用户名: 密码: 验证码:
重构核粒子边界无单元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界积分方程的无网格方法是无网格方法的重要分支。以往的边界积分方程的无网格方法一般是将移动最小二乘法和边界积分方程方法相结合形成的。这类方法的优点是构造形函数不依赖网格,而且具有降维的特点。但是移动最小二乘法容易形成病态方程组而导致求解失效、并且往往给处理边界条件带来困难。本文将具有插值特性的重构核粒子法的边界节点无网格形函数和边界积分方程方法结合,提出了重构核粒子边界无单元法及其与有限元耦合方法:基于扩展的重构核粒子法形函数,提出了断裂力学的重构核粒子边界无单元法。本文提出的重构核粒子边界无单元法,是解题规模小、节省时间、可直接施加边界条件的无网格方法。
     本文研究了重构核粒子法的形函数的插值特性。在有限域上利用重构条件生成的重构核粒子法的形函数,当紧支域半径覆盖的节点数与基函数的单项式个数一致时,其满足点插值性质;改进的重构核粒子法的形函数,是通过简单函数引入插值特性,并利用增强函数构造重构条件,得到一个具有任意离散点插值特性的形函数。改进的重构核粒子法形函数能精确重构插值点多项式的真值、具有不低于核函数的高阶光滑性。本文采用具有点插值特性的重构核粒子法的形函数构造近似函数,克服了多数无网格方法处理本质边界条件的困难。
     在改进的的重构核粒子法基础上,结合势问题的边界积分方程方法,本文建立了势问题的重构核粒子边界无单元法,推导了相应的离散化公式,建立了边界节点未知量求解方程。本文提出的重构核粒子边界无单元法是一种直接列式法,具有精度高和求解效率高的优势。
     基于改进的重构核粒子法和弹性力学的边界积分方程方法,本文提出了弹性力学的重构核粒子边界无单元法。研究了其数值积分方案,推导了其离散化边界积分方程和边界节点未知量求解方程组,并给出了其离散化内点公式。
     为求解具有区域特性的势问题和弹性力学问题,将势问题和弹性力学的重构核粒子边界无单元法与相应问题的有限元法耦合,提出了重构核粒子边界无单元法与有限元耦合的方法。该耦合方法的节点未知量与重构核粒子边界无单元法的节点未知量同样是节点待求真值,所以其同样可以直接施加边界条件。
     现有的无网格方法在模拟断裂力学问题时,存在计算量大、精度低等问题。为了克服这些不足,本文引入扩展的重构核粒子法形函数构造具有裂纹尖端场特性的近似函数,建立了断裂力学的重构核粒子边界无单元法。该方法具较好的稳定性。
     编制了以上各种方法的FORTRAN计算程序,进行了数值算例分析。采用本文方法,对工程问题进行了分析研究,并和有限元分析结果进行了比较。数值算例和工程应用研究表明,本文方法是稳定性好、具有较高精度和便于应用的有效数值方法。
The meshless boundary integral equation method, which combines moving least-squares approximation with the boundary integral equation method, is an important branch of meshless methods. The advantages of the meshless boundary integral equation method are that no mesh is required for the construction of the shape functions, and it can be applied easily to solve problems. And in the method, nodes are required only on the boundary of the problem domain, then dimension of the problem is decreased. Because the moving least-squares approximation is used in this method, the disadvantages of the method are its less efficiency, and that it can form ill-conditioned or singular equations sometimes, and applied the boundary conditions difficultly. To these problems, combining the reproducing kernel particle method (RKPM) and boundary integral equation method, the reproducing kernel particle boundary element-free (RKP-BEF) method is presented in this dissertation. And the coupled method is also presented by combining th
     e RKP-BEF and FEM. Furthermore, the improved RKP-BEF for fracture mechanics is proposed based on the enriched shape functions of RKPM. The RKP-BEF method presented is a meshless method which has advantages of greater precision and computational efficiency. And the RKP-BEF method can apply the boundary conditions directly.
