用户名: 密码: 验证码:
奇台绿洲土壤盐渍化动态变化规律及其可持续发展策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以新疆奇台县绿洲不同耕种时间、两种植被覆盖度以及冻融前后土壤含盐量为研究对象,运用地统计学、聚类分析以及相关分析等方法对其含盐量变化规律、盐分剖面类型、空间变异性及其影响因素进行了研究。结果如下:
     (1)仅受自然条件影响的未耕地,土壤含盐量高,是典型的盐渍土。并且表层聚集现象明显。含盐量在表层(0~20cm)占整个剖面的34.31%。耕种时间较长的5a、10a地则与之相反,多为底聚型盐分剖面。即荒地转化成人类熟作的农田(5a以上)这一过程中,土壤剖面盐分特征由前期的表聚型依次转化为均匀型、震荡型和底聚型。随着人类耕种时间的加长,土壤各层含盐量的活跃程度变化依次为活跃层、次活跃层和较稳定层。有人类耕作活动的土壤盐渍化发生了逆向演替,耕种10a地平均含盐量仅有未耕地的20.90%。脱盐速度随着时间的增加而减小,由早期(0~3a)的1.56 g kg-1 a-1,下降为后期(5~10a)的0.04 g kg-1 a-1。
     (2)裸地和植被地土壤水盐都服从正态分布,剖面平均含盐量均属中等变异性,具有较强的空间自相关性。裸地土壤含水量属弱变异性,呈中等强度的空间自相关性;植被地属中等(偏弱)变异性,表现出较强空间自相关性。裸地的相关距离仅是植被覆盖地的1/10左右。
     (3)冻融前,表层(0-20cm)土壤电导率(0.30ms.cm-1)和含盐量(0.11%)最低,并且基本随着土层深度的增加EC及含盐量逐渐增大。而土壤盐分及EC空间分布的复杂性基本随着深度的增加逐渐减小。冻融后,表层(0-20cm)EC(0.38ms.cm-1)及含盐量(0.14%)变为最高。说明春季积盐现象明显(主要发生在60cm深度以上),但尤以表层最为严重(积盐率达30.0%)。秋季灌溉洗盐效果明显,剖面平均(100cm深度以上)EC和含盐量平均减少率为8.15%。而且洗盐深度大于100cm。另外,各层EC及盐分的变异性(中等变异性)未变,但变异系数增大(除40-60cm深度外)。
     (4)科学管水、合理用水、保障防护林面积、控制耕地面积是研究区绿洲可持续发展的基本原则。
Salt contents in soils different in cultivation age, two vegetation coverage and fore-and-aft Freezing in Qitai County of Xinjiang were investigated for analysis of rules of the variation of soil salt content, types of soil salinity content profiles, spatial variability and their affecting factors, using the cluster analysis method and some other related methods. Analysis results:
     (1) Along with the transformation of wasteland into farmland (at least 5 years in cultivation history), the characteristics of soil salt content distribution in the soil profiles varied and followed the order of surface accumulation profiles (SAP), even distribution profiles (EDP), oscillation profiles (OP) and bottom accumulation profiles (BAP). The non-farmland high in salt content is typical of salinized soil, with significant phenomenon of surface accumulation; and the salt in the surface layer (0~20cm) accounted for 34.31% of that in the soil profile. The farmlands, 5 or 10 years old, mostly belonged to the category of BAP. With the farming operation going on and on, soil salt content in various salt–containing layers varied to varying degree showing an order of active layer (AL), sub-active layer (SAL) and relatively stable layer (RSL), and an extremely positive correlation between soil salt content and soil organic matter content gradually turned in an extremely negative one, while the correlation between soil salt content and soil pH went the other round. Under farming activities, soil salinization developed reversely. The average salt content in farmland 10 years old was only 20.90 percent as much as in wasteland. The desalination rate was reducing with the farming operation going on from 0.156% a-1 in the first three years of farming down to 0.004% a-1 when the farming activity went beyond 5 years.
