用户名: 密码: 验证码:
腔QED系统中的量子模拟以及量子控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光与物质之间的相互作用是量子光学的重要内容。近些年来量子信息得到了飞速的发展。利用量子光学手段实现量子信息过程是很热门的话题。腔QED(cavity quantum electrodynamics)研究腔中的物质与腔场作用的动力学,是非常有前景的量子器件。人们做了很多优秀的工作研究腔QED系统中的量子信息过程,这些工作对于腔QED系统的量子器件地位的确立起着非常重要的作用。本文研究了由多个腔QED系统耦合组成的耦合腔列模型以及由腔QED系统与波导管耦合组成的模型,旨在为量子信息服务。本论文主要分为七章,从第三章开始介绍我们的工作,具体内容的安排如下:
     第一章首先介绍了量子信息和量子光学之间的关系以及腔QED的发展。然后对耦合腔列中自旋链的模型的意义以及研究现状做了介绍,也对腔QED与波导管耦合系统做了简单介绍。最后给出了本论文的研究内容和结构安排。
     第二章中给出了本论文中需要用到的理论知识。首先介绍了电磁场是如何量子化的,接下来给出了光场与物质相互作用的量子理论。然后对绝热消除法、缀饰态理论、信息熵度量纠缠以及光子之间的相干做了介绍。
     第三章研究了如何在耦合腔列中实现自旋为1的海森堡模型。我们考虑由N个全同腔组成的耦合腔列系统,其中每个腔包含一个五能级原子。结果显示,在一定条件下通过相邻腔之间交换虚光子,我们模型可以有效地等价为自旋为1的海森堡模型。可以通过调节外加激光场来控制有效哈密顿量中的参量。
     第四章中我们利用耦合腔列的模型模拟了各向异性的XYZ自旋链。在我们的模型中每个腔中有一个五能级原子。有效各向异性自旋链哈密顿量中的各向异性参量可以通过控制外加激光场来调节。我们通过数值模拟的方法验证了在计算过程中所取的近似的有效性,最后对系统的退相干进行了讨论,发现我们的系统是可以克服退相干效应的。
     第五章我们利用polariton理论研究了V型原子系综与场相互作用的系统。polariton方法在强耦合机制下的腔QED系统中是一个非常有效的方法。我们分析了连续场跟物质相互作用情况下的polariton(?)理论。利用polariton理论研究了系统中双模光子之间的转换效率和纠缠。我们研究了光场与原子能级之间的失谐量对频率上转换的影响。结果显示当入射光子与原子非共振时,调节探测场的频率同样可以得到很大的转换效率。另外我们还分析了原子能级的自发辐射对双模光子之间转换效率的影响。
     第六章中我们研究了非线性腔系统与波导管耦合的模型中光子的传输。波导管中光子的传播可以通过操作非线性腔系统中的原子来控制。我们利用polariton理论进行分析。在单光子情况下,我们的模型等价为一个波导管与一个二能级系统耦合。通过解薛定谔方程,我们发现可以通过控制外加经典场的拉比频率来实现光子的开关。在双光子情况下,系统等价为波导管与一个级联三能级系统耦合,光子的二阶相干度可以通过调节经典场的拉比频率来控制。
     第七章中我们研究了腔QED系统与波导管耦合模型中的双光子传输问题。腔QED系统由一个线性腔以及腔中的四能级原子组成。我们在缀饰态表象下进行分析,发现原子和腔组成的系统会导致非线性效应。可以通过调节外加经典场的拉比频率来控制关联光子对的透射和反射。
     最后,我们给出了总结和展望。
The interaction between light and matter is an important element of quantum optics. Quantum information has rapidly developed in recent years. The realization of quantum information processing taking advantage of the tool of quantum optics is a very hot topic. Cavity QED (cavity quantum electrodynamics) is the study of the interaction between cavity field and material in the cavity. People has done a large mount of excellent work studying cavity QED system in quantum information processing, these work plays an important role on establishing the status of the cavity QED system as Quantum Devices. This paper studies the coupled cavities composed of cavity QED system, as well as the cavity QED system coupled with waveguide, for the purpose of serving for the quantum information processing. This paper is divided into seven chapters, with our work included in the chapters from chapter3to chapter7. The structure of this paper is organized as follows:
     In chapter1, We introduce relationship between quantum information and quantum optics and the development of cavity QED, then give the significance of the study of the spin chain model in the coupled cavities. We also give a brief introduction of the Cavity QED system coupled with the waveguide. Finally, we give the structure of this paper.
