用户名: 密码: 验证码:
大鲵遗传多样性及皮肤附属物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大鲵作为中国特有濒临灭绝的二级保护动物,国家已经建立16个专业大鲵保护区及一些自然保护区(大鲵列为保护名录),对大鲵的适生环境和人工繁殖技术开展研究,逐步建立起大鲵人工繁育体系,有效地保护该物种。
     目前大鲵保护存在一些不足:(1)大鲵种质资源混乱,近亲繁殖,导致大鲵种质的退化,不利于物种的长期生存,有必要对人工养殖大鲵的亲本进行遗传多样性及亲缘关系分析,辨别其混乱的亲本,提供合理的保护策略。(2)缺乏可持续保护方法,大鲵皮肤附属物分泌物和蜕皮是大鲵自然生理特征,可以多次产生,属于可以利用的可再生物质,对这部分加以研究,利用好这部分物质,更适合大鲵资源的长远保护。本课题以大鲵皮肤附属物分泌物和蜕皮为研究对象,建立了非伤害取样技术提取基因组DNA,筛选SSR标记位点,分析了大鲵亲本的遗传多样性和亲缘关系,为制定大鲵长远保护策略提供依据。对其组成及理化性质进行分析,并结合动物模型评价其具体功效,为充分合理利用大鲵皮肤附属物提供支持:
     (1)大鲵亲本的遗传多样性分析:建立了非损伤大鲵样本组织替代技术,从大鲵分泌物和蜕皮中提取大鲵基因组DNA。通过扩增线粒体12S序列证实该方法获得的DNA可以用于遗传结构分析。从这种组织样本获得的基因组DNA扩增出34个微卫星序列,其中10个微卫星序列具有良好的多态性,用于大鲵资源遗传多样性分析。张家界大鲵核心保护区人工养殖大鲵亲本具有丰富的遗传多样性,聚类分析属于4个种群。
     (2)分泌物的理化性质及活性分析:为高度含水的凝胶样物质,主要成分为蛋白质。仅溶于5%(V/V)醋酸溶液和蛋白酶溶液,具有很强的粘性,其平均分子量为3.61×106。分泌物可溶组分含有蛋白水解酶活性和磷脂酶A2活性。没有明显抗菌活性,仅在早期有微弱抑制微生物生长的活性。具有抗氧化特性,对DPPH和ABTS清除效果显著,在0.6mg/ml其清除活性达到了90.83%和93.12%,热变性制备的多肽在0.05mg/ml对ABTS的清除活性达到了70.90%。
     (3)大鲵分泌物的毒性及抗肿瘤活性:大鲵皮肤分泌物可溶组分对小鼠有致死活性,LD50(腹腔)值为32.95mg/kg,其活性组分为热不稳定蛋白质。解剖死亡个体发现肺部组织发生明显变化,有充血现象,抽搐可能会导致小鼠死亡。大鲵分泌物对小鼠产生一些局部影响,可诱导小鼠显著的疼痛活动,促进血管通透性增加,导致持续性肿胀,没有引起明显的出血活性,可使肌肉组织肿胀坏死。体内抑制腹水瘤细胞的生长,减少腹水瘤细胞的数量,延长存活期,分泌物水溶物能明显改善小鼠血液指标,对肝脏结构没有带来明显损伤。体外对肿瘤细胞和正常细胞均有抑制生长活性,其抑制活性对不同的细胞存在差异,抑制活性机制不是促使肿瘤细胞的凋亡。
     (4)大鲵蜕皮的组成及治疗烧烫伤的活性:大鲵蜕皮含有丰富的氨基酸、矿物元素和8种脂肪酸。大鲵蜕皮大剂量软膏可明显提高创面愈合率,缩短创面愈合时间,加速创面愈合,抑制促炎因子活性可能是发挥作用的机制之一。
The Chinese Salamander Andrias davidianus is a specific endangered animal as the second-class protected species. We had established16giant salamander protected areas and some nature reserves (giant salamander as a protected directory). The research on the suitable environment and artificial propagation of the giant salamander is conducted. It has gradually established the artificial breeding system, which can protect the species effectively.
