用户名: 密码: 验证码:
腔内倍频固体拉曼激光器及新型锁模激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激拉曼散射(SRS)是一种三阶的非线性效应,是实现激光频率变换一种有效方法。固体拉曼激光器是利用现有激光光源和晶体中的受激拉曼散射效应,产生新激光谱线的一种激光器。产生的拉曼散射光的频率由泵浦光的波长及拉曼介质本身决定,通过选择不同波长的泵浦光和拉曼介质,散射光的光谱可遍及紫外到近红外的范围。近年来,随着固体拉曼材料生长技术的发展,出现了许多优秀的拉曼晶体。全固态拉曼激光器也成为当前的一个研究热点,以其结构紧凑、效率高、稳定性好等优点吸引了广泛的关注,在信息、交通、医疗、测量和国防等领域都有重要的应用。
     腔内倍频固体拉曼激光器是利用倍频晶体将产生的一阶拉曼散射光倍频,产生波长在560-600 nm范围的一类激光器,是固体拉曼激光器的一个重要用途。产生的橙黄波段的激光在生物医学、医疗美容、食品药品检测、信息存储、通讯、军工、大气遥感等方面有广泛的应用。由于常用的掺钕激光材料很难产生高效运转于1120nm-1200 nm的激光,因而该波段的激光很难通过直接倍频掺钕材料激光器的方法来产生。利用晶体的受激拉曼散射效应将激光二极管泵浦掺Nd材料得到的1.06μm附近激光转换为1.18μtm附近激光,再进行倍频,可以得到该波段激光的有效输出,这一方法已成为目前获得该波段激光的重要手段。
     随着对激光技术的深入研究,人们在追求更多激光波长的同时,人们也注重时域上的超短脉冲的研究。超短激光脉冲具有脉冲宽度窄,峰值功率高,光谱宽等优点,在国防、核聚变、激光测量、非线性频率变换、医疗诊断、激光切割、激光雷达等领域,具有巨大的经济价值。通过在腔内插入饱和吸收体的被动锁模技术是目前获得fs或ps超短脉冲的一种重要方法。
     本论文以Nd:YAG作为激光介质,分别研究了SrWO4、BaWO4、GdVO4及KLu(WO4)2的拉曼特性。并采用KTP作为倍频晶体通过腔内倍频拉曼激光器的方式获得了589 nm附近黄光的高效率输出。研究了以SESAM做饱和吸收体的Nd:CYA, Nd:LSO及Nd:LYSO的锁模激光特性。研究了使用graphene做饱和吸收体的掺Er光纤锁模激光器的激光特性。具体的研究内容如下:
     1.研究了以Nd:YAG透明陶瓷做激光介质,SrWO4晶体做拉曼介质,KTP晶体做倍频介质,主动调Q的倍频拉曼激光器在589 nm波长的高效运转。采用三镜耦合腔,当泵浦功率为16.2 W,脉冲重复率为20 kHz时,获得了平均输出功率为2.93 W的590 nm黄光,对应的从LD到黄光的光—光转换效率为18.1%。
     2.研究了LD端面泵浦的内腔式主动调Q Nd:YAG/BaWO4拉曼激光的激光特性,获得了1.92 W的1180 nm激光输出,对应的从LD到拉曼光的光-光转换效率为20.9%。以KTP晶体做倍频介质,采用腔内倍频拉曼激光器的方式,实现了590 nm激光的高效运转,获得了平均输出功率为2.83 W的590 nm黄光,对应的从LD到黄光的光—光转换效率为17.9%。采用LD侧面泵浦的Nd:YAG/BaWO4/KTP倍频拉曼激光获得了平均输出功率为8.3 W的黄光,对应的光—光转换效率为6.57%。
     3.研究了LD端面泵浦的Nd:YAG/GdVO4主动调Q内腔式拉曼激光器的激光特性。当泵浦功率为7.44 W,脉冲重复频率为20 kHz时,获得了平均功率为1.3 W的1174nm一阶拉曼光,对应的光-光转换效率为17.4%。将Nd:YAG/GdVO4内腔拉曼激光器与Nd:GdVO4自拉曼激光器进行比较,结果表明在相同泵浦功率和脉冲重复频率条件下Nd:YAG/GdVO4内腔式拉曼激光器可以获得更高的最大平均输出功率和转换效率。
     4.研究了LD端面泵浦的主动调Q内腔式Nd:YAG/KLu(WO4)2拉曼激光器的激光特性。使用一块c切KLu(WO4)2晶体做拉曼介质,获得了2.5 W的1178 nm拉曼光,对应的光—光转换效率为20.1%。使用一块b切KLu(WO4)2晶体做拉曼介质时,获得了包括1064 nm基频光,1074 nm,1085 nm,1095 nm,1106 nm,1117 nm,1128 nm,1139 nm,1151 nm和1163 nm分别对应于88 cm-1拉曼频移的一至九阶斯托克斯散射光;对应于757 cm-1拉曼频移的1157 nm,1169 nm和1182nm激光以及对应于907 cm-1拉曼频移的1178 nm拉曼光共14个波长同时输出。
     5.研究了以Nd:CYA晶体做激光介质的连续激光特性和被动锁模特性。使用SESAM做饱和吸收体,首次实现了Nd:CYA在1080 nm的稳定连续锁模运转。采用V型腔时,当吸收的泵浦功率为13 W时,获得了2.25 W的锁模脉冲;脉冲宽度为3.9 ps,光谱宽度为0.6nm。
     6.研究了LD泵浦的Nd:LSO晶体的连续激光特性,并首次实现了Nd:LSO晶体在1074.8 nm的连续锁模运转。使用SESAM做饱和吸收体,采用V型腔,当吸收的泵浦功率为14.5 W时,获得了1.42 W的稳定的1074.8 nm连续锁模脉冲,脉冲宽度为12.3 ps,光谱宽度为0.22 nm。