     The second chapter gives the theoretical knowledge which will be needed in this paper. We introduced the quantization of electromagnetic field, the theory of the interaction between the matter and field. Then we briefly introduce adiabatic elimination method theory, dressed states theory, information entropy and entanglement measurement and the theory of photon coherent.
     In chapter3, a coupled array of N identical cavities, each of which contains a five-level atom, is investigated. The results show that the atoms, via the exchange of virtual photons, can be effectively equal to a spin-1Heisenberg model under certain conditions. By tuning the laser fields, the parameters of the effective Hamiltonian can be controlled.
     In chapter4, we simulated anisotropic XYZ-spin chain with an array of coupled cavities, each of which contains one four-level atom. The anisotropic parameters of the effective Hamilton can be tuned by controlling the external lasers. The validity of our approximations are confirmed via a numerical simulation. The decoherence can be neglected under current experimental condition. Finally, the conclusions and discussion are given.
     In chapter5. We introduce the polaritom theory, which is a effective method for the realization of cavity QED system when the cavity QED system works in strong coupled regime. We investigate frequency conversion and entanglement via polariton technique. We analyze the effect of detuning on the efficiency of frequency conversion (EFC). The results show that by adjusting the second mode frequency, the EFC still can be achieved perfectly when the incoming photon is off-resonant. The effect of the spontaneous emission of the atoms on EFC is included.
     In chapter6, we study the system consisting of a one-dimension waveguide side-coupled with a nonlinear cavity with a lambda-type atom and investigate the controlling of photons transport in one-dimension waveguide through manipulating the atom contained in the cavity. Employing the polariton technique, we show that in the single-photon case, the system can behave as a waveguide coupled to a two-level system. By solving the Schrodinger equation, we show that single photon switch by tuning the Rabi frequency of the classical field. In the two-photon case, the system can behaves like a waveguide coupled to a cascade three-level system. Two-photon quantum correlation in the position variation can be controlled by adjusting the Rabi frequency.
     In chapter7, we investigate the two-photon transport properties inside one-dimensional waveguide side-coupled to a cavity. The cavity is doped with a four level atom. By employing dressed state basis, we show that the atom-cavity molecule produces a nonlinear interaction. The bunching and antibunching of the transmitted and reflected photons can be observed due to the nonlinearity. By tuning the Rabi frequency of the classical field. the transmission and reflection of the correlated photons can be controlled.
引文
[1]Scully M O and Zubairy M S, Quantum Optics[M]. Cambridge:Cambridge University Press,1997.
    [2]Walls D F and Milburn G J, Quantum Optics [M]. New York:Springer,1995.
    [3]Nielsen M A, Chuang I L. Quantum computation and quantum imformation[M]. Cambridge:Cam-brige Univ. press 2000.
    [4]Shor P. Algorithms for quantum computation; discrete logarithm and factoring. Proc. of th 35th Annual symposium on foundations of computer scence[C]. IEEE ComputerDociety Press,1994,123-134.
    [5]Purrcel E M, Spontaneous emission probabilities at radio frequencies [J] Phys. Rev.1946,69:681.
    [6]Feher G, Gordon J P, Buehler E, Gere E A and Thurmond C D, Spontaneous emission of radiation from an electron spin system [J]. Phys. Rev.1958,109,221.