     There are some deficiencies in current protection of giant salamander:(1) The confusion of germ plasm resources and inbreeding leads to the degradation of giant salamander, which is not conducive to long-term survival of the species. So it's necessary to analyze genetic diversity and phylogenetic relationships among the parents of the artificial breeding of Giant Salamander to provide reasonable protection strategy.(2)There's lack of sustainable protection approach. It is a natural physiological phenomenon that giant salamander produces the skin appendages such as shedding and secretion many times in life, belonging to the renewable materials for rational development and utilization. The rational use of these is more suitable for the long-term protection of giant salamander resources. This study establishes a non-injury sampling technique to extract genomic DNA using the skin appendages like sheding and secretion of giant salamander. And then we screen marker-site of SSR and analyze the genetic diversities and phylogenetic relationships of giant salamander parents, which provide the basis for the long-term protection strategy of the giant salamander. It provides us the support for the full and rational use of the giant salamander skin appendages with the analysis of their composition and physicochemical properties, combing the animal model to evaluate the specific effect:
     (1) The genetic diversity analysis:Skin secretion and shedding is a good source for non-destructive genetic sampling in the giant salamande. The amplification of the12S sequences confirmed that the DNA obtained can be used for the analysis of genetic structure.34microsatellite sequences was amplified from tissue samples of genomic DNA, and10microsatellite sequence with polymorphism which can be used in the analysis of genetic diversity of giant salamander resources. The artificial breeding of giant salamander parents in Zhangjiajie giant salamander core protected areas have a wealth of genetic diversity, whose cluster analysis shows it's fall into four populations.
     (2) Physical and chemical properties of the secretion and activity analysis:highly hydrated gel material, the main component is protein, soluble in only5%(V/V) acetic acid and protease solution. It has a strong viscosity; average molecular weight is3.61×106. The secretions of the soluble fraction have the protease hydrolysis activity and phospholipase A2activity. It does not have significant antibacterial activity and only weak inhibition of microbial growth activity at an early stage.The oxidation resistance characteristics clearly significant effect on DPPH and ABTS scavenging activity,90.83%and93.12%at0.6mg/ml. The peptides by thermal denaturation at0.05mg/ml are the ABTS scavenging activity with70.90%.
     (3) The anti-tumor activity of the secretion:The giant salamander skin secretions of soluble fraction have lethal activity on mouse; LD50(intraperitoneal) value is32.95mg/kg. The active group is heat-labile protein. Anatomy of the death individual found that lung tissue changes significantly and have the phenomenon of congestion, convulsions which may cause the death of mouse. The secretion produce local effects on animals including the activity of significant pain, increase vascular permeability, persistent swelling, allow muscle tissue swelling and necrosis, but no significant bleeding activity. In vivo, it can Inhibit the growth of ascites tumor cells, reduce the number of ascites tumor cells and prolong survival, it could significantly improve blood parameters in mice, did not bring about significant changes in liver structure. In vitro, inhibiting the growth of both cancer cells and normal cells are different in different cells, and the mechanism is not to promote the apoptosis of tumor cells.
     (4) The giant salamander shedding composition and treatment on burns:giant salamander shedding contains rich amino acids, mineral elements, and eight kinds of fatty acids. Large dose of the giant salamander shedding ointment can be significantly improved wound healing rate, shortened wound healing time and accelerate wound healing. The inhibition of inflammation cytokines may be one of the mechanisms.
引文
[1]Matsui, M. Japanese Giant Salamander.2000:101.
    [2]Okada, S., Tutsunomiya, T.O. Characteristics of Japanese giant salamander (Andrias japonicus) populations in two small tributary streams in Hiroshima Prefecture, western Honshu, Japan. Herpetological Conservation and Biology, 2008,3:192-202.
    [3]Pfingsten, R. The status and distribution of the hellbender, Cryptobranchus alleganiensis, in Ohio. Ohio Journal of Science,1989,89(2):3.
    [4]Benjamin, A., Wheeler, E. P., Alicia, R. F. W. Population declines of a long-lived salamander:a 20+-year study of hellbenders, Cryptobran chusalleganiensis. Biological Conservation,2002,109(1):151-156.
    [5]Gao, K. Q., Shubin, N. Late Jurassic salamanders from northern China, nature, 2001,410:574-577.
    [6]费梁,叶昌媛,江建平.中国两栖动物彩色图鉴,2004.
    [7]费梁胡,淑琴,叶昌媛,等.中国动物志(两栖纲上总论蚓螈目有尾目)(精),2006.
    [8]陈云祥.大鲵高效养殖技术一本通.2008:5-17.
    [9]曹燕.《尔雅》动物专名研究.《内蒙古大学》,2007.
    [10]李时珍.本草纲目.1978:376.
    [11]蓝书成,刘振环,张桂琴,等.刺激大鲵中脑引起发声反应的研究.东北师大学报自然科学版,1989,2:81-87.
    [12]XinZe-hua, QiaoZhi-gang, MaKe-xue, et al. Kinds and Activities of the Proteases of 4 Reproductive Organs of Andrias davidianus. Developmental & Reproductive Biology,2002,11:236-341.
    [13]肖汉兵,林锡芝.大鲵耗氧率的初步研究.淡水渔业,1989,1:6-8.
    [14]郎玉卓,熊源新,邓佳佳,等.贵州岩下大鲵自然保护区藻类生态分布.山地农业生物学报,2008,27:411-416.