     The shape function, which has the property of Delta function, in the RKPM is discussed first. When the shape function covers a number of nodes equal to the number of monomials in its basis, the RKPM shape functions, which satisfy reproducing conditions in a finite region, has an interpolate property. The improved RKPM shape functions which have the interpolate property at arbitrary nodes are obtained by coupling of a simple function and an enrichment function. The smoothness of the shape function of RKPM is no less than that of the kernel function and the values of polynomials at interpolating points can be exactly reconstructed. The difficulties for applying essential boundary conditions can be avoided by using the interpolating shape functions.
     On basis of the improved reproducing kernel particle method, combining the boundary integral equation method for potential problems, the reproducing kernel particle boundary element-free (RKP-BEF) method for potential problems is presented in this paper. The formulae of discretization and corresponding discrete equations are also obtained. This RKP-BEF method is a direct meshless method of the boundary integral equation and has the advantages of the higher efficiency and computational precision.
     On basis of the improved reproducing kernel particle method and boundary integral equation method, the reproducing kernel particle boundary element-free method for elasticity is presented. The discrete boundary integral equations of the RKP-BEF method are obtained by considering the numerical integral schemes. Then the equations with the variables at boundary nodes are obtained, and the formulae of the displacement and stress at internal points for the RKP-BEF method are given.
     By combining the reproducing kernel particle boundary element-free method and finite element method, a coupled RKP-BEF/FE method for elasticity or potential problems is presented. The combined equations on the unknown quantities at nodes for the RKP-BEF/FE method are obtained. As the RKP-BEF and FEM have higher precision, the method presented here is successful.
     When simulating fractures problems with the conventional meshless method, some problems, such as the computing time and less precision of the solution at the tip of the crack, are existed. In order to reduce these shortcomings, the improved RKP-BEF method for elasticity fracture is presented based on the enriched shape functions of reproducing kernel particle mothed.
     The corresponding FORTRAN codes of the above methods have been written and the numerical examples are given in the corresponding chapters. Some engineering examples are solved by the methods in this paper, and compared with the FEM simulating results. The numerical results show that the methods in this paper have higher stability and efficiency, and can be applied easily.
引文
[1] Christopher R Johnson. Advanced Methods in Scientific Computing. Computer Science 6220, University of Utah, Spring Semester 2002, 13-26
    [2] 徐次达.固体力学加权残值法.上海:同济大学出版社,1978
    [3] Perrone N and Kao R. A general finite difference method for arbitrary meshes. Comput.Struct., 1975,5:45-58
    [4] Zienkiewicz O C. The finite element method (Third edition). McGraw-Hill, 1977
    [5] 钱伟长.变分法及有限元.科学出版社,1980
    [6] Brebbia C A. The Boundary Element Method for Engineers. London Pentech Press, 1978
    [7] 嵇醒,臧跃龙,程玉民.边界元进展及通用程序.上海:同济大学出版社,1997
    [8] Belytschko T, Krongauz Y, Organ D et al. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139:3-47
    [9] Li Shaofan, Liu W K. Meshless and particles methods and their applications. Applied Mechanics Review, 2002, 55(1): 1-34
    [10] 唐少武,冯振兴.关于无单元法的若干注记.力学进展,2003,33(4):560-561
    [11] Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astron J, 1977, 8(12): 1013-1024
    [12] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int J Numer Methods Engrg, 1995, 20:1081-1106