     (2) The soil water and salt content of bare land and vegetation area obey log-normal distribution; soil salinity belongs to moderate variability with a strong spatial autocorrelation. Soil moisture variability in the bare land belongs to weak variability with moderate intensity of the spatial autocorrelation; vegetation area belongs to medium (weaker) variability with strong spatial autocorrelation. Bare land autocorrelation distance is about 1 / 10 of vegetation area.
     (3) Before the freezing, the value of soil salt content (0.11%) and electrical conductivity (0.30ms.cm-1)in topsoi(l0-20cm) is minimum, the deeper of soil depth, he higher of the value. While the complexity of soil salt content and electrical conductivity trend to decrease by the addition of the depth. After the freezing, the value of soil salt(0.38ms.cm-1)content and electrical conductivity (0.14%) in topsoil is maximum, it indicated that soil salt accumulation rate (30.0%) at the surface soil layer was significant in spring; soil salt desalination rate was obviously in fall, the average value of sections is decrease by 8.15%, the soil salt desalination depth is beyond 100 cm. In addition, spatial variability of salt content and electrical conductivity of every soil layers remained invariability, but the variance quotient gone to high.
     (4) Water of scientific regulation and using and maintenance of shelter-forest and cultivated land area are the basic principle of sustainable development in the research zone of oasis.
引文
[1]韩茜.新疆奇台县绿洲农田土壤特性空间变异及盐渍化逆向演替研究[D].新疆大学博士论文, 2008,5.
    [2]B.P.F.Braga, Sustainable water resources development in emergent economies[D],International workshop on barriers to sustainable management of water quantity and quality,1998,Wuhan,China.
    [3]张蔚棒,张瑜芳.土壤水盐运移数值模拟的初步研究[D].大连:土壤物理学术讨论会论文,1982.
    [4]李韵珠,陆景文,黄坚.蒸发条件下粘土层与土壤水盐运移[C].北京:国际盐渍土改良学术讨论会论文集,1985,12:176-190.
    [5]刘亚平.稳定蒸发条件下土壤水盐运动的研究[C].北京:国际盐渍土改良学术讨论会论文集,1985(13).
    [6]陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究[J].水利学报,1996,(1):38-45.
    [7]孙三民.阿拉尔灌区盐分淋洗规律及棉花秋浇适宜灌水定额的研究[D].西北农林科技大学硕士论文,2008,5.
    [8]徐立刚,杨劲松,张妙仙.种植作物条件下粉砂壤质土壤水盐运移的数值模拟研究[J].土壤学报,2004,41(1):50-55.
    [9]李瑞平,史海滨,赤江刚夫,等.季节性冻融土壤水盐动态预测BP网络模型研究[J].农业工程学报,2007,23(11):125-128.
    [10]李瑞平,史海滨,赤江刚夫,等.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究[J].水利学报,2009,40(4):403-412.
    [11]杨劲松.中国盐渍土研究的发展历程与展[J].土壤学报,2008,45(5):837-844.
    [12]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001,4:12-14.
    [13]买买提沙吾提,丁建丽,塔西甫拉提·特依拜,等.多源信息融合技术在干旱区盐渍地信息提取中的应用.资源科学, 2008, 30(5): 792-799.
    [14]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟[D].东北师范大学硕士论文, 2005,5.
    [15]牛博,倪萍,塔西甫拉提·特依拜.遥感技术在干旱区盐渍化动态变化分析中的应用[J].地质灾害与环境保护,2004,15(4):78-82.
    [16]姚荣江,杨劲松,邹平,等.基于电磁感应仪的田间土壤盐渍度及其空间分布定量评估.中国农业科学, 2008, 41(2): 460-469.
    [17]陈鹏,王海军,等.松嫩平原土壤盐渍化的逆向演替规律研究[J].吉林农业科学,2002,27(3):40-42.
    [18]王海军,盛连喜,等.松嫩平原西部土壤盐渍化逆向演替的影响因子与调控系统[J].东北师大学报自然科学版,2003,25(3):60-65.
    [19]张凌云,赵庚星,徐嗣英,等.滨海盐渍土适宜土壤盐碱改良剂的筛选研究[J].水土保持学报,2005,19(3):21-23.
