版),2011,39(6):96-101.
    [68]Tian C.Y., Feng G., Li X.L., Zhang F.S. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants[J]. Applied Soil Ecology,2004,26,143-148.
    [69]辛国荣,孙斌,黎国喜,等.意大利黑麦草菌根际效应研究[J].中山大学学报(自然科学版),2008,5:79-84.
    [70]孙书囝.神东公司采煤沉陷区文冠果育苗造林技术研究[D].呼和浩特:内蒙古农业大学,2010.
    [71]Juniper S,Abbott L K.Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi[J].Mycorrhiza,2006,1:24-28.
    [72]Gupta R, Krishnamurthy KV. Response of mycorrhizal and non-mycorrhizal Arachis hypogaea to NaCl and acid stress.Mycorrhiza,1996,6:145-149.
    [73]Becker D, Stanke Rr, Fendrik I, et al. Expression of the NH4+-transporter gene LeAMTl;2 is induced in tomato roots upon association with N2-fixing bacteria, Planta[J],2002,215(3):424-429.
    [74]Blanke v, Wagner M, Renker C, et al. Arbuscular mycorrhizas in phosphate-polluted soil:interrelations between root colonization and nitrogen [J], Plant and Soil-PLANT SOIL,2011,343(1):379-392.
    [75]毕银丽,李晓林,丁保健.水分胁迫下接种菌根对玉米抗旱性的影响.干旱地区农业研究,2003,21(2):7-12.
    [76]Khalvati M, Bartha B, Dupigny A, et al. Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress [J]. Journal of Soils and Sediments,2010, 10(1):54-64.
    [77]宋福强.大青杨丛枝菌根生理生态学研究[D].哈尔滨:东北林业大学,2002
    [78]梁泉,廖红,严小龙.植物根构型的定量分析[J].植物学通报,2007,24,(6):695-702
    [79]程建峰,潘晓云,刘宜柏.作物根系研究法最新进展[J].江西农业学报,1999,11(4),55-59
    [80]毛齐正,杨喜田,苗蕾.植物根系构型的生态功能及其影响因素[J].河南科学,2008,26(2):172-176.
    [81]袁丽环,闫桂琴,朱志敏.丛枝菌根(AM)真菌对翅果油树幼苗根系的影响[J].西北植物学报,2009,29(3):058-0585.
    [82]宋福强,杨国亭,孟繁荣,等.丛枝菌根(AM)真菌对大青杨苗木根系的影响[J].南京林业大学学报(自然科学版),2005,29(6):35-39.
    [83]Schaffer G F. and R. L. Peterson. Modification to clearing methods used in combination with vital staining of roots colonized with VAME Myeorrhiza,1993,4:29-35.
    [84]Maldonado-Mendoza I.E and M. J Harrison.Regulation of the expression of a phosphate transporter from Glomus intraradices in response to exogenous levels of phosphate. Noble Foundation Plant Biology 10 year Symposium,1999, October:7-10.
    [85]Bolan N.S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants [J]. Plant Soil,1991,134:189-207.
    [86]Harley K and L. Leyton. The significance of myeorrhiza,1989,92:129-139.
    [87]毕银丽,汪洪刚,李晓林.丛枝菌根真菌与转移Ri T-DNA胡萝卜根器官双重培养的形态学研究[J].菌物系统,1999,18(2):159-163.
    [88]Victoria A. Borowicz. The impact of arbuscular myeorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia,2010,53:265-270.
    [89]Cairns J J r. Restoration ecology. Encyclopedia of Environmental Biology,1995,3:223-235.
    [90]Jordan WR E. "Sunflower Frest":ecological restoration as the basis for a new environmental paradigm. In: Baldw in ADJ, ed. Beyond P reservation:Restoring and Inventing Land scape. Minneapolis:University of Minnesota Press,1995.17-34.
    [91]Peng S L. Restoration ecology and restoration of tropical rain forest. World Science Study and Development, 1997,19 (3):216-219.
    [92]Jackson L L, Lopoukine D and Hillyard D. Ecological restoration:a definition and comments [J]. Restoration Ecology,1995,3(2):71-75.
    [93]Chen H, Zheng Y and Zhu Y. Phosphorus:a limiting factor for restoration of soil fertility in a new ly reclamated coal mined site in Xuzhou, China [J]. Land Degradation & Development,1996,9 (2):176-183.
    [94]Wei Z Y, Hu Z Q, Bai Z K. The loose heaped ground method of soil reconstruction on the stack piles of open pit coalmine [J]. Journal o f China coal Society.2001,26 (1):18-21.