    [13] Lancaster P, Salkauskas K. Surfaces generated by moving least square methods. Math comput, 1981, 37:141-158
    [14] Babuska I, Melenk J M. The partition of unity method. Int. J. Numer. Meth. Engrg, 1997, 40: 727-758
    [15] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods. International Journal for Numerical Methods in Engineering, 1994, 37:229-256
    [16] Atluri S N, Zhu T L. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics 1998, 22:117-127
    [17] 张雄,胡炜,潘小飞等.加权最小二乘无网格法.力学学报,2003,35(4):425-431
    [18] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 1996, 39:3839-3866
    [19] Ventura G. An augmented Lagranging approach to essential boundary conditions in meshless methods. International Journal for Numerical Methods in Engineering, 2002, 53:825-843
    [20] Zhu T, Atluri S N. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21:211-222
    [21] Gosz J, Liu W K. Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput. Mech. 1996 (19): 120-135
    [22] Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: theory and applications to nonspherical stars. Mon Not Roy Astrou Soc, 1977, 18:375-389
    [23] Nayroles B et al. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech, 1992, 10:307-318
    [24] Duarte C A, Oden J T. Hp clouds-a meshless method to solve boundary-value problems. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics, University of Texas at Austin. 1995
    [25] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problemsin elasto-statics. Computational Mechanics, 2000, 25:169-179
    [26] Liu W K, Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle. Comput Methods Appl Mech Engrg, 1996, 139:91-157
    [27] Liu W K, Chen Y J. Wavelet and multiple scale reproducing kernel methods.Int. J.Numer. Methods Fluids, 1995, 21: 901-931
    [28] Chen W. New RBF Collocation methods and kemel RBF with applications. In: Meshfree methods for partial differential equations (Griebel M and Schweitzer M A Eds.), Vol.1, Springer Verlag, 2000
    [29] Idelsohn S R, Onate E, Calvo N, Del Pin F. The meshless t'mite element method. Int J Numer Methods Engrg, 2003, 58:893-912
    [30] Hao S, Park H S, Liu W K. Moving particle finite element method. Int. J. Numer. Methods Eng., 2002, 53(8): 1937-1958
    [31] 程玉民,彭妙娟,李九红.复变量移动最小二乘法及其应用.力学学报,2005,37(6):719-723
    [32] 程玉民,李九红.弹性力学的复变量无网格法.物理学报,2005,54(10),4463-4471
    [33] Sukumar N, Moran T, Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839-887
    [34] Zhu T, Zhang J D, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics 1998, 21:223-235
    [35] Atluri S N, Zhu T L. New concepts in meshless methods. International Journal for Numerical Method in Engineering 2000, 47(1-3): 537-556
    [36] Atluri S N, Kim H G et al. A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Computational Mechanics 1999, 24:348-372
    [37] Atluri S N, Sladek J et al. The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity. Computational Mechanics 2000, 25:180-198
    [38] Zhu Tulong, Zhang Jindong, Atluri S N. A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems. Engineering Analysis with Boundary Elements, 1999, 23:375-389
    [39] Zhu T, Zhang J D, Atluri S N, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics, 1998, 22:174-186
    [40] Sladek V, Sladek J, Atluri S N et al. Numerical integration of singularities in meshless implementation of local boundary integral equations. Computational Mechanics, 2000, 25: 394-403
    [41] Sladek J, Sladek V, Atluri S N. Application of the local boundary integral equation (LBIE) method to boundary-value problems. International Applied Mechanics, 2002, 38(9): 1025-1047
    [42] Mukherjee Y X, Mukherjee S. The boundary node method for potential problems. Intematioal Journal for Numerical Methods in Engineering 1997, 40:797-815