    [15]陈喜斌,沈建中,京杨,等.水温对大鲵摄食的影响.水产科学,1999,18: 19-22.
    [16]章克家,王小明,吴巍,等.大鲵保护生物学及其研究进展.生物多样性,2002,10:291-297.
    [17]罗庆华,刘清波,刘英,等.野生大鲵繁殖洞穴生态环境的初步研究.动物学杂志,2007,42:114-119.
    [18]张育辉,李丕鹏,王子浩.中国大鲵的周围神经系统.陕西师大学报(自然科学版),1989,17:54-57.
    [19]方展强.中国大鲵肺脏的显微和超微结构.四川动物,2008,27:1054-1055.
    [20]方展强.中国大鲵肝脏的超微结构.四川动物,2006,25:228-230.
    [21]杨国华,程红,付宏兰,等.中国大鲵机械感受器的超微结构.动物学报,2001,47:587-592.
    [22]辛泽华,乔志刚,沈国民,等.中国大鲵(Andrias davidianus)7种组织器官蛋白水解酶的种类和活性分析.解剖学报,2004,35(3):331-333.
    [23]彭亮跃,肖亚梅,骆剑,等.中国大鲵不同组织同工酶的比较研究.水生生物学报,2007,31:915-919.
    [24]乔志刚,辛泽华,李吉学,等.中国大鲵消化系统13种器官的蛋白水解酶种类和活性分析.动物学报,49:527-539.
    [25]杨芳,贺智敏,詹显全,等.大鲵肝脏组织定向cDNA文库的构建及鉴定.动物学报,2004,50:475-478.
    [26]方耀林,张燕,肖汉兵,等.野生大鲵及其人工繁殖后代的遗传多样性分析.水生生物学报,2008,32:783-786.
    [27]杨丽萍,杨慧荣,张勇,等.中国大鲵脑cDNA文库构建及促甲状腺激素亚基基因cDNA的克隆和序列分析.水产学报,2008,32:507-516.
    [28]陶峰勇,王小明,郑合勋.中国大鲵五地理种群Cytb基因全序列及其遗传关系分析.水生生物学报,2006,30:625-628.
    [29]Yang, L.P., Meng, Z.N., Liu, Y. Growth hormone and prolactin in Andrias davidianus:cDNA cloning, tissue distribution and phylogenetic analysis. Gen Comp Endocr,2010,165:177-180.
    [30]Zhang, P., Chen, Y.Q., Liu, Y.F., et al. The complete mitochondrial genome of the Chinese Giant Salamander, Andrias Davidianus (Ammphibia:Caudate). Gene, 2003,311:93-98.
    [31]Murphy, R.W., Fu, J.Z., Upton, D.E. Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. Mol Ecol,2000,9:1539-1547.
    [32]ZhangYu, HuiJia, Lin-Zhi, et al. Microstructure and ultrastructure of atretic follicles in the Chinese giant salamander Andrias davidianus. Acta Zoologica Sinica,2004,50:615-621.
    [33]张于辉,任耀辉,刘全宏,等.中国大鲵卵母细胞发育的显微和超微结构.动物学报,1999,45:15-22.
    [34]邓凤姣,肖汉兵,熊定荣,等.大鲵精子入卵过程的扫描电镜观察.武汉大学学报(自然科学版),1998,44:742-744.
    [35]杨楚彬,罗凯坤,周海燕,等.大鲵输卵管的基本组织结构及其发育变化.湖南师范大学自然科学学报,2003,26:64-68.
    [36]张于辉,任耀辉,刘全宏,等.中国大鲵垂体的显微与超微结构观察.解剖学报,1997,28:244-247.
    [37]刘鉴毅,谭永安,刘明国,黄荣佳.野生中国大鲵与人工繁殖子一代雄性形态及精液特性的比较.上海水产大学学报,2005,14:19-23.
    [38]乔志刚,李学军,李效宇,等.用生理的方法促使大鲵产卵的研究.生物学杂志,2002,19:27-28.
    [39]黄利,张友钊.大鲵的人工养殖技术.安徽农学通报,2009,15:190-191.
    [40]刘鉴毅,谭永安,卢兴孙,等.中国大鲵子二代规模化人工孵化技术的研究.经济动物学报,2005,9:152-155.
    [41]张红星,王开锋,权清转,等.中国大鲵的繁殖生态暨行为学观察研究.陕西师范大学学报(自然科学版),2006,34:70-75.
    [42]江育林,张曼,景宏丽,等.患病中国大鲵中分离到一株虹彩病毒.病毒学报,2011,27:271-282.
    [43]Geng, K. Y., Wang, Z. Y., Zhou, C. W., et al. First Report of a Ranavirus Associated with Morbidity and Mortality in Farmed Chinese Giant Salamanders(Andrias davidianus). J.Comp.Path.,2011,145:95-102.