    [20]沈根祥,杨建军,黄沈发,等.塑料大棚盐渍化土壤灌水洗盐对水环境污染负荷的研究[J].农业工程学报,2005,21(1):124-127.
    [21]巨龙,王全九,王琳芳,等.灌水量对半干旱区土壤水盐分布特征及冬小麦产量的影响[J].农业工程学报,2007,23(1):86-90.
    [22]李取生,王志春,李秀军.苏打盐渍土壤微咸水淋洗改良技术研究[J].地理科学,2002,22(3):342-348
    [23]罗格平,许文强,陈曦.天山北坡绿洲不同土地利用对土壤特性的影响.地理学报,2005,60(5):779-790.
    [24]李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土,2001,23(3):251-257.
    [25]Sembiring H, Raun W R, Johnson G V, et al. Effect of Wheat Straw Inversion on Soil Water Conservation[J]. Soil Sciene, 1995, 159(2): 81-89.
    [26]李新举,张志国.秸秆覆盖对土壤水分蒸发及土壤盐分的影响[J].土壤通报,1999,30(6):257-258.
    [27]Edward P, Glenn J, Jed Brown, et al.Salt Tolerance and Crop Potential of Halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
    [28]Laurent Barbiéro, Vincent Valles, Annick Régeard, et al. Residual alkalinity as tracer to estimate the changes induced by forage cultivation in a non-saline irrigated sodic soil[J].Agricultural Water Management, 2001, 50(3): 229-241.
    [29]Barrett-Lennard E G. Restoration of saline land through revegetation[J].Agricultural Water Management, 2002, 53(1-3):213-226.
    [30]韩茜,熊黑钢.奇台县绿洲农田土壤盐渍化逆向演替过程.水土保持学报,2008,22(2):93-97.
    [31]Hillel D. Research in soil physics: a review [J]. Soil Sci, 1991, 151:30-34.
    [32]赵成义,王玉潮,李子良,等.田块尺度下土壤水分和盐分的空间变异性[J].干旱区研究,2003,20(4):252-256.
    [33]丁建丽,张飞,江红南,等.塔里木盆地北缘绿洲土壤含盐量和电导率空问变异性研究——以渭干河一库车河三角洲绿洲为例[J].干旱区地理,2008,31(4):624-632.
    [34]姚荣江,杨劲松,刘光明.土壤盐分和含水量的空间变异性及其CoKriging估值—以黄河三角洲地区典型地块为例[J].水土保持学报,2006,20(5):133-138.
    [35]姚荣江,杨劲松,姜龙,等.基于聚类分析的土壤盐渍剖面特征及其空间分布研究[J].土壤学报,2008,45 (1) : 56-65.
    [36]胡克林,李保国,陈德立,等.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展,2001,12 (4) : 460-466.
    [37]赵锐锋,陈亚宁,洪传勋,等.塔里木河源流区绿洲土壤含盐量空间变异和格局分析——以岳普湖绿洲为例[J].地理研究,2008,27 (1) : 135-144.
    [38]郭占荣,荆恩春,聂振龙,等.冻结期和冻融期土壤水分运移特征分析[ J].水科学进展,2005,13(3):298-302.
    [39]龚家栋,祁旭升,谢忠奎,等.季节性冻融对土壤水分的作用及其在农业生产中的意义[J].冰川冻土,1997,19(4):328-333.
    [40]Zhao Litong, Gray D M. Estimating snowmelt infiltration into frozen soils[J]. Hydrological processes,1999,13:1827-1842.
    [41]Klas, Jirka, Masaru. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications[J].Soil science society of America, 2004,(3):693-704.
    [42]Flerchinger, Baker, Spaans. A test of the radiative energy balance of the SHAW model for snow cover[J]. Hydrological processes, 1996, 10:1359-1367.
    [43]Flerchinger, Saxton.Simultaneous heat and water model of a freezing snow-residue-soil system[J]. Transaction of the ASAE,1989,32(2)565-578.