     7.研究了LD泵浦的Nd:LYSO晶体的连续激光特性,并首次实现了Nd:LYSO晶体的双波长连续锁模运转。采用SESAM做饱和吸收体,采用V型腔,实现了1075.8nm和1078.1 nm的双波长同步锁模输出,当吸收的泵浦功率为12.7 W时,所获得的最大稳定锁模激光的输出功率为1.7 W,锁模脉冲宽度为8.9 ps。对双波长同步锁模现象进行了简单的理论模拟,理论结果与实验结果基本一致。
     8.在掺Er光纤激光器的环形腔中,使用graphene作为饱和吸收体,对1550 nm附近的激光进行调制,获得了稳定的连续锁模激光脉冲。当使用一个~11.4 m长的正色散环形腔时,获得了20.25 MHz的高重复率,脉冲宽度从1.7 ns到7.2 ns连续可调的纳秒方形锁模脉冲。并在使用graphene作为饱和吸收体的掺Er光纤锁模激光器中,得到了Noise-Like锁模态,测得的脉冲宽度为311 fs,3dB光谱带宽约为14 nm。
     本研究论文主要创新点如下:
     1.研究和优化设计了LD端面泵浦KTP腔内倍频Nd:YAG/SrWO4主动调Q拉曼激光器,当泵浦功率为16.2 W,脉冲重复率为20 kHz时,获得了平均输出功率为2.93W的590 nm黄光,对应的从LD到黄光的光—光转换效率为18.1%,为当时倍频调Q拉曼激光器中的最高转换效率。采用LD侧面泵浦的Nd:YAG/BaWO4/KTP倍频拉曼激光获得了平均输出功率为8.3 W的黄光,对应的光—光转换效率为6.57%。该结果为目前报道的晶体倍频调Q拉曼激光器的最高功率。
     2.首次研究了LD泵浦主动调Q内腔式Nd:YAG/KLu(WO4)2拉曼激光器的激光特性。使用一块c切KLu(WO4)2晶体做拉曼介质,获得了2.5 W的1178 nm拉曼光,对应的光一光转换效率为20.1%。使用一块b切KLu(WO4)2晶体做拉曼介质时,获得了包括1064 nm基频光,1074 nm,1085 nm,1095 nm,1106 nm,1117 nm,1128 nm,1139 nm,1151 nm和1163 nm分别对应于88 cm-1拉曼频移的一至九阶斯托克斯散射光;对应于757 cm-1拉曼频移的1157 nm,1169 nm和1182 nm激光以及对应于907 cm-1拉曼频移的1178nm拉曼光共14个波长同时输出。
     3.首次研究了Nd:CYA,Nd:LSO和Nd:LYSO晶体的被动锁模激光特性。使用SESAM做饱和吸收体,Nd:CYA做激光介质,获得了2.25 W的1080 nm的锁模脉冲,脉冲宽度为3.9 ps;使用Nd:LSO做激光介质,获得了1.42W的稳定的1074.8 nm连续锁模脉冲,脉冲宽度为12.3 ps;使用Nd:LYSO做激光介质,实现了1075.8 nm和1078.1 nm的双波长同步锁模输出。
     4.在掺Er光纤激光器中,使用graphene作为饱和吸收体,首次研究了了20.25 MHz的高重复率,脉冲宽度从1.7 ns到7.2 ns连续可调的纳秒方形锁模脉冲。并首次得到了使用graphene作为饱和吸收体的Noise-Like锁模态,测得的脉冲宽度为311fs,3dB光谱带宽约为14nm。
Stimulated Raman scattering (SRS) is an effective method for frequency conversion, which belongs to the third-order nonlinear optical process. By using the exiting laser sources and the SRS effect in Raman crystals, the solid-state Raman lasers can generate many new laser lines. The wavelengths of the generated scattered light are determined by the pump wavelengths and the Raman shifts of the Raman crystals. The laser spectrum with SRS can extend from the ultraviolet to the near infrared by using different pumping sources and Raman crystals. In recent years, some excellent Raman crystals have been produced with the improvement of crystal growth techniques. The all-solid-state Raman lasers also attract much interests for the advantages of compactness, high efficiency and high stability, and have wide applications in many fields such as information, communication, medical treatment, measurement, military affairs, and so on.