    [95]Bi Y L, Hu Z Q. Respective of applying VA mycorrhiza to reclamation. In:Mine L and Reclamation and Ecological Restoration f or 21Century:Beijing International symposium on land reclamation. Beijing:China Coal Industry Publishing House,2000.555-559.
    [96]王红新,李富平,张军.矿区微生物复垦技术综述.金属矿山(增刊)2004,8,96-99.
    [97]Taylor D L, Bruns T D, Leake J R, et al.Mycorrhizal specificity and function in myco-heterotrophic plants. Ecological Studies 157:Mycorrhizal Ecology (eds M.G.A. van der Heijden & I. Sanders)[J]. Springer Verlag, Heidelberg, Germany,2002:375-413.
    [98]Bago A, Cano C, Toussaint J, et al.Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures[J], Mycorrhiza,2006,16(6):429-436.
    [99]张淑彬,纪晶晶,王幼珊,等.内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选[J].生态学报,2009,29(7):3729-3736.
    [100]刘惠欣,张俊英,李富平.接种丛枝菌根真菌对铁尾矿中大豆生长的影响[J].环境科学与技术,2009,32(4):74-76.
    [101]杜善周,毕银丽,吴王燕,等.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报,2008(4):113-116.
    [102]杜善周,毕银丽,王义,等.丛枝菌根对神东煤矿区塌陷地的修复作用与生态效应[J].科技导报,2010,28(7):41-44.
    [103]Frost SM, Stahl D D, Williams S E. Long-term re-establishment of arbuscular mycorrhizal fungi in a drastical disturbed semiarid surface mine soil[J], Arid Land Research and Management,2001,15(1):3-12.
    [104]Noyd R K, Pfleger F L, Norland M R. Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclaimation of taconite iron retailing[J]. Plant and S oil,1996,179:89-97.
    [105]Daft M J, Hacskaylo E. Arbuscular mycorrhizas in the anthracite and bituminous coal wastes of Pennsylvania[J].Joumal of Applied Ecology,1976,13:523-531.
    [106]DaftM J, Hacskaylo E. Growth of endomycorrhizal and non-mycorrhizal redmaole seddlings in sand and anthracite spoil [J]. Forest Science,1977,23:207-216.
    [107]Call C A, Davies F T. Effects of vesicular-arbuscular mycorrhizae on survival and growth of perennial grasses in lignite overburden in Texas [J]. Agriculture Ecosystems and Environment,1988,24 (4):395-405.
    [108]Lausch A, Biedermann F. Analysis oftemporal changes in the Lignite mining region south of Leipzig using GIS and landscape metrics[A]. In:Clare T, Howard D.eds. Quantitative approaches to landscape ecology[J].06th-10th September 2000, Bangor,IALE(UK),2000:71-83.
    [109]杜培军,胡召玲,郭达志,等.工矿区陆面演变监测分析与调控治理研究[M].北京:地质出版社,2005
    [110]殷作如,邓智毅.开滦矿区采煤塌陷地生态环境综合治理途径[J].西安科技学院学报,20(3):71-76.
    [111]胡振琪,魏忠义.煤矿区采动与复垦土壤存在的问题与对策[J].能源环境保护,2003,17(3):3-10.
    [112]邹琦.植物生理生化实验指导[M].北京:中国农业出版社.2000:62-63.
    [113]Phillips J M, Haymen D S. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the British Mycological Society, 1970,55(1),158-161.
    [114]Jakobsen I, Abbott L K, Robosen A D. External hyphae of vesicular-arbuscular mycoorhizal fungi associated with Trifolium subterraneum L. Spread of hyphae and phosphorus inflow into root [J]. New Phytol. 1992,120:371-380.
    [115]关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1986,274-276.
    [116]鲍士旦.土壤农化分析[M].北京:农业出版社,2000.
    [117]高学田.神府东胜矿区开发前后侵蚀环境演变研究[J].水土保持学报,1999(1):92-93.
    [118]吴艳茹.半干旱地区采煤塌陷对土壤性质影响进展研究[J].内蒙古师范大学学报(哲学社会科学版),2011,40(5):109-112.
    [119]喻媖;张俊华;刘胜祥;方芳;.生态影响与非污染生态影响两个导则对比研究[J]环境科学与技术.2012,35(09):155-162.
    [120]陈士超,左合君,胡春元,等.神东矿区活鸡兔采煤塌陷区土壤肥力特征研究[J].内蒙古农业大学学报,2009,30(2):115-120.