    [44]文正常,余波,徐景娥,等.患病大鲵中嗜水气单胞菌的分离鉴定及其防治.基因组学与应用生物学,2010,29:82-86.
    [45]Ming Li, Jiangguo Wang, Jingyong Zhang, et al. First report of two Balantidium species from the Chinese giant salamander, Andrias davidianus:Balantidim sinensis Nie 1935 and Balantidium andianusis n.sp.. Parasitol Res,2008,102: 605-611.
    [46]王高学,白占涛,张向前,等.大鲵赤皮病病原鉴定及防治试验.西北农业大学学报,1999,27:71-74.
    [47]Caro, T. M., O. D. G. On the use of surrogate species in conservation biology. Conservation Biology,1999,13:805-814.
    [48]Primack, R. B. Essentials of conservation biology. Sinauer Associates Sunderland, 1993.
    [49]Ashman, A. F., Conway, R. N. Cognitive strategies for special education. Routledge,1988.
    [50]Engelmann, F., Engels, J. M. Technologies and strategies for ex situ conservation. Managing Plant Genetic Diversity. CAB International Wallingford, UK and IPGRI, Rome, Italy,2002:89-103.
    [51]Dai Qiang,Wang Yue, Zhao L.G. Conservation Status of Chinese Giant Salamander (Andrias davidianus). Conservation,2011, Subcontract No.09-027: 1-46.
    [52]梁刚.陕西省大鲵的繁育模式及初步评价.经济动物学报,2007,11:234-237.
    [53]Clarke, G.M. Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology,1995,9:18-24.
    [54]Reid, W.V., Laird, S.A., Meyer, C.A., et al. Biodiversity prospecting:using genetic resources for sustainable development. World Resources Institute,1993.
    [55]Hawksworth, D. L. Biodiversity:measurement and estimation. Springer,1996.
    [56]Struss, D., Plieske, J. The use of microsatellite markers for detection of genetic diversity in barley populations. TAG Theoretical and Applied Genetics,1998,97: 308-315.
    [57]Jehle, R., Arntzen, J. Review:microsatellite markers in amphibian conservation genetics. Herpetological Journal,2002,12:1-9.
    [58]Morten, E., Allentoft, Hans, R., Siegismun, L. Microsatellite analysis of the natterjack toad (Bufo calamita) in Denmark:populations are islands in a fragmednted landscape. Conservation Genetics,2009,10:15-28.
    [59]Chen, S.Y., Zhang, Y. J., Wang, X.L., et al. Extremely Low Genetic Diversity Indicating the Endangered Status of Ranodon sibiricus (Amphibia:Caudata) and Implications for Phylogeography. PloS one,2012,7:e33378.
    [60]Goldberg, C.S., Waits, L.P. Comparative landscape genetics of two pond breeding amphibian species in a highly modified agricultural landscape. Molecular ecology, 2010,19:3650-3663.
    [61]Purrenhage, J.L., Niewiarowsk,i.P.H., Moore, F.B. Population structure of spotted salamanders(Ambystoma maculatum) in a fragmented landscape. Molecular ecology,2009,18:235-247.
    [62]Giordano, A.R., Ridenhour, B.J., Storfer, A. The influence of altitude and topography on genetic structure in the long boed salamander(Ambystoma macrodactulym). Molecular Ecology,2007,16:1625-1637.
    [63]Carroll, R.L., Kuntz, A.A.K. Vertebral development and amphibian evolution. Evolution & Development,1999,1:36-48.
    [64]Clarke, B.T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev,1997,72:365-379.
    [65]William Edward Duellman L T. Biology of Amphibians.1994:197-224.
    [66]Harold Heatwole R L C. Amphibian Biology, Volume 1:The Integument.1994.
    [67]Harvey, B., Lillywhite, P.L. A comparative study of integumentary mucous secretions in amphibians. Comparative Biochemistry and Physiology Part A: Physiology,1975,51:937-941.
    [68]Simon, N., Stuart, Janice, S., Chanson, Neil, A., et al. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science,2004,306:1783-1786.
    [69]张贤芳,张耀光.中华蟾蜍皮肤的组织学观察.西南农业大学学报,2002,5:454-457.
    [70]Brodie, G. L. Defensive behaviour and skin glands of the northwestern salamander, Ambystoma gracile. Herpetologica,1989,25:187-194.
    [71]Conlon, J.M., Kolodziejek, J., Nowotny N. Antimicrobial peptides from ranid frogs:taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica.et Biophysica.Acta.,2004,1696:1-14.
    [72]Lindley, B.D., Nerve stimulation and electrical properties of frog skin. The Journal of General Physiology,1969,53:427-449.
    [73]Erspamer, V., Erspamer, G. Active peptides in the skins of two hundred and thirty American amphibian species. Comparative biochemistry and physiology,1986,85: 125-137.