     The yellow-orange lasers with the spectral region from 550 nm to 650 nm have widely applications in metrology, remote sensing, medicine, and so on. But they are hardly obtained by frequency doubling Nd-doped lasers. With the Nd doped~1.06μm laser and the SRS in Raman crystal, the~1.18μm first Stokes wavelength can be generated. An efficient yellow-orange laser can be obtained by intracavity frequency doubling the first Stokes Raman laser.
     With the development of the laser technology, the ultra-short lasers also attract much attention. Ultra-short lasers usually have advantages of narrow pulse width, high peak power and broad laser spectrum and so on. They have been widely applied in such fields as defense, nuclear fusion, laser measurement, nonlinear frequency conversion, medical treatment, laser cutting, laser radar and so on. It is an important way to obtain picosecond and femtosecond laser pulse by using passively mode locking laser with saturable absorber.
     In this thesis, by using Nd:YAG as the gain medium, we studied the laser characteristics of the GdVO4, SrWO4, KLu(WO4)2 and BaW04 Raman lasers, respectively. By using the KTP intracavity frequency doubling of the LD pumped actively Q-switched Raman laser, the efficient yellow lasers were obtained. We also studied the laser characteristics of the LD pumped Nd:CYA, Nd:LSO and Nd:LYSO passively mode-locked lasers with SESAM as saturable absorber and the Er-doped fiber mode-locked laser with grapheme as the saturable absorber. The main contents of this thesis are as follows:
     1. An efficient LD end-pumped intracavity frequency-doubled Raman laser was demonstrated by using an Nd:YAG ceramic gain medium, an SrWO4 Raman medium and a KTP frequency doubling medium. With a coupled cavity, a 2.93 W 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz, the corresponding conversion efficiency was 18.1%.
     2. The characteristics of the LD end-pumped actively Q-switched Nd:YAG/BaWO4 Raman laser were studied. A 1.92 W 1180 nm laser was obtained with an optical-to-optical conversion efficiency of 17.4%. By using the KTP intracavity frequency doubling of the LD end-pumped Nd:YAG/BaWO4 Raman laser, a 2.83 W 590 nm laser was obtained. The corresponding optical conversion efficiency from diode laser to yellow laser was 17.9%. With a diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO4/KTP Raman laser, an 8.3 W 590 nm laser was obtained at a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser was 6.57%.
     3. The characteristics of the LD end-pumped actively Q-switched Nd:YAG/GdVO4 Raman laser were studied. At a repetition rate of 20 kHz and an incident pump power of 7.4 W, an average output power of 1.3 W was obtained, and the corresponding optical-to-optical conversion efficiency was 17.4%. Compared with Nd:GdVO4 self-Raman laser, the actively Q-switched Nd:YAG/GdVO4 Raman laser had higher average output power and conversion efficiency at the same experimental conditions.
     4. A diode-end-pumped actively Q-switched intracavity Nd:YAG/KLuW Raman laser was demonstrated. With a c-cut KLuW Raman medium, a 2.5 W 1178 nm Stokes laser was obtained at a 25 kHz pulse repetition frequency. The corresponding conversion efficiency from the pump laser to the Raman laser was 20.1%. By utilizing a b-cut KLuW crystal, 14 wavelengths including the first to ninth order Stokes wavelengths for the 88 cm-1 Raman shift (1074 nm,1085 nm,1095 nm,1106nm,1117nm,1128 nm,1139nm, 1151 nm and 1163 nm), the 1064 nm fundamental wavelength and other four wavelengths for the 757 cm-1 (1157 nm,1169 nm and 1182 nm) and 907 cm-1 (1178 nm) Raman shifts were obtained. This was the first time to obtain up to ninth order Stokes laser for the nanosecond pulse to our knowledge.