    [7]Drexhage K H, K. H. Drexhage, Progress in Optics[M]. North-Holland, Amsterdam:Elsevier,1974, Vol. Ⅻ.
    [8]Goy P, Raimond J M, Gross M and Haroche S, Observation of cavity-enhanced single-atom sponta-neous emission [J]. Phys. Rev. Lett.1983,50:1903.
    [9]Hulet R G, Hilfer E S, and Kleppner D, Inhibited spontaneous emission by a rydberg atom [J]. Phys. Rev. Lett.1985 55:2137.
    [10]Jaynes E T and Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[C]. Proc. IEEE,1963,51:89.
    [11]Rempe G, Sehmidt-Kaler and Wahher H, Observation of sub-Poissonian photon statistics in a micromaser [J]. Phys. Rev. Lett.1990,64:2783.
    [12]Rempe G, Thompson R J, Lee W D and Kimble H J, Optical bistability and photon statistics in cavity quantum electrodynamics [J]. Phys. Rev. Lett.1991,67:1727.
    [13]Raizen M G, Thompson R J, Brecha R J, Kimble H J and Carmichael H J, Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity[J]. Phys. Rev. Lett.1989,63:240.
    [14]Brune M, Haroche S, Lefevre V, Raimond J M, and Zagury N, Quantum nondemolition measure-ment of small photon numbers by Rydberg-atom phase-sensitive detection[J]. Phys. Rev. Lett.1990, 65:976.
    [15]Brune M, Nussenzveig P, Schmidt-Kaler F, Bernardot F. Maali A, Raimond J M, and Haroche S, From Lamb shift to light shifts:Vacuum and subphoton cavity fields measured by atomic phase sensitive detection[J]. Phys. Rev. Lett.1994,72:3339.
    [16]Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M, and Haroche S, Quantum rabi oscillation:A direct test of field quantization in a cavity [J]. Phys. Rev. Lett.1996,76:1800.
    [17]Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J M and Haroche S, Seeing a single photon without destroying it[J]. Nature 1999,400:239-242.
    [18]Raimond J M, Brune M and Haroche S, Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev. Mod. Phys.,2001,73:565-582.
    [19]Mabuchi H and Doherty A C, Cavity quantum electrodynamics:coherence in context [J]. Sience, 2002.298:1372.
    [20]Thompson R J, Rempe G. and Kimble H J, Observation of normal-mode splitting for an atom in an optical cavity [J]. Phys. Rev. Lett.1992 68:1132.
    [21]McKeever J. Buck J R, Boozer A D, Kuzmich A, Nagerl H C, Stamper-Kurn D M and Kimble H J, State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity [J]. Phys. Rev. Lett., 2003,90:133602(1-4).
    [22]Vahala K J, Optical microcavities [J]. Nature London,2003,424:839-846.
    [23]Stefanou N and Modinos M, Impurity bands in photonic insulators [J]. Phys. Rev. B,1998,57: 12127-12133.
    [24]Shi B S, Jiang Y K and Guo G C. Optimal entanglement purification via entanglement swapping [J]. Phys. Rev. A.2000,62:054301.
    [25]Wang X B, Shi B S. Tomita A and Matsumoto K, Quantum entanglement swapping with sponta-neous parametric down-conversion [J]. Phys. Rev. A,2004 69:014303.
    [26]Waks E, Z Assaf and Y Yoshihisa. Security of quantum key distribution with entangled photons against individual attacks[J]. Phys. Rev. A,2002,65:052310.
    [27]Sen A, Sen U, and Zukowski M, Output state in multiple entanglement swapping[J]. Phys. Rev. A,2003.68:062301.
    [28]Song D. Secure key distribution by swapping quantum entanglement[J]. Phys. Rev. A.2004,69: 034301.
    [29]Kariinipour V and Bahraminasab A, Entanglement swapping of generalized cat states and secret sharing [J]. Phys. Rev. A.2002.65:042320.