    [121]毛齐正.切根对侧柏幼苗根构型的影响[D].郑州:河南农业大学,2008.
    [122]刘飞,陆林.采煤塌陷区的生态恢复研究进展[J].自然资源学报,2009,24(4):612-620.
    [123]陈保冬.丛枝菌根减轻宿主植物锌、镉毒害机理研究[D].北京:中国农业大学,2002.
    [124]陈华丽,陈刚,李敬兰.湖北大冶矿区生态环境动态遥感监测[J].资源科学,2004,26(5):132-138.
    [125]张小卫.煤矿井工开采地表沉陷预测与保护、修复对策研究[D].西安:西北大学,2011.
    [126]夏素华.神府东胜矿区马家塔露天矿土地复垦模式及效应[J].资源环境保护,2005,19(2):50-51.
    [127]张汉雄.神府东胜煤田采煤对生态脆弱区环境灾害的影响与对策[J].环境科学,1996,17(6):77-80.
    []28]王百群,张卫.神府煤田大柳塔的土壤资源及其养分评价[J].水土保持研究,19952(1):107-111.
    [129]胡振琪,魏忠义.煤矿区采动与复垦土壤存在的问题与对策[J]能源环境保护,2003,17(3):3-10
    [130]渠俊峰.煤矿区水土资源配置型复垦理论与方法研究[D].徐州:中国矿业大学,2010.
    [131]神东煤炭集团公司www.shendong.com.cn
    [132]杜善周.神东矿区大规模开采的地表移动及环境修复技术研究[D].北京:中国矿业大学(北京),2010.
    [133]郭霞,刘雪云,周志宇,等.应用灰色关联度分析法综合评价啃食强度对紫穗槐营养价值的影响[J].草业学报,2012,21(2):196-204.
    [134]中国科学院土壤研究所微生物室.土壤微生物研究方法[M].北京:科学出版社,1985:40-59.
    [135]Wright S F, Franke S M, Morton J B, Upadhyaya A. Time course study and partial characterization of a protein on hyphae of arbuscular mcyrrohzal fungi during active colonization of roots[J]. Plant and Soil,1996, 181:193-203.
    [136]宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响[J]应用与环境生物学报,2000,6(2):]71-175
    [137]段正锋.岩溶区土地利用方式对土壤有机碳及团聚体的影响研究[D].重庆:西南大学,2009
    [138]李银科,李小刚,张平良等.土地利用方式对荒漠土壤有机碳和养分含量的影响[J].甘肃农业大学学报,2007,42(2):103-107.
    [139]王健波,李银生,邱江平,等.崇明岛典型土地利用方式对土壤有机碳和酶活性的影响[J].生态环境学报,19(8):1850-1854.
    [140]龚伟川.南天然常绿阔叶林人工更新后土壤生态特性研究[D].雅安:四川农业大学,2006
    [141]雷少刚.荒漠矿区关键环境要素的监测与采动影响规律研究[D].徐州:中国矿业大学,2009
    [142]Graham J H, Linderman R G. Development of external hyphae by different isolates of mycorrhizal Glomus spp. In relation to root colonization and growth of Troyer citrange [J]. New Phytol,1982,91:183-189.
    [143]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展[J].生态学报,1999,19(2):270-277.
    [144]蒋有绪.热带林生态系统研究进展及方法札记—热带林的根系分类及根量测定[J].热带林业科技,1987,(2):53-55.
    [145]Barua A, Gupta S D, Mridha M A U, et al.Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil[J]. Journal of Forestry Research,2010,21(4):423-432.
    [146]Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants:understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J], Plant Soil,2009,320:1-41.
    [147]李晓林,周文龙,曹一平.VA菌根菌丝对紧实土壤中磷的吸收[J].土壤学报,1994,31(增刊):1952-2021.
    [148]宋福强,杨国亭,孟繁荣,等.丛枝菌根化大青杨苗木根际微域环境的研究[J].生态环境,2004,13(2):211-216.
    [149]刘灵,廖红,王秀荣,等.磷有效性对大豆菌根侵染的调控及其与根构型磷效率的关系[J].应用生态学报,2008,19(3):564-568.
    [150]彭思利,申鸿,张宇亭,等.不同丛枝菌根真菌侵染对土壤结构的影响[J].生态学报,2012,32(3):863-870.
    [151]孙日利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报,2002,22(3):52-53.
    [152]陈龙乾,邓喀中,赵志海,等.开采沉陷对耕地土壤物理特性影响的空间变化规律[J].煤炭学报,1999,24(6):586-590.