     5. A diode pumped passively mode locked Nd:CaYAlO4 (Nd:CYA) laser is demonstrated for the first time. Using a V-shaped cavity and a semiconductor saturable absorbing mirror, self-started mode locking of the laser was experimentally achieved. The mode-locked pulses were as short as 3.9 ps at a central wavelength of 1080.2 nm. The mode-locked laser produced a maximum average output power of 2.25 W with a slope efficiency of 23.2%.
     6. The passively mode locking operation of a diode-end-pumped Nd:LSO crystal was first experimentally investigated. Stable CW mode locking of the laser was achieved with a SESAM. The mode-locked pulses had a pulse width of 12.3 ps. When 14.5 W pump was absorbed,1.42 W average output power of the mode-locked pulses was obtained. The mode-locked laser had a slope efficiency of 16.7%.
     7. The diode-end-pumped dual-wavelength mode-locked laser based on Nd:LuYSiO5 crystal was demonstrated. With a SESAM, the 1075.8 nm and 1078.1 nm mode-locked pulses were achieved simultaneously with an 8.9 ps pulse duration. By frequency beating, ultrahigh repetition rate ultrafast pulse was generated with a 997 fs pulse width and a 0.59 THz repetition rate. A 1.7 W mode-locked laser was obtained with a 12.7 W pump power, the slope efficiency was 24.3%.
     8. The nanosecond square pulse erbium-doped fiber laser mode-locked with a graphene was demonstrated at a high repetition rate of 20.25 MHz. The generated pulsewidth was tunable from 1.7 ns to 7.2 ns depending on the pump power. The pulse energy was boosted to 1.09 nJ from the initial 0.02 nJ without distortion. The noise-like phenomenon was observed for the first time in an erbium-doped mode-locked fiber laser with a grapheme as the saturable absorber. The optical spectrum of the laser emission had a bandwidth as broad as 14 nm. The pulse width was 311 fs.
     The main innovations of this thesis are as follows:
     1. The efficient intracavity frequency-doubled actively Q-switched Raman laser was designed and studied. With a LD end-pumped actively Q-switched Nd:YAG/SrWO4/KTP laser, a 2.93 W 590 nm laser was obtained. The corresponding conversion efficiency was 18.1%, which was the highest conversion efficiency when the result was published. With a LD side-pumped actively Q-switched Nd:YAG/BaWO4/KTP laser, a 8.3 W 590 nm laser was obtained, which was the highest result in intracavity frequency-doubled actively Q-switched Raman laser to our knowledge.
     2. A LD pumped actively Q-switched KLuW Raman laser was demonstrated for the first time. With a c-cut KLuW Raman medium, a 2.5 W 1178 nm Stokes laser was obtained at a 25 kHz pulse repetition frequency. The corresponding conversion efficiency was 20.1%. By utilizing a b-cut KLuW crystal,14 wavelengths including the first to ninth order Stokes wavelengths for the 88 cm-1 Raman shift, the 1064nm fundamental wavelength and other four wavelengths for the 757 cm-1 and 907 cm-1 Raman shifts were obtained. This was the first time to obtain up to ninth order Stokes laser for the nanosecond pulse to our knowledge.
     3. The LD pumped Nd:CYA, Nd:LSO and Nd:LYSO passively mode-locked lasers were studied for the first time. With an Nd:CYA as gain medium, a 2.25 W CW mode-locked pulses were obtained with a 3.9 ps pulsewidth at a central wavelength of 1080.2 nm. With an Nd:LSO as gain medium, a 1.42 W CW mode-locked pulses were obtained with a 12.3 ps pulsewidth at a central wavelength of 1074.8 nm. With an Nd:LYSO as gain medium, the dual-wavelength mode locking phenomenon was observed. A 1.7 W mode-locked laser was obtained with an 8.9 ps pulse duration. By frequency beating, ultrahigh repetition rate ultrafast pulse was generated with a 997 fs pulse width and a 0.59 THz repetition rate.