    [30]Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C, Experimental demonstration of unconditional entanglement swapping for continuous variables [J]. Phys. Rev. Lett.2004,93:250503.
    [31]Boulant N. Edmonds K, Yang J, Pravia M A and Cory D G, Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing [J]. Phys. Rev. A,2003,68:032305.
    [32]Boulant N. Fortunatol E M. Pravia M A, Teklemariam G. Cory D G and Havel T F, Entanglement transfer experiment in NMR quantum information processing [J]. Phys. Rev. A.2002,65:024302.
    [33]Parkins A S. Marte P. Zoller P. O. Carnal and H. J. Kimble, Quantum-state mapping between multilevel atoms and cavity light fields[J]. Phys. Rev. A,1995.51:1578.
    [34]Kennedy T A B and Zhou P. Atomic dark states and motional entanglement in cavity QED[J]. Phys. Rev. A,2001,64:063805.
    [35]Arun R and Agarwal G S, Dark states and interferences in cascade transitions of ultracold atoms in a cavity[J]. Phys. Rev. A,2002,66:043812.
    [36]Chen T W, Law C K. and Leung P T, Single-photon scattering and quantum-state transformations in cavity QED[J]. Phys. Rev. A,2004,69:063810.
    [37]Bennett C H, Brassard G, C Claude, J Richard, P Asher and K W William, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett.1993, 70:1895.
    [38]Davidovich L, Zagury N, Brune M, Raimond J M and S Haroche, Teleportation of an atomic state between two cavities using nonlocal microwave fields [J]. Phys. Rev. A,1994,50:R895.
    [39]J I Cirac and A S Parkins, Schemes for atomic-state teleportation[J]. Phys. Rev. A,1994,50: R4441.
    [40]Cirac J I, Zoller P, Kimble H J and Mabuchi H, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network [J]. Phys. Rev. Lett.1997,78:3221.
    [41]Pellizzari T, Quantum Networking with Optical Fibres, Quantum Networking with Optical Fibres [J]. Phys. Rev. Lett.1997,79:5242.
    [42]Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett.1993, 70:1895.
    [43]Plenio M B, Huelga S F,Beige A and Knight P L, Cavity-loss-induced generation of entangled atoms [J]. Phys. Rev. A,1999,59:2468.
    [44]龙桂鲁,李岩松,曾蓓,刘晓曙,肖丽,量子力学新进展第二辑,量子纠缠及其在量子信息中的应用[M].北京大学出版社,2001.
    [45]张永德,量子力学新进展第一辑,量子测量和量子计算简述[M].北京大学出版社,2000.
    [46]Zheng S B and Guo G C, Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED [J]. Phys. Rev. Lett.2000,85:2392.
    [47]Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S, Coherent Control of an Atomic Collision in a Cavity [J]. Phys. Rev. Lett.2001.87:037902.
    [48]Arnesen M C, Bose S and Vedral V, Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model [J]. Phys. Rev. Lett.2001,87:017901.
    [49]Wang X Phys. Rev. A, Entanglement in the quantum Heisenberg XY model [J].2001,64:012313.
    [50]Kamta G L and Starace A F, Anisotropy and Magnetic Field Effects on the Entanglement of a Two Qubit Heisenberg XY Chain [J]. Phys. Rev. Lett.2002,88:107901.
    [51]Zhou L, Song H S, Guo Y Q and Li C, Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain [J]. Phys. Rev. A,2003,68:024301.
    [52]Zhang G F and Li S S,Phys. Rev. A, Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field [J].2005,72:034302.
    [53]Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M, Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields [J]. Phys. Rev. A.2006.74:052105.
    [54]Kheirandish F, Akhtarshenas S J and Mohannnadi H, Effect of spin-orbit interaction on entangle-ment of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field [J]. Phys. Rev. A, 2008,77:042309.
    [55]Bose S, Quantum Communication through an Unmodulated Spin Chain [J]. Phys. Rev. Lett.2003, 91:207901.