    [153]Brookes P. C, M cGrath S. P. Effects of metal toxicity on the size o f the soil microbia biomass. [J]. Journal of Science,1984,35(2):341-346.
    [154]Marleau J, Dalpe Y, St-Amaud M, et al. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi[J]. BMC Evolutionary Biology,2011,11(1):1-11.
    [155]Sasvari Z, Homok L, Posta K.The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture[J], Biology and Fertility of Soils,2011,47(2):167-176.
    [156]李俊英,傅宝春,马迎春.树木细根生产与周转研究及方法评[J].山西农业大学学报(自然科学版),2006,26(5):1-6.
    [157]郭晓明,赵同谦.采煤沉陷区耕地土壤微生物数量及酶活性的空间特征[J].环境工程学报,2010,12(4):2837-2842.
    [158]贺学礼,白春明,赵丽莉.毛乌素沙地沙打旺根围真菌的空间分布[J].应用生态学报,2008,19(12):2711-2716.
    [159]Maiti D, Variar M,Singh R K. Optimizing tillage schedule for maintaining activity of the arbuscular mycorrhizal fungal population in a rainfed upland rice (Oryza sativa L.) agro-ecosystem[J]. Plant and Soil. 1998,198:97-107.
    [160]David PJ, Garamszegi S, Beltran B.Glimalin extraction and measurement. Soil biology and Biochmistry, 2008,40:728-739.
    [161]Mathur N, Bohra J S S, Quaizi A, et al. Arbuscular Mycorrhizal Fungi:A Potential Tool for Phytoremediation [J]. Journal of Plant Sciences,2007,2(2):127-140.
    [162]邓书斌;陈秋锦;董彦卿,等.基于ENVMDL的环境小卫星影像处理方法研究[A].中国遥感应用协会2010年会暨区域遥感发展与产业高层论坛论文集.2010-09-18.
    [163]董莹莹,王纪华,李存军,等.基于主成分分析的叶面积指数尺度效应[J].农业工程学报,2012,28(11):164-169.
    [164]赵虎,裴志远,马尚杰,等.利用HJ-1-A/BCCD2数据反演冬小麦叶面积指数[J].农业工程学报,2012,28(10):172-176.
    [165]袁金国,牛铮,王锡平.基于FLAASH的Hyper ion高光谱影像大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185.
    [166]郝建亭,杨武年,李玉霞,等.基于FFLAASH的多光谱影像大气校正应用研究[J].遥感信息,2008,1:78-81.
    [167]杨校军,陈雨时,张晔FLAASH模型输入参数对校正结果的影响[J].遥感信息,2008,6:32-37.
    [168]郭云开,王钦,陈正阳,等.基于遥感技术的土地复垦工程量评价研究[J].测绘通报,2008,4,(373):17-20.
    [169]何春阳,周海丽,于章涛,等.区域土地利用/覆盖变化信息处理分析[J].资源科学,2002,24(2):64-70.
    [170]Soltanmohammadi H, Osanloo M, Bazzazi A A. An analytical approach with a reliable logic and a ranking policy for post-mining land-use determination [J]. Land Use Policy,2010,27(2):364-372..
    [171]Simard, S.W., DA. Perry, M.D.Jones, D.D. Myrold, D.M. Durall & R.Molina. Net transfer for carbon between ectomycorrhizal trees species in the field [J]. Nature,1997,388:579-582.
    [172]林海明,张文霖.主成分分析与因子分析的异同和SPSS软件统计研究[J],2005(3):65-69.
    [173]卞正富,张国良.生物多样性指数在矿山土地复垦中的应用,煤炭学报,2000(01):76-81.
    [174]刘飞,陆林采煤塌陷区的生态恢复研究进展[J].自然资源学报,2009,24(4):612-620.
    [175]毕如田,白中科,李华,等.基于RS和GIS技术的露天矿区土地利用变化分析[J].农业工程报,2008,24(12):201-204.
    [176]胡振琪,陈宝政,陈星彤.应用探地雷达检测复垦土壤的分层结构[J].中国矿业,2005,14(3):73-75.
    [177]叶宝莹,白中科,包妮沙.矿区土地复垦遥感动态监测体系构建[A].纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE2009)论文集.2009-08-22
    [178]马建军,李青丰,张树礼.灰色关联分析在黑岱沟露天煤矿土壤质量评价中的应用[J].干旱区资源与环境,2007,21(7):125-129.
    [179]杨秀红,胡振琪,张学礼.粉煤灰充填复垦土地风险评价及稳定化修复技术[J].科技导报,2005,3:33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700