    [74]Erspamer, V., Erspamer, G. Active peptides in the skins of one hundred amphibian species from Australia and Papua New Guinea. Comparative biochemistry and physiology,1984,77:99-108.
    [75]V. E. Biogenic amines and active polypeptides of amphibian skin. Annual Review of Pharmacology,1971,11:327-350.
    [76]Roseghini, M., Erspamer, G. Biogenic amines and active peptides in extracts of the skin of thirty-two European amphibian species. Comparative biochemistry and physiology,1989,94:455-460.
    [77]Roseghini, M., Erspamer, G. Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids. Comparative biochemi-stry and physiology,1988,91:281-286.
    [78]Roseghini, M., Erspamer, V. Indole-,imidazole-and phenyl-alkylamines in the skin of one hundred and forty American amphibian species other than bufonids. Comparative biochemistry and physiology,1986,85:139-147.
    [79]Roseghini, M., Erspamer, V. Indole-,imidazole- and phenyl-alkylamines in the skin of one hundred amphibian species from Australia and Papua New Guinea. Comparative biochemistry and physiology,1976,54:31-43.
    [80]Daly, J.W., Myers, C. Further classification of skin alkaloids from Neotropical poison frogs (Dendrobatidae),with a general survey of toxic/noxious substance in the amphibia. Toxicology,1987,25:1023-1095.
    [81]Noriyuki, M., Kenichi, H. Bervinin-1 and-2,unique antimicrobial peptides from the skin of frog,Rana brevipoda porsa. Biochemical and Biophysical Research Communications,1992,189:184-190.
    [82]Jin, M.P., Jae, E. Antimicrobial peptides from the skin of A Korean frog,Rana rugosa. Biochemical and Biophysical Research Communications,1994,205: 948-954.
    [83]Maloy, W. Structure-activity studies on magainins and other host defense peptides. Biopolymers,1995,37:105-122.
    [84]赖仞,叶文娟,冉永禄.大蹼铃蟾皮肤抗菌肽的分离及其性质.动物学研究,1998,04:257-262
    [85]K.G. Peptides containing A D-amino acid from frogs and molluscs. Journal of Biological Chemistry,1994,269:67-70.
    [86]Li, J., Wu, H., Hong, J., et al. Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PloS one,2008,3:e2381.
    [87]Shankar, P.G., Whitaker, N. Ecdysis in the King Cobra (Ophiophagus hannah). Russian Journal of Herpetology,2009,16:1-5.
    [88]Wonglertnirant, N., Ngawhirunapt, T., Kumpugdee-vollrath, M. Evaluation of the mechanism of skin enhancing surfaction on the biomembrane of shed snake skin. Biol. Pharm. Bull.,2012,35:523-31.
    [89]Jones, D.E., Magnin-Bissel, G., Holladay, S.D. Detection of polycyclic aromatic hydrocarbons in the shed skins of corn snakes (Elaphe guttata). Ecotoxicology and Environmental Safety,2009,72:2033-2035.
    [90]Prager, R.D., Stoneking, M. Extracting high-quality DNA from shed reptile skins: a simplified method. Biotechniques,1999,26:1052-1054.
    [91]孙萍,刘艳菲,邸大琳,等.蛇蜕对小鼠早期炎症反应影响的初步研究.中国西部科技,2009,8:51-52.
    [92]Xu, M.Z., Lee, W.S., Han, J.M., et al. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bioorganic & medicinal chemistry,2006,14:7826-7834.
    [93]Hsieh, M.T., Peng, W.H., Yeh, F.T., et al. Studies on the anticonvulsive, sedative and hypothermic effects of Periostracum cicadae extracts. Journal of ethnophar-macology,1991,35:83-90.
    [94]Yang, L., Li, G.Y., Li, Q.R., et al. Two new N-acetyldopamine tetrapolymers from Periostracum Cicadae. Journal of Asian Natural Products Research,2012,14: 204-209.
    [95]Wang, J., Tian, Q.Q., Tao, G., et al. Analyses on ingredients and antibacterial activity of periostracum cicadae. Chinese Bulletin of Entomology,2010,47: 1109-1112.
    [96]Yang, Lu, Li Guo-yu, Wang, Hang-yu, et al. Simultaneous determination and different distribution of acetyldopamine dimers in Cicadae Periostracum by HPLC method.29,2012,1:31-35.
    [97]李进京.蚕蜕提取物提取工艺路线优化和药效学研究.佳木斯大学硕士论文,2009.
    [98]Budtz, P.E., Larsen, L.O. Structure of the toad epidermis during the moulting cycle. Cell and Tissue Research,1975,159:459-483.
    [99]J.C.B., Larsen, L.O. Molting and its hormonal control in toads. General and comparative endocrinology,1961,1:145-153.