    [43] Kothnur V S, Mukherjee S, Mukherjee Y X. Two dimensional linear elasticity by the boundary node method. International Journal of solids and Structures 1999, 36:1129-1147
    [44] Chati M K, Mukherjee S, Mukherjee Y X. The boundary node method for three-dimensional linear elasticity. International Journal for Numerical Methods in Engineering 1999, 46:1163-1184
    [45] Chati M K, Mukherjee S. The boundary node method for three-dimensional problems in potential theory. Int. J. Numer. Meth. Engng. 2000, 47:1523-1547
    [46] Chati M K, Mukherjee S, Paulino G H. The meshless hypersingular boundary node for three-dimensional potential theory and linear elastic problems.Engineering analysis with boundary elements, 2001, 25:639-653
    [47] 程玉民,陈美娟.弹性力学的一种边界无单元法.力学学报,2003,35(2):181-186
    [48] Zhang Jianming, Yao Zhenhan, Li Hong. A hybrid boundary node method. International Journal for Numerical Methods in Engineering, 2002, 53:751-763
    [49] Gu Y T, Liu G R. A boundary point interpolation method for stress analysis of solids. Computational Mechanics, 2002, 28(1): 47-54
    [50] Liu G R, Gu Y T. Boundary meshless methods based on the boundary point interpolation methods. Engineering Analysis with Boundary Elements, 2004, 28:475-487
    [51] Li Gang, Atluru N R. A boundary cloud method with a cloud-by-cloud polynomial basis. Engineering Analysis with Boundary Elements, 2003,27:57-71
    [52] Belytschko T, Lu Y Y and Gu L. Crack propagation by element-free Galerkin methods. Engng. Fracture Mech. 1995,5(12): 295-315
    [53] Fleming M, Chu Y A, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering. 1997,40:1483-1504
    [54] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J Compout Phys, 1995, 116:123-134
    [55] Dyka C T. Addressing tension instability in SPH methods. Technical report NRL/MR/6384, NRL, 1994
    [56] Jhhnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations. Comput Methods Appl Mech Engrg, 1996, 139:347-373
    [57] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech, 1999, 23:219-230
    [58] Belytschko T, Krongauz Y et al. Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math, 1996, 74: 111-126
    [59] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. Int. J. Numer. Methods Engrg. 1998,41: 1215-1233
    [60] Belytschko T, Gu L, Liu Y Y. Fracture and crack growth by element-free Galerkin methods. Model Simul Master Sci Engrg, 1994, 2: 519-534
    [61] Belytschko T, Tabbara M. Dynamic Fracture Using Element-Free Galerkin Methods Int J Numer Meth Eng 1996,39: 923-938
    [62] Lu Y Y, Belytschko T. Element-free Galerkin methods for wave propagation and dynamic fracture. Comput. Methods Appl. Mech. Engrg, 1995, 126: 131-153
    [63] Ponthot J P, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput. Methods Appl. Mech. Engrg, 1998,152: 19-46
    [64] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. Comput. Mech, 1995, 17: 26-35
    [65] Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32: 2547-2570
    [66] Sukumar N, Moran B, Black T, Belytschko T. An element-free Galerkin method for three-dimensional fracture mechanics. Comput. Mech, 1997, 20: 170-175
    [67] Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete. Comput. Methods Appl. Mech. Engrg, 2000,187: 385-399
    [68] Xu Y, Saigal S. An Element Free Galerkin analysis of steady dynamic growth of a mode I crack in elastic-plastic materials, International Journal of sounds and structures, 1999, 36: 1045-1079
    [69] Kargarmovin M H,Toussi H E,Faribotz S J. Elasto-plastic elemet-free Galerkin method.Computational Mechanics,2003:206-214
    [70] Bouillard Ph, Seleau S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect, Comput. Methods Appl. Mech. Engrg, 1998, 162:317-335
    [71] Lee S H, Yoon Y C. An improved crack analysis technique by element-free Galerk. International Journal for Numerical Methods in Engineering, 2003, 56: 1291-1314