    [56]Christandl M. Datta N, Ekert A and Landahl A J, Perfect State Transfer in Quantum Spin Networks [J]. Phys. Rev. Lett.2004,92:187902.
    [57]Wojcik A, Luczak T. Kurzynski P, Grudka A, Gdala T and Bednarska M, Unmodulated spin chains as universal quantum wires [J]. Phys. Rev. A,2005,72:034303.
    [58]Hartmann M J, Brandao F G S L and Plenio M B, Strongly interacting polaritons in coupled arrays of cavities [J]. Nature Phys.,2006,2:849-855.
    [59]Stefanou N and Modinos M, Impurity bands in photonic insulators [J]. Phys. Rev. B.1998,57: 12127-12133.
    [60]Yariv A, Xu Y, Lee R K and Scherer A. Coupled-resonator optical waveguide:a proposal and analysis [J]. Optics Lett.,1999,24:711-713.
    [61]Marzani M and Vanderbilt D, Maximally localized generalized Wannier functions for composite energy bands[J]. Phys. Rev. B,1997,56:12847-12865.
    [62]Zhou L. Gong Z R, Liu Y x,Sun C P and Nori F, Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide [J]. Phys. Rev. Lett.2008 101:100501.
    [63]Gong Z R. Zhou L and Sun C P, Controlling quasibound states in a one-dimensional contin-uum through an electromaagnetically-inducod-transparency mechanism [J]. Phys. Rev. A,2008,78: 053806.
    [64]Zhou L, Dong H, Liu Y x, Sun C P and Nori F, Quantum supercavity with atomic mirrors[J]. Phys. Rev. A,2008.78:063827.
    [65]Hartniann M J and Plenio M B. Strong Photon Nonlineaxities and Photonic Mott Insulators[J]. Phys. Rev. Lett.,2007,99:103601.
    [66]Hartmann M J. Brand榓o F G S L and Plenio M B. A polaritonic two-component BoseHubbard model[J]. New J. Phys.,2008,10:033011.
    [67]Angelakis D G, Santos M F and Bose S, Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays Phys. Rev. A,2007,76:031805(R).
    [68]Greentree A D, Tahan C, Cole J H and Hollenberg L C L, Quantum phase transitions of light[J]. Nature Phys.2006,2:856.
    [69]Loss D and DiVincenzo D P, Quantum computation with quantum dots [J]. Phys. Rev. A,1998. 57:120.
    [70]Burkard G, Loss D and DiVincenzo D P. Coupled quantum dots as quantum gates [J]. Phys. Rev. B,1999,59:2070.
    [71]Bruder C, Fazio R and Schon G, Superconductor-Mott-insulator transition in Bose systems with finite-range interactions[J]. Phys. Rev. B,1993,47:342.
    [72]Duan L-M. Demler E and Lukin M D, Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices [J]. Phys. Rev. Lett.2003,91:090402.
    [73]Garcia-Ripoll J J, Martin-Delgado M A and Cirac J I. Implementation of Spin Hamiltonians in Optical Lattices [J]. Phys. Rev. Lett.2004,93:250405.
    [74]Hartmann M J. Brandao F G S L and Plenio M B. Effective Spin Systems in Coupled Microcavities [J]. Phys. Rev. Lett.2007,99:160501.
    [75]Chen Z X, Zhou Z W, Zhou X X, Zhou X F and Guo G C, Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities[J]. Phys. Rev. A,2010,81: 022303.
    [76]Zhong Z R, Zhang B, Lin X and Su W J, An Effective Heisenberg Spin Chain in a Fiber-Cavity System [J]. Chinese Phys. Lett.2011,28:120303.
    [77]Sarkar S, Quantum fieldtheoreticalstudyofaneffectivespinmodelincoupledoptical cavity arrays[J]. Physica B,2012,407:44.
    [78]Cho J, Angelakis D G and Bose S, Simulation of high-spin Heisenberg models in coupled cavities [J]. Phys. Rev. A,2008,78:062338.