    [100]Stefano, F.J, Donoso, A.O. Hypophyso-adrenal regulation of moulting in the toad. General and Comparative Endocrinology,1964,4:473-480.
    [101]Barker, J., Brgensen, C. Nature of moulting control in amphibians:effects of cortisol implants in toads Bufo bufo. General and comparative endocrinology, 1988,71:29-35.
    [102]高慧敏,吴喜燕,李宗云,等.蟾衣化学成分及体外抗肿瘤活性研究.中国中医杂志,2011,36:2207-2210.
    [103]Mills, L.S., Citta, J.J., Lair, K.P., et al. Estimating animal abundance using noninvasive DNA sampling:promise and pitfalls. Ecological applications,2000, 10:283-294.
    [104]Taberlet, P., Waits, L.P., Luikart, G. Noninvasive genetic sampling:look before you leap. Trends in Ecology & Evolution,1999,14:323-327.
    [105]Stuart, S.N., Chanson, J.S., Cox, N.A., et al. Status and trends of amphibian declines and extinctions worldwide. Science,2004,306:1783-1786.
    [106]Tyler, M.J., Stone, D.J., Bowie, J.H. A novel method for the release and collection of dermal glandular secretions from the skin of frogs. Journal of Pharmacological and Toxicological Methods,1992,28:199-200.
    [107]Aljanabi, S.M., Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic acids research,1997,25: 4692-4693.
    [108]Sun, X., Jia, Z., Wei, D., et al. Comparison between magnetic beads enriched and small inserted fragment library for microsatellite sequences of common carp Journal of Fishery Sciences of China,2005,12:126-132.
    [109]Li, D., Kang, D., Yin, Q., et al. Microsatellite DNA Marker Analysis of Genetic Diversity in Wild Common Carp (Cyprinus carpio) Populations. Journal of Genetics and Genomics,2007,34:984-993.
    [110]Botstein, D., White, R.L., Skolnick, M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics,1980,32:314.
    [111]Poetsch, M., Seefeldt, S., Maschke, M., et al. Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer possible employment in forensic applications. Forensic science international,2001,116:1-8.
    [112]Tamura, K., Nei, M., Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America,2004,101:110-30.
    [113]Weber, J.L., Wong, C. Mutation of human short tandem repeats. Human molecular genetics,1993,2:1123-1128.
    [114]Katsu, Y., Kohno, S., Oka, T. Molecular cloning of estrogen receptor alpha (ER alpha; ESR1) of the Japanese giant salamander, Andrias japonicas.. Mol Cell Endocrinol,2006,257:84-94.
    [115]Hang, F.K., Tianbao, Chen. DNA in Amphibian and Reptile Venom Permits Access to Genomes Without Specimen Sacrifice. Genomics Insights,2008:17-24.
    [116]Chen, T., Farragher, S., Bjourson, A.J., et al. Granular gland transcriptomes in stimulated amphibian skin secretions. Biochemical Journal,2003,371:125-32.
    [117]Frankham, R. Genetic adaptation to captivity in species conservation programs. Molecular Ecology,2008,17:325-333.
    [118]Reisenbichler, R.R., Rubin, S.P. Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES Journal of Marine Science:Journal du Conseil,1999,56:459-466.
    [119]陶峰勇,王小明,郑合勋,等.中国大鲵四种群的遗传结构和地理分化.动物学研究,2005,26:162-167.
    [120]林茂,黄景,李正,等.大鲵野生亲代与人工繁育子二代的随机扩增多态DNA分析(英文).上海水产大学学报,2003,S1:20-23.
    [121]Williams, T. New function for the granular skin glands of the Eastern Long-toed Salamander, Ambystoma macrodactylum columbianum. Journal of Experimental Zoology,1986,239:329-333.
    [122]Williams, T. Technique to isolate salamander granular gland products with a comment on the evolution of adhesiveness. Copeia,1994,:540-541.
    [123]C.M. Evans, E. Adhesive strength of amphibian skin secretions. J. Herpetol,1994, 28:502-504.
    [124]李庚平,吴淑辉,朱命炜,等.大鲵皮肤的扫描电镜观察.电子显微学报,1993, 1:24.
    [125]Pamies, R., Hern, C.J., Del, C.L., et al. Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid & Polymer Science,2008,286:1223-1231.
    [126]Menezes, M.C., Furtado, M.F., Travaglia-Cardoso, S.R., et al. Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon,2006,47:304-312.
    [127]Holzer, M, Mackessy, S.P. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon,1996,34:1149-1155.
    [128]Rees, H.C., Grant, S., Jones, B., et al. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles,2003,7:415-421.
    [129]Suzumura, K., Yasuhara, M., Narita, H. Superoxide anion scavenging properties of fluvastatin and its metabolites. Chemical and pharmaceutical bulletin-tokyo,1999, 47:1477-1480.