    [72] Beissel S, Belytschko T. Nodal integration of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg, 1996,139: 49-74
    [73] Smolinski P, Palmer T. Procedures for multi-time step integration of element free Galerkin methods for diffusion problems. Comput. Struct, 2000, 77: 171-183
    [74] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method. Computational Mechanics, 1997, 19: 264-270
    [75] Alves M K, Rossi R. A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function. International Journal for Numerical Methods in Engineering 2003, 57: 1523-1552
    [76] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering 1997, 40: 2953-2974
    [77] Krysl P, Belytschko T. ESFLIB: A library to compute the element free Galerkin shape functions. Comput. Methods Appl. Mech. Engrg, 2001,190: 2181-2205
    [78] Liew KM,J Ren and Kitipornchai S. Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method. Engineering Analysis with Boundary Elements, 2004, 28: 497-507
    [79] Krysl P, Belytschko T. Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions. Computer Methods in Applied Mechanics and Engineering, 1997, 148:257-277
    [80] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method. Eur. J. Mech. A/Solids, 2001,20: 327-341
    [81] Duarte A, Oden J T. Hp clouds: a h-p meshless method. Numerical Methods for Partial Differential Equations, 1996, 12: 673-705
    [82] Duarte C A, Oden J T. An h-p adaptive method using clouds. Comput. Meth. Appl. Mech. Engrg, 1996, 139:237-262
    [83] Oden J T, Duarte A, Zienkiewicz O C. A new cloud-based hp finite element method. International Journal for Numerical Methods in Engineering, 1998, 50: 160-170
    [84] Babuska I, Melenk J M. The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Engrg, 1996, 139: 289-314
    [85] Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 43-69
    [86] Liu W K, Uras R A, Chen Y. Enrichment of the finite element with the reproducing kernel particle method. Current Topics in Computational Mechanics, 1995,305: 253-258
    [87] Chen J S, Pan C, Wu C T, Liu W K. Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Meth. Appl. Mech. Engrg, 1996, 139: 195-227
    [88] Li S, Liu W K. Moving least-square reproducing kernel method Part I: Methodology and Convergence. Comput. Meth. Appl. Mech. Engrg, 1997,143: 113-154
    [89] Li S, Liu W K. Moving least-square reproducing kernel method Part II: Fourier analysis. Comput. Meth. Appl. Mech. Engrg, 1996, 139: 159-193
    [90] Li S, Liu W K. Reproducing Kernel hierarchical Partition of Unity, Part I: Formulation and Theory. Int. J. Numer. Meth. Engng., 1999,45:251-288
    [91] Li S, Liu W K. Reproducing Kernel hierarchical Partition of Unity, Part II: Applications. Int.J.Numer. Meth.Engng., 1999,45:289-317
    [92] Chen J S, Yoon S, Wang H P, Liu W K. An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput. Meth. Appl. Mech. Engrg, 2000, 181: 117-145
    [93] Voth T E, Christon M A. Discretization errors associated with reproducing kernel methods: one-dimensional domains. Comput. Meth. Appl. Mech. Engrg, 2001, 190: 2429-2446
    [94] Liew K M, Ng T Y, Wu Y C. Meshfree method for large deformation analysis-a reproducing kernel particle approach. Engineering structures, 2002,24: 543-551
    [95] Shangwu X, Liu W K, Cao J, Rodrigues J M C, Martins P A F. On the utilization of the reproducing kernel particle method for the numerical simulation of plane strain rolling. International Journal of Machine Tools and Manufacture, 2003,43: 89-102
    [96] Chen J S, Han W, You Y, Meng X. A reproducing kernel method with nodal interpolation property. International Journal for Numerical Methods in Engineering, 2003, 56: 935-960
    [97] Han W, Meng X. Error analysis of the reproducing kernel particle method. Comput. Meth. Appl. Mech. Engrg, 2001, 190: 6157-6181
    [98] Onarte E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech. 1998,21: 283-292