     4. The nanosecond square pulse erbium-doped fiber laser mode-locked with a graphene was demonstrated at a high repetition rate of 20.25 MHz. The generated pulsewidth was tunable from 1.7 ns to 7.2 ns depending on the pump power. The pulse energy was boosted to 1.09 nJ from the initial 0.02 nJ without distortion. The noise-like phenomenon was observed for the first time in an erbium-doped mode-locked fiber laser with a grapheme as the saturable absorber. The optical spectrum of the laser emission had a bandwidth as broad as 14 nm. The pulse width was 311 fs.
引文
[1]C. V. Raman, and K. S. Krishnan, "A new type of secondary radiation," Nature, vol.121, p. 501,1928.
    [2]G. S. Landsberg, and L. I. Mandelshtam, "A new phenomenon of light scattering," Zh. Rus. Fiz. Khim. Obshch., Vol.60, p.335,1928.
    [3]E. J. Wodbury, and W. K. Ng, "Ruby laser operation in the near IR," Proceedings of the IRE 50, p.2367,1962.
    [4]G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and sulfur single crystals," Appl. Phys. Lett., vol.3, pp. 137-138,1963.
    [5]W. H. Culver, J. T. A. Vanderslice, and V. W. T. Townsend, "Controlled generation of intense light pulses in reverse-pumped Raman lasers," Appl. Phys. Lett., vol.12, pp.189-190,1968.
    [6]J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, "Raman pulse compression of excimer lasers for application to laser fusion," IEEE J. Quantum Electron., vol.15, pp.342-368, 1979.
    [7]G. Echhardt, "Selection of Raman laser materials," IEEE J. Quantum Electron., vol.2, pp. 1-8,1966.
    [8]R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett., vol.17, pp.229-232,1966.
    [9]J. R. Murray, J. Goldhar, and A. Szoke, "Backward Raman gain measurements for KrF laser radiation scattered by CH4," Appl. Phys. Lett., vol.32, pp.551-553,1978.
    [10]E. O. Ammann, and C. D. Decker, "0.9 W Raman oscillator," J. Appl. Phys., vol.48, pp. 1973-1975,1977.
    [11]A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Progress in Quantum Electronics, vol.6, pp.55-140,1979.
    [12]H. M. Pask, "Review design and operation of solid-state Raman lasers," Prog. Quantum Electron., vol.27, pp.3-56,2003.
    [13]P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Progress in Quantum Electronics, vol.28, pp.113-143,2004.
    [14]J. A. Piper, and H. M. Pask, "Crystalline Raman lasers," leee Journal of Selected Topics in Quantum Electronics, vol.13, pp.692-704,2007.
    [15]H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, "Wavelength-versatile visible and UV sources based on crystalline Raman lasers," Progress in Quantum Electronics, vol.32, pp.121-158,2008.
    [16]T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasres," Appl. Opt., vol.38, pp. 594-598,1999.
    [17]A. S. Eremenko, S. N. Karpukin, and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals," Sov. J. Quantum Electron., vol. 10, pp.113-114,1980.
    [18]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, "Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20, pp.1017-1019,1995.
    [19]S. N. Karpukhin, and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quantum Electron., vol.16, pp.1027-1031,1986.
    [20]P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol.97, pp.59-64, 1993.
    [21]P. G. Zverev, W. Jia, H. Liu, and T. T. Basiev, "Vibrational dynamic of the Raman-active mode in barium nitrate crystal," Opt. Lett., vol.20, pp.2378-2380,1995.
    [22]C. L. McCray, and T. H. Chyba, "High resolution spectral measurements of Raman shifts in barium nitrate," Opt. Mater., vol.11, pp.383-390,1999.
    [23]P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater.,vol.11, pp.315-334,1999.
    [24]J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, "Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers," Appl. Phys. B, vol.70, pp.159-162,2000.
    [25]V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, "Efficient high energy 1st,2nd or 3rd Stokes Raman generation in IR region," Opt. Commun., vol.272, pp.509-513,2007.
    [26]V. A. Lisinetskii, H. J. Eichler, H. Rhee, X. Wang, and V. A. Orlovich, "The generation of high pulse and average power radiation in eye-safe spectral region by the third stokes generation in barium nitrate Raman laser," Opt. Commun., vol.281, pp.2227-2232,2008.
    [27]H. M. Pask, and J. A. Piper, "Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Opt. Commun., vol.148, pp.285-288,1998.
    [28]H. M. Pask, and J. A. Piper, "Efficient all-solid-state yellow laser source producing 1.2 W average power," Opt. Lett., vol.24, pp.1490-1492,1999.