    [79]Kay A and Angelakis D G, Reproducing spin lattice models in strongly coupled atom-cavity systems [J]. Europhys. Lett.2008,84:20001.
    [80]Kimble H J, The quantum interenet [J]. Nature (London),2008,453:1023.
    [81]Miicke M et al., Nature (London). Electromagnetically induced transparency with single atoms in a cavity [J].2010,465:755.
    [82]Kampschulte T et al. Phys. Rev. Lett. Optical Control of the Refractive Index of a Single Atom [J].2010.105:153603.
    [83]Jr. Abdumalikov A A et al. Electromagnetically Induced Transparency on a Single Artificial Atom [J]. Phys. Rev. Lett.2010,104:193601.
    [84]Slodicka L et al. Phys. Rev. Lett. Electromagnetically Induced Transparency from a Single Atom in Free Space [J].2010 105:153604.
    [85]Harris S E, Electromagnetically Induced Transparency [J]. Phys. Today,1997,50:7.
    [86]Harris S E, Field J E and Imamogu A, Nonlinear optical processes using electromagnetically induced transparency [J]. Phys. Rev. Lett.1990,64:1107.
    [87]Fleischhauer M, Imamoglu A and Marangos J P, Electromagnetically induced transparency:Optics in coherent media [J]. Rev. Mod. Phys.2005,77:633.
    [88]Faraon A, Waks E, Englund D, Fushman I and Vuckovic J, Appl. Phys. Lett. Efficient photonic crystal cavity-waveguide couplers[J].2007.90:073102.
    [89]Faraon A, Fushman I, Englund D, Stoltz N, Petroff P and Vuckovic J, Opt. Express. Dipole induced transparency in waveguide coupled photonic crystal cavities [J].16,2008,12:154.
    [90]Chang D E, S(?)rensen A S, Hemmer P R, and Lukin M D, Quantum Optics with Surface Plasmons [J]. Phys. Rev. Lett.2006,97:053002.
    [91]Chang D E, S(?)rensen A S, Hemmer P R, and Lukin M D, Strong coupling of single emitters to surface plasmons [J] Phys. Rev. B,2007,76:035420.
    [92]Akimov A V et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature (London),2007,450:402.
    [93]Astafiev O et al. Science. Resonance Fluorescence of a Single Artificial Atom[J].2010.327:840.
    [94]Dayan B et al. A Photon Turnstile Dynamically Regulated by One Atom [J]. Science,2008,319: 1062.
    [95]Vetsch E et al. Optical Interface Created by Laser-Cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber [J]. Phys. Rev. Lett.2010,104:203603.
    [96]Claudon J et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J]. Nat. Photon.2010,4:174.
    [97]Babinec T M et al. A diamond nanowire single-photon source [J]. Nature Nanotech.2010.5:195.
    [98]Shen J-T and Fan S, Coherent Single Photon Transport in a One-DimensionalWaveguide Coupled with Superconducting Quantum Bits[J]. Phys. Rev. Lett.2005,95:213001.
    [99]Shen J-T and Fan S. Theory of single-photon transport in a single-mode waveguide [J]. Phys. Rev. A,2009,79:023837.
    [100]Kojima K, Hofmann H F, Takeuchi S and Sasaki K, Nonlinear interaction of two photons with a one-dimensional atom:Spatiotemporal quantum coherence in the emitted field [J]. Phys. Rev. A, 2003.68:013803.
    [101]Shen J-T and Fan S, Strongly Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupled to a Two-Level System[J]. Phys. Rev. Lett.2007.98:153003.
    [102]Shen J-T and Fan S. Strongly correlated multiparticle transport in one dimension through a quantum impurity [J]. Phys. Rev. A.2007.76:062709.
    [103]Roy D. Few-photon optical diode[J]. Phys. Rev. B,2010.81:155117.
    [104]Roy D, Correlated few-photon transport in one-dimensional waveguides:Linear and nonlinear dispersions [J]. Phys. Rev. A.2011,83:043823.