    [99] Atluri S N, Cho J Y, Kim H G Analysis of thin beam, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 1999, 24: 334-347
    [100] Lin H, Atluri S N. The Meshless Local Petrov-Galerkin(MLPG) Method for Solving Incompressible Navier-Stokes Equations. Computer Modeling in Engineering & Sciences(CMES),2001,2: 117-142
    [101] Tang Z, Shen S, Atluri S N. Analysis of materials with strain gradient effects: A Meshless Local Petrov-Galerkin(MLPG) approach, with nodal displacements only. Computer Modeling in Engineering & Sciences(CMES), 2003,4(1): 177-196
    [102] Atluri S N, Shen S P. The Meshless Local Petrov-Galerkin(MLPG): a simple & less-costly alternative to the finite element and boundary element methods. CMES: Computer modeling in Engineering and Sciences, 2002, 3(1), 11-51
    [103] Buhmann M D. Radial Basis Functions. Acta Numerica, 2000, 9:1-38
    [104] Franke C, Schaback S. Convergence order estimates of meshless collocation methods using Radial Basis Functions. Advances in Computational Mathematics, 1998, 8: 381-399
    [105] Wu Z M, Hon Y C. Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Engineering Analysis with Boundary Elements, 2003, 27: 73-79
    [106] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Meth. Appl. Mech. Engrg, 2002, 191: 2611-2630
    [107] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002, 54: 1623-1648
    [108] Liew K M and Chen X L. Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method. International Journal of Solids and Structures, 2004,41: 1677-1695
    [109] Liew K M, Chen X L and Reddy J N. Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 205-224
    [110] Belytschlo T, Organ D. Coupled finite element-element-free Galerkin method. Comput. Mech. 1995, 17: 186-195
    [111] Hegen D. Element-free Galekin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 1996, 135: 143-166
    [112] Xiao Q Z, Dhanasekar M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software, 2002, 33: 507-515
    [113] Antonio Huerta, Sonia Fernadez-Mendez. Enrichment and coupling of the finite element and meshless methods. International Journal for Numerical Methods in Engineering, 2000, 48: 1615-1636
    [114] Rao B N, Rahman S. A coupled meshless-finite element method for fracture analysis. International Journal of Pressure Vessels and Piping, 2001, 78:647-657
    [115] Gu Y T, Liu G R. A coupled element-free Galerkin /boundary element method for stress analysis of two -dimension solid. Comput. Methods in Appl. Mech. Eng. 2001, 190: 4405-4419
    [116] Liu G R, Gu Y T. Coupling of element-free Galerkin and hybrid boundary element methods using modigied variational formulation. Comput. Mech. 2000, 26(2): 166-173
    [117] Gu Y T, Liu G R. Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method. Engineering Analysis with Boundary Elements Computer Methods in Applied Mechanics and Engineering, 2003, 27:907-915
    [118] Liu G R, Gu Y T. Meshless local petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches. Computational Mechanics, 2000, 26:536-546
    [119] Chen T, Raju I S. A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems. Comput. Meth. Appl. Mech. Engrg, 2003, 192: 4533-4550
    [120] Maria G. Armentano and Ricardo G Duran. Error estimates for moving least square approximations. Applied Numerical Mathematics, 2001, 37:397-416
    [121] Carlos Zuppa. Good quality point sets and error estimates for moving least square approximations. Applied Numerical Mathematics, 2003, 47:575-585
    [122] Chung H J and Belytschko T. An error estimate in the EFG method. Computational Mechanics, 1998,21:91-100
    [123] Enrique Pardo. Convergence and accuracy of the path integral approach for elastostatics. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 2191-2219
    [124] Atluri S N, Shen P. The Meshless Local Petrov-Galerkin (MLPG) method. California: Tech Science Press, 2002