    [29]J. Falk, and R. Moshrefzadeh, "Oblique Raman and polariton scattering in lithium iodate," IEEE J. Quantum Electron., vol.21, pp.110-113,1985.
    [30]H. M. Pask, and J. A. Piper. "Diode-Pumped LiIO3 Intracavity Raman Lasers," IEEE J. Quantum Electron., vol.36, pp.949-955,2000.
    [31]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient x(3)-materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [32]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634, 2004.
    [33]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.78, pp.685-687,2004.
    [34]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett., vol.1, pp.237-240,2004.
    [35]F. F. Su, X. Y. Zhang, Q. P. Wang, P. Jia, S. T. Li, B. Liu, X. L. Zhang, Z. H. Cong, and F. Q. Wu, "Theoretical and experimental study on a diode-pumped actively Q-switched Nd:GdVO4 self-stimulated Raman laser at 1173 nm," Opt. Commun., vol.277, pp.379-384, 2007.
    [36]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, and X. L. Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser,J. Phys. D, vol.41, pp.055104-055107,2008.
    [37]P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper," Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm," Opt. Express, vol.15, pp.7038-7046, 2007.
    [38]A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, "High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4," Opt. Express, vol. 16, pp.21958-21963,2008.
    [39]丛振华,张行愚,王青圃,李述涛,陈晓寒,张晓磊,“主动调Q内腔式Nd:YAG/GdVO4拉曼激光器,”中国激光,vol.36,pp.19-22,2009.
    [40]A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, "Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser," Opt. Lett., vol.35, pp.682-684,2010.
    [41]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253,2004.
    [42]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett., vol.29, pp.1915-1917,2004.
    [43]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol.42, pp.927-933,2006.
    [44]F. F. Su, X.Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D, vol.39, pp.2090-2093,2006.
    [45]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett., vol.6, pp.26-29,2009.
    [46]H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, "Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light," Opt. Express, vol.17, pp.21544-21550,2009.
    [47]H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett., vol.34, pp.2763-2765,2009.
    [48]L. Zhang, Y. Q. Yu, Y. Y. Guo, C. L. Du, and S. C. Ruan, "Diode-end-pumped composite Nd:YVO4 yellow laser based on intracavity frequency-doubled self-Raman laser," Opt. Commun., vol.283, pp.3761-3763,2010.
    [49]L. Zhang, Y. Q. Yu, Y. Y. Guo, C. L. Du, and S. C. Ruan, "Diode-end-pumped composite Nd:YVO4 yellow laser based on intracavity frequency-doubled self-Raman laser," Opt. Commun., vol.283, pp.3761-3763,2010.
    [50]A. A. Kaminskii, M. Bettinelli, J. Dong, D. Jaque, and K. Ueda, "Nanosecond Nd3+:LuVO4 self-Raman laser," Laser Phys. Lett., vol.6, pp.374-379,2009.
    [51]Y. F. Lu, X. H. Zhang, S. T. Li, J. Xia, W. B. Cheng, and Z. Xiong, "All-solid-state cw sodium D-2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal," Opt. Lett., vol.35, pp. 2964-2966,2010.
    [52]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [53]R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp.785-790,2004.
    [54]J. Findeisen, H. J. Eichler, and P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp.129-133,2000.
    [55]I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng., vol.36, pp.1660-1669,1997.
    [56]J. Findeisen, H. J. Eichler, and A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible," IEEE J. Quantum Electron., vol.35, pp.173-178,1999.
    [57]T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, "Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun., vol.232, pp.327-331,2004.
    [58]M. Matsuse, T. Deguchi, H. Ohtsuka, N. Takeyasu, Y. Hirakawa, and T. Imasaka, "Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal," Opt. Commun., vol.223, pp.411-416,2003.
    [59]T. T. Basiev, V. N. Voitsekhovskii, P. G. Zverev, F. V. Karpushko, A. V. Lyubimov, S. B. Mirov, V. P. Morozov, I. V. Mochalov, A. A. Pavlyuk, and G. V. Sinitsyn, "Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2- color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals," Sov. J. Quantum Electron., vol.17, pp.1560-1561,1987.
    [60]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, "All solid-state diode-pumped Raman laser with self-frequency conversion," Appl. Phys. Lett., vol.75, pp.3742-3744,1999.
    [61]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, "Stimulated Raman scattering in Nd:KGW laser with diode pumping," J. Alloy. Compd., vol.300-301, pp.300-