    [105]Shi T. Fan S and Sun C P. Two-photon transport in a waveguide coupled to a cavity in a two-level system [J]. Phys. Rev. A.2011.84:063803.
    [106]Longo P. Schmitteckert P and Busch K, Few-Photon Transport in Low-Dimensional Systems: Interaction-Induced Radiation Trapping[J]. Phys. Rev. Lett.2010.104:023602.
    [107]Roy D. Phys. Rev. Lett. Two-Photon Scattering by a Driven Three-Level Emitter in a One-Dimensional Waveguide and Electromagnetically Induced Transparency [J].2011.106:053601.
    [108]Liao J Q and Law C K, Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity [J]. Phys. Rev. A,2010,82:053836.
    [109]James D F V. Effective Hamiltonian Theory and Its Applications in Quantum Information[J]. Fortschr. Phys.2000.48:823.
    [110]Agarwal G S. Narducci L M. Feng D H and Gimore R. Phys. Rev. Lett. Intensity Correlations of a Cooperative System [J].1978,42:1260.
    [111]Bennett C H. Bernstein H J. Popescu and Schumacher B. Concentrating partial entanglement by local operations [J]. Phys. Rev. A.1996,53:2046-2052.
    [112]Bose S, Quantum communication through spin chain dynamics:an introductory overview[J]. Contemp. Phys.2007,48:13.
    [120]Romero-Isart O. Eckert K and Sanpera A. Quantum state transfer in spin-1 chains[J]. Phys. Rev A,2007.75:050303(R).
    [114]Hartmann M J, Reuter M E and Plenio M B,Excitation and entanglement transfer versus spectral gap [J]. New J. Phys.2006.8:94.
    [115]Verstraete F, Martin-Delgado M A and Cirac J I, Diverging Entanglement Length in Gapped Quantum Spin Systems [J]. Phys. Rev. Lett.2004,92:087201.
    [116]Nemoto K, Holmes C A, Milburn G J and Munro W J,Quantum dynamics of three coupled atomic Bose-Einstein condensates[J]. Phys. Rev. A,2001,63:013604.
    [117]Foerster A and Ragoucy E, Exactly solvable models in atomic and molecular physics[J]. Nucl. Phys. B,2007,777:373.
    [118]Yip S K, Dimer State of Spin-1 Bosons in an Optical Lattice[J]. Phys. Rev. Lett.2003,90:250402.
    [119]Pires A S T, Costa B V and Dias R A,Phase diagram of the antiferromagnetic XY model in two dimensions in a magnetic field [J]. Phys. Rev. B,2008,78:212408.
    [120]Romero-Isart O, Eckert K and Sanpera A, Quantum state transfer in spin-1 chains[J]. Phys. Rev. A,2007,75:050303.
    [121]Alipour S, Karimipour V and Memarzadeh L, Entanglement and quantum phase transitions in matrix-product spin-1 chains[J]. Phys. Rev. A,2007,75:052322。
    [122]Zhou L, Yi Y X and Song H S, Thermal entanglement in 1D optical lattice chains with nonlinear coupling [J]. Chin. Phys.2005,14:1168.
    [123]Bruss D and Macchiavello C,Optimal Eavesdropping in Cryptography with Three-Dimensional Quantum States [J]. Phys. Rev. Lett.2002,88:127901.
    [124]Kaszlikowski D, Gnacinski P. Zukowski M, Miklaszewski W and Zeilinger A,Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger thar for Two Qubits [J]. Phys. Rev. Lett.2000,85:4418.
    [125]Cho J.Addressing Individual Atoms in Optical Lattices with Standing-Wave Driving Fields [J]. Phys. Rev. Lett.2007,99:020502.
    [126]Hennessy K et al, Quantum nature of a strongly coupled single quantum dot-cavity system [J]. Nature,2007,445:896.