    [44]王璐璐,陈晓飞,马巍,等.不同土壤冻融特征曲线的试验研究[J].冰川冻土,2007,29(6):1004-1011.
    [45]陈晓飞,都洋,马巍,等.养分含量对土壤冻融特征曲线的影响[J].冰川冻土,2004,26(4):440-448.
    [46]陈军锋,郑秀清,邢述彦,等.地表覆膜对季节性冻融土壤入渗规律的影响[J].农业工程学报,2006,22(7): 18-21.
    [47]李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土,2001,23(3):251-257.
    [48]张殿发,郑琦宏.冻融条件下土壤中水盐运移规律模拟研究[J].地理科学进展,2005,24(4):46-55.
    [49]张殿发,郑琦宏,董志颖.冻融条件下土壤中水盐运移机理探讨[J].水土保持通报,2005,(25)6:14-18
    [50]樊贵盛,郑秀清,潘光在.地下水埋深对冻融土壤水分人渗特性影响的试验研究[J].水利学报,1999,(3):21-26.
    [51]李瑞平,史海滨,赤江刚夫,等.冻融期气温与土壤水盐运移特征研究[J].农业工程学报,2007,23(4):70-74.
    [52]李瑞平,史海滨,赤江刚夫,等.季节性冻融土壤水盐动态预测BP网络模型研究[J].农业工程学报,2007,23(11):125-128.
    [53]李瑞平,史海滨,赤江刚夫,等.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究[J].水利学报,2009,40(4):403-412.
    [54]王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.
    [55]Webster R. Quantitative spatial analysis of soil in the field[J]. Advance in Soil Science, 1985, 3: 1-70.
    [56]王人铎,胡光道.线性地质统计学[M].北京:地质出版社,1987.
    [57]Issaks E.H., R.M. Srivastava. An introduction to applied geostatistics[M] New York, Oxford Univ. press, 1989.
    [58]候景儒,郭光裕.矿床统计预测及地址统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [59]姚荣江,杨劲松,刘光明.土壤盐分和含水量的空间变异性及其CoKriging估值—以黄河三角洲地区典型地块为例[J].水土保持学报,2006,20(5):133-138.
    [60]武选民.干旱、半干旱地区水文地质研究现状[J].水文地质工程,1999,4:41-46.
    [61]Matheron G. Principles of geostatistics[J]. Economic Geology, 1963, 58: 1246-1266.
    [62]唐启义,冯明光. DPS数据处理系统[M].北京:科学出版社,2007, 1084-1087.
    [62]张超,杨秉赓.计量地理学基础[M].北京:高等教育出版社,2004,86-90.
    [63]顾峰雪,张远东,潘晓玲,等.阜康绿洲土壤盐渍化与植物群落多样性的相关性分析.资源科学,2004,24(3):42-48.
    [64]杜金龙,靳孟贵,欧阳正平,等.焉耆盆地土壤盐分剖面特征及其与土壤颗粒组成的关系.地球科学-中国地质大学学报,2008,33(1):131-136.
    [65]王晓燕,陈洪松,王克林,等.不同利用方式下红壤坡地土壤水分时空动态变化规律研究.水土保持学报,2006,20(2):110-113.
    [66]李禄军,蒋志荣,车克钧,等.绿洲-荒漠交错带不同沙丘土壤水分时空动态变化规律.水土保持学报,2007,21(1):123-127.
    [67]华孟.土壤物理学[M].北京:北京农业大学出版社,1993.
    [68]雷志栋,杨诗秀,谢森传.土壤动力学[M].北京:清华大学出版社,1998.
    [69]侯景儒,尹镇南,李维明,等.实用地质统计学[M].北京:地质出版社,1998.
    [70]黄冠华.大尺度非饱和土壤水分运动的随机模型及有效参数的结构分析[J].水利学报,1997,(11):39-47.
    [71]李秀军.松嫩平原西部土地盐碱化与农业可持续发展[J].地理科学,2000,20(1):51-55.
    [72]农八师30团农场,30团农场种植牧草改良土壤的效果,《农业科学研究报告选辑》第一集(下册),新疆生产建设兵团科委,1964.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700