    [125] Liu G R. Mesh Free Methods: Moving Beyond the Finite Method. CRC Press, 2002
    [126] Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003
    [127] Li S F, Liu W K. Meshfree Particle Methods. Berlin Heidelberg: Springer-Verlag, 2004
    [128] 张锁春.光滑质点流体动力学(SPH)方法.计算物理,1996,13(4):385-397
    [129] 贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理,1997,14(2):155-166
    [130] Liu X, Lu M W, Zhang X. Numerical analysis of singular problems using the partition of unity method. European Conference on Computational Mechanics (ECCM'99). Munchen, Germany, 1999
    [131] Song K Z, Zhang X. Meshless method based on collocation for elasto-plastic analysis. Proceedings of Internal Conference on Computational Engineering & Science. August, 20-25, 2000, Los Angeles, USA
    [132] Zhang X, Song K Z, Lu M W. Meshless methods based on collocation with radial basis function. Comp. Mech., 2000, 26(4): 333-343
    [133] Zhang X, Liu X H, Song K Z and Lu M W. Least-squares collocation meshless method. Int. J. Numer. Meth. Engrg., 2001, 51:1089-1100
    [134] 张雄,宋康祖,陆明万.紧支试函数加权残值法.力学学报,2003;,35(1):43-49
    [135] Zhang X, Lu M W. A 2-D meshless model for jointed rock structures. Int. J. Numer. Methods Engrg., 2000, 47(10): 1649-1661
    [136] 张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报,2003,20(6):731-741
    [137] 宋康祖,陆明万,张雄.固体力学中的无网格方法.力学进展,2000,30(1):55-65
    [138] 张雄,刘岩.无网格法.北京,清华大学出版社,2004
    [139] 周进雄,李梅娥,张红艳,张陵.再生核质点法研究进展.力学进展,2002,32(4):535-544
    [140] 姜弘道,曹国金.无单元法研究和应用现状及动态.力学进展,2002,34(4):526-534
    [141] 娄路亮,曾攀.影响无网格方法求解精度的因素分析.计算力学学报,2003,20(3):313-319
    [142] 蔡永昌,王建华.基于Voronoi结构的无网格局部Pegov-Galerkin方法.力学学报,2003,35(2):187-193
    [143] 蔡永昌,朱合华.岩土工程数值计算中的无网格方法及其全自动布点技术.岩土力学,2003,24(1):21-24
    [144] 龙述尧,许敬晓.弹性力学问题的局部积分方程方法.力学学报,2000,32(5):566-577
    [145] 陈美娟,程玉民.改进的移动最小二乘法,力学季刊,2003,24(2):266-272
    [146] 李树忱,程玉民.基于单位分解法的无网格数值流形方法.力学学报,2004,36(4):496-500
    [147] 李树忱.断续节理岩体的无网格流形方法和实验研究,上海大学博士学位论文,2004
    [148] 李树忱,程玉民.裂纹扩展分析的无网格数值流形方法,岩石力学与工程学报,2005,24(7):1187-1195
    [149] Li S C, Li S C and Cheng Y M. Enriched meshless manifold method for two-dimensional crack modeling, Theoretical and Applied Fracture Mechanics, 2005, 44(3): 201-346
    [150] Kitipornchai S, Liew K M, Cheng Yumin. A boundary element-free method (BEFM) for three-dimensional elasticity problems, Computational Mechanics,2005, 36(1): 13-20
    [151] Liew K M, Cheng Yumin, Kitipornchai S. Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform, International Journal of Numerical Methods in Engineering, 2005, 64(12): 1610-1627
    [152] Liew K M, Cheng Yumin, Kitipomchai S. Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, International Journal of Numerical Methods in Engineering, 2006, 65(8): 1310-1332
    [153] 程玉民,彭妙娟.弹性动力学的边界无单元法,中国科学G辑,2005,35(4):435-448
    [154] Cheng Yumin, Peng Miaojuan. Boundary element-free method for elastodynamics, Science in China Ser. G Physics, Mechanics & Astronomy, 2005, 48(6): 641-657
    [155] 程玉民,李九红.断裂力学的复变量无网格方法,中国科学G辑,2005,35(5):548-560
    [156] Cheng Yumin, Li Jiuhong. A complex variable meshless method for fracture problems, Science in China Ser. G Physics, Mechanics & Astronomy, 2006, 49(1): 46-59
    [157] 秦义校,程玉民.弹性力学的重构核粒子边界无单元法.物理学报,2006,55(7):3216-3222
    [158] 戴保东,程玉民.基于径向基函数的局部边界积分方程方法.机械工程学报,2006,(11):150-155
    [159] 寇晓东,周维垣.应用无单元法近似计算拱坝开裂.水利学报,2000,10:28-35
    [160] 张伟星,庞辉.弹性地基板计算的无单元法.工程力学,2000,17(3):138-144
    [161] 庞作会,葛修润.无网格伽辽金法在边坡开挖问题中的应用.岩土力学,1999,20(1):61-64
    [162] 庞作会,朱岳明.无网格伽辽金法(EFGM)求解接触问题.河海大学学报:自然科学版,2000,28(4):54-58
    [163] 庞作会,葛修润.无网格伽辽金法(EFGM)模拟不连续面.工程地质学报,2000,8(3):364-368
    [164] 庞作会,葛修润.对无网格伽辽金法(EFGM)的两点补充.岩石力学与工程学报,1999,18(5):581-584
    [165] 陈建,吴林志,杜善义.采用无单元计算含边沿裂纹功能梯度材料板的应力强度因子.工程力学,2000,17(5):139-144
    [166] 曾清红,卢德唐.无网格方法求解稳定渗流问题,计算力学学报,2003,20(4):440-445
    [167] 郭隽,陶智.非线性问题的MPS无网格算法.北京航空航天大学学报.2003,29(1):83-86
    [168] 张延军,王思敬.有限元无网格伽辽金耦合法分析二相连续多孔介质.计算物理,2003,20(2):142-146