    [127]Hopfield J J, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals [J]. Phys. Rev.1958,112:1555.
    [128]Lidzey D G. Bradley D D C. Skolnick M S, Virgili T, Walker S and Whittakers D M, Strong exciton-photon coupling in an organic semiconductor microcavity[J]. Nature (London).1998,395: 53.
    [129]Weisbuch C, Nishioka M, Ishikawa A and Arakawa Y, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Phys. Rev. Lett.1992,69:3314.
    [130]Johne R, Maslova N S and Gippius N A, Fluctuation-induced transitions of a bistable driven polariton system in the presence of damping [J]. Solid State Commun.2009,149:496.
    [131]Polo J A and Lakhtakia A, Morphological effects on surface-plasmon-polariton waves at the planar interface of a metal and a columnar thin film [J]. Opt. Commun.2008,281:5453.
    [132]Jang J I, Sun Y, Mani S and Ketterson J B, Anomalous Fresnel coefficients for orthoexci-ton-polaritons in Cu2O [J]. Solid State Commun.2008,148:38.
    [133]Jacob J. Babu A, Mathew G and Mathew V, Propagation of surface plasmon polaritons in anisotropic MIM and IMI structures [J]. Superlattices Microst.2008.44:282.
    [134]Yang M Y, Wu L C and Tseng J Y, Phonon-polariton in two-dimensional piezoelectric phononic crystals [J]. Phys. Lett. A,2008,372:.4730.
    [135]Ding C, Hu X, Jiang P and Gong Q, Tunable surface plasmon polariton microcavity [J]. Phys. Lett. A,2008,372:4536.
    [136]Wouters M and Carusottob I, Excitations and superfluidity in non-equilibrium Bose-Einstein condensates of exciton-polaritons [J]. Superlattices Microst.2008,43:524.
    [137]Kasprzak J et al. Bose-Einstein condensation of exciton polaritons[J]. Nature (London), 2006,443:409.
    [138]Zamfirescu M et al. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers [J]. Phys. Rev. B,2002.65:161205.
    [139]Christopoulos S et al. Room-Temperature Polariton Lasing in Semiconductor Microcavities Phys. Rev. Lett.2007,98:126405.
    [140]Solnyshkov D and Malpuech G, A polariton laser based on a bulk GaN microcavity [J]. Superlat-tices Microst.2007,41:279.
    [141]Rebic S, Parkins A S and Tan S M, Polariton analysis of a four-level atom strongly coupled to a cavity mode [J]. Phys. Rev. A,2002,65:043806.
    [142]Zou X B, Dong Y L Guo G C, Schemes for realizing frequency up- and down-conversions in two-mode cavity QED [J]. Phys. Rev. A,2006,73:025802.
    [143]Guo W L, Zou X B, Ye Y M, Lin X M and Guo G C. Quantum SWAP gate in an optical cavity with an atomic cloud[J]. Phys. Rev. A,2008,77:064301.
    [144]Bose S, Angelakis D G and Burgarth D. Transfer of a polaritonic qubit through a coupled cavity array [J]. J. Mod. Opt.2007,54:2307.
    [145]Angelakis D G, Bose S and Mancini S, Steady-state entanglement between hybrid light-matter qubit [J]. Europhys. Lett.2009,85:20007.
    [146]Gogyan A and Malakyan Y. Entanglement-preserving frequency conversion in cold atoms [J]. Phys. Rev. A,2008,77:033822.
    [147]Qamar S, Ghafoor F, Hillery M and Zubairy M S, Quantum beat laser as a source of entangled radiation [J]. Phys. Rev. A.2008,77:062308.
    [148]Buzek V,Jex I. Dynamics of a two-level atom in a Kerr-like medium [J]. Opt. Comnmn.1990,78: 425.
    [149]Abdel-Aty M, Abdalla M S and Sanders B C, Tripartite entanglement dynamics for an atom interacting with nonlinear couplers[J]. Physics Letter A,2009,373:315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700