    [130]Yu, L., Haley, S., Perret, J., et al. Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry,2002,50:1619-1624.
    [131]Sumanont, Y., Murakami, Y., Tohda, M., et al. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biological and Pharmaceutical Bulletin,2004,27:170-173.
    [132]Amarowicz, R., Pegg, R.B., Rahimi-Moghaddam, P., et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry,2004,84:551-562.
    [133]Nenadis, N., Tsimidou, M. Observations on the estimation of scavenging activity of phenolic compounds using rapid 1, 1-diphenyl-2-picrylhydrazyl (DPPH) tests. Journal of the American Oil Chemists' Society,2002,79:1191-1195.
    [134]Wang, L.L., Xiong, Y.L. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. Journal of Agricultural and Food Chemistry,2005,53:9186-9192.
    [135]Graham, L.D., Glattauer, V., Huson, M.G, et al. Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. Biomacromolecules,2005,6:3300-3312.
    [136]Jatkar, A.A., Brown, B.E., Bythell, J.C., et al. Coral mucus:the properties of its constituent mucins. Biomacromolecules,2010,11:883-888.
    [137]Fogg, F.J., Hutton, D.A., Jumel, K., et al. Characterization of pig colonic mucins.. Biochemical Journal,1996,316:937-44.
    [138]Rollins-Smith, L.A. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009,1788:1593-1599.
    [139]Conlon, J.M. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell and tissue research,2011,343:201-212.
    [140]Evans, C.M., Brodie, E.D. Adhesive strength of amphibian skin secretions. Journal of Herpetology,1994,28:499-502.
    [141]Tyler, M. International patent application WO02/22756.2002.
    [142]Graham, L.D., Danon, S.J., Johnson, G., et al. Biocompatibility and modification of the protein based adhesive secreted by the Australian frog Notaden bennetti. Journal of Biomedical Materials Research Part A,2010,93:429-441.
    [143]Swendsen, C.L.S.D. A study of antimicrobial effects of dusky salamander Mucus. Jon Hasfiord:Nat Soi Seminar Abstracts,1998:10.
    [144]Fredericks, L.P, Dankert, J. R. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. Journal of Experimental Zoology, 2000,287:340-345.
    [145]Lai, R., Zhao, Y., Yang, D.G., et al. Comparative study of the biological activities of the skin secretions from six common chinese amphibians. Zoological Research, 2002,23:113-119.
    [146]刘炯宇,江建平,何开泽,等.山溪鲵皮肤分泌物抗菌活性的初步研究.天然产物研究与开发,2004,16:415-419.
    [147]王利锋,李学英,王大忠.大鲵皮肤分泌液中抗菌肽的鉴定及生物活性研究. 中国生化药物杂志,2011,32:269-272.
    [148]Manjunatha, K.R. Excitement ahead:structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon,2003,42:827-840.
    [149]Nigam, A.K., Kumari, U., Mittal, S., et al. Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiology and Biochemistry,2012,2: 1-12.
    [150]王婧,蒋燕,李鸫.中医“以毒攻毒法”在恶性肿瘤治疗中的运用.北京中医药大学学报,2011,34:569-572.
    [151]Meier, J., Theakston, R.D. Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon,1986,24:395-401.
    [152]Hunskaar, S., Fasmer, O.B., Hole, K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Meth,1985,14:69-76.
    [153]Sirois, M.G., Jancar, S., Braquet, P., et al. PAF increases vascular permeability in selected tissues:effect of BN-52021 and L-655,240. Prostaglandins,1988,36: 631-644.
    [154]Lima, C., Clissa, P.B., Piran-Soares, A.A., et al. Characterization of local inflammatory response induced by Thalassophryne nattereri fish venom in a mouse model of tissue injury. Toxicon,2003,42:499-507.
    [155]Ownby, C.L., Bjarnason, J., Tu, A.T. Hemorrahagic toxins from rattlesnake (Crotalus atrox) venom Pathogenesis of hemorrhage induced by three purified toxins. Amj. Pathol,1978,93:201-218.
    [156]Gamal, Abu-Sinnaa, Amr, Y. Esmatb, Al-Ahmady, S., et al. Solimanc, T. Fractionation and characterization of Cerastes cerastes cerastes snake venom and the antitumor action of its lethal and non-lethal fractions. Toxicon,2003,42: 207-215.
    [157]张才乔.动物生理学实验.科学出版社,2008:32-40.
    [158]Sladowski, D., Steer, S.J., Clothier, R.H., et al. An improved MIT assay. Journal of immunological methods,1993,157:203-207.
    [159]Schutte, B., Nuydens, R., Geerts, H., et al. Annexin V binding assay as a tool to measure apoptosis in differentiated neuronal cells. Journal of neuroscience methods,1998,86:63-69.