    [169] 娄路亮,曾攀等.应力高梯度问题的无网格分析.应用力学学报,2002,19(2):121-124
    [170] 袁振,李子然等.无网格法模拟复合型疲劳裂纹的扩展.工程力学,2002,19(1):25-28
    [171] 龙述尧.用无网格局部Petrov—Galerkin法分析非线性地基梁.力学季刊,2002,23(4):547-551
    [172] 李卧东,谭国焕等.无网格法在弹塑性问题中的应用.固体力学学报,2001,22(4):361-367
    [173] 李卧东,陈晓波.无网格法在断裂力学中的应用.岩石力学与工程学报,2001,20(4):462-466
    [174] 何沛祥,李子然,吴长春.无网格法与有限元法的耦合及其对功能梯度材料断裂计算的应用.中国科学技术大学学报,2001,31(6):673-680
    [175] 赵光明,宋顺成.无网格方法在二维弹性力学计算中的应用.西南交通大学学报,2004,39(4):476-480
    [176] 崔青玲,刘相华,王国栋,熊尚武.板柸稳态立轧过程的RKPM无网格数值模拟.机械工程学报,2005,41(5):84-88
    [177] Ward Cheney, Will Light. A course in approximation theory. China Machine Press,2004,233-245
    [178] 程正兴,李水根.数值逼近与常微分方程数值解.西安:西安交通大学出版社,2000
    [179] 吴永礼.计算固体力学方法.北京:科学出版社,2003
    [180] 钱伟长,叶开源.弹性力学.北京:科学出版社,1956
    [181] 徐芝纶.弹性力学.北京:高等教育出版社.1992
    [182] 程玉民,沈祖炎,彭妙娟.加权残数和有限元耦合法解弹性力学问题.土木工程学报,2000,33(4):6-10
    [183] Erdogan F and Sih S C. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering ASME 1963, 85:519-525
    [184] Hussain M A, Pu S L and Underwood J. Strain energy release rate for a crack under combined mode I and mode Ⅱ. Fracture Analysis, ASTM STP 1974, 560:2-28
    [185] Chan S K, Tuba I S and Wilson W K. On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics 1970, 2:1-17
    [186] Parks D M. A stiffness derivative finite element technique for determination of crack tip stress intensity factors. International Journal of Fracture 1974,10:487-502
    [187] Lira I L, Johnston I W and Choi S K. A finite element code for fracture propagation analysis within elasto-plastic continuum. Engineering Fracture Mechanics 1996,53: 193-211
    [188] Barsoum R. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int. J. Numer. Meth. Engng. 1977, 11:85-98
    [189] Kwon Y W, Akin J E. Development of a derivative singular element for application to crack propagation problems. Computers and Structures. 1989, 3(3): 467-471
    [190] Sukumar N, Moes N et al. Extended finite element method for three dimension crack modeling. Int. J. Numer. Meth. Engng. 2000, 48:1549-1570
    [191] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 1999,45:601-620
    [192] Christophe Daux, Moes N, Dolbow J, Sukumar N and Belytschko T, Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Meth. Engng. 2000,48:1741-1760
    [193] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng. 1999,46(1): 131-150
    [194] Martinez J and Dominguez J. On the use of Quarter-point boundary element for stress intensity factor computations,Int.J.Num.Math.Eng.1985,20:1941-1950
    [195] Leitao V M A, Aliabadi M H, Rooke D P and Cook R. Boundary element methods for the analysis of crack growth in the presence of residual stress fields. Journal of Materials Engineering and Performance 1998, 7:352-360
    [196] Mi Y and Aliabadi M H. Three-dimensional crack growth simultation using BEM. Computer & Structures 1994,52:871-878
    [197] Rao B N, Rahman S. An enriched meshless method for non-linear fracture mechanics. Int J Numer Meth Eng, 2004,59:197-223
    [198] Duflot M, Nguyen-Dang H. A meshless method with enriched weight functions for fatigue crack growth. Int J Numer Meth Eng 2004,59:1945-1961
    [199] Boris M, Eli T. Spiral weight for modeling cracks in meshless numerical methods. Computational Mechanics, 2006,38(2): 101-111
    [200] Li S F, Liu W K, Qian D, Guduru R and Rosakis A J. Dynamic Shear band Propagation and Micro-Structure of Adiabatic Shear Band, Computer Methods in Applied Mechanics and Engineering, 2001,191:73-92
    [201] 高政国,刘光廷.含裂纹体结构分析中的再造核质点法.计算力学学报,2004,21(12):734-739
    [202] 黎在良,王元汉,李廷芥.断裂力学中的边界数值方法.北京:地震出版社,1996
    [203] 黄克智,余寿文.弹塑性断裂力学.北京:清华大学出版社,1985
    [204] 丁遂栋,孙利民.断裂力学.北京:机械工业出版社,1997年
    [205] 黄维扬.工程断裂力学.北京:航空工业出版社,1992
    [206] Anderson T L. Fracture Mechanics: Fundamentals and applications (First Ed.). CRC Press, 1999
    [207] 编写组.起重机设计手册.北京:机械工业出版社,1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700