    [160]Darzynkiewicz, Z., Bedner, E., Smolewski, P. Flow cytometry in analysis of cell cycle and apoptosis. Elsevier,2001.179-193.
    [161]Lewis, R.J., Garcia, M.L. Therapeutic potential of venom peptides. Nat Rev Drug Discov,2003,2:790-802.
    [162]Broad, A.J., Sutherland, S.K., Coulter, A.R. The lethality in mice of dangerous Australian and other snake venoms. Toxicon,1979,17:661-664.
    [163]Lai, R., Yang, D.M., Lee, W.H, et al. Biological activities of skin secretions of the salamander Tylototriton verrucosus. Journal of natural toxins,2002,11:245-47.
    [164]Negri, L., Lattanzi, R., Giannini, E., et al. Nociceptive sensitization by the secretory protein Bv8. Brit J Pharmacol,2002,137:1147-1154.
    [165]Brain, S.D., Williams, T.J. Inflammatory mechanims of inflamed-tissue factor. Agents Actions,1985,3:348-356.
    [166]Issekutz, A.C., Movat, H.Z. The in vivo quantitation and kinetics of rabbit neutrophil leukocyte accumulation in the skin in response to chemotactic agents and Escherichia coli. Lab Invest,1980,42:310-317.
    [167]Gutierrez, J.M., Rucavado, A. Snake venom metalloproteinases:their role in the pathogenesis of local tissue damage. Biochimie,2000,82:841-850.
    [168]Ownby, C. L., Powell, J.R, Jiang, M., et al. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon,1997,35:67-80.
    [169]Hoglang, H.C. Hematological complication of cancer chemotherapy. Semi.Oncol, 1982,9:95-102.
    [170]Andreani, A. Potential antitumor agents. IX synthesus and antitumor activity of two analogues of ketocaine. J.Pharm.Sci.,1983:72-74:
    [171]Lipps, B.V. Selective cytolytic activity of snake venom proteins, atroporin and kaotree, on various types of cancer cells. Toxicon,1994,33:262-2621.
    [172]Francis, S., Marklanda, K., Shi ha, et al. A Novel Snake Venom Disintegrin That Inhibits Human Ovarian Cancer Dissemination and Angiogenesis in an Orthotopic Nude Mouse Model. Haemostasis,2001,31:183-191.
    [173]Karthikeyan, R., Karthigayan, S., Sri Balasubashini, M., et al. Antitumor effect of snake venom (Hydrophis spiralis) on Erhlich Ascites Carcinoma bearing mice. International Journal of Cancer Research,2007,3:167-173.
    [174]潘湘涛,陆晔,程旭,等.癌症患者治疗前后血红蛋白变化及贫血发生情况的调查分析.中华肿瘤防治杂志,2008,20:1540-1543.
    [175]于洁,赵远红.简述中西医结合治疗化疗药物性肝损伤进展.《2009年国际中医药肿瘤大会论文集》,2009:691-696.
    [176]Hartman, L., Lago. R.C. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice,1973,22:475.
    [177]孙同柱,付小兵,顾小曼,等.重组人表皮生长因子促进兔烫伤创面愈合的实验研究.实验动物科学与管理,2000,10:218-225.
    [178]王东风,李宁,张波.双黄烧烫伤喷雾剂对大鼠烫伤治疗作用的研究.中医中药,2009,6:69-70.
    [179]Edwards, C.A. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica chimica acta,1980,104:161-167.
    [180]De Young, L.M., Kheifets, J.B., Ballaron, S.J., et al. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacological agents. Agents Actions,1989,26: 335-341.
    [181]高慧敏,吴喜燕,李宗云,等.蟾衣化学成分及体外抗肿瘤活性研究[J].中国中药杂志,2011,36:2207-2210.
    [182]陈红,李考铮.银环蛇蛇蜕的化学成分研究Ⅱ.脂肪酸和氨基酸组分.分析测试学报,2001,03:70-72.
    [183]Kielty, C.M., Grant, M. E. The collagen family:structure, assembly, and organization in the extracellular matrix. Connective tissue and its heritable disorders,1993,159-221.
    [184]Pruitt, J.B, McManus, A.T, Kim, S.H, et al. Burn wound infections:current status. World journal of surgery,1998,22:135-145.
    [185]Maenthaisong, R., Chaiyakunapruk, N., Niruntraporn, S., et al. The efficacy of aloe vera used for burn wound healing:a systematic review. Burns,2007,33: 713-718.
    [186]Venkatraman, T.J., Chandrasekar, B., Weintraub, S.T., et al. Differential Effects of ω-6 and ω-3 Fatty Acids in Interleukin-2 Production and mRNA Expression by EL-4.IL-2 Cells. The Journal of Nutritional Biochemistry,1995,6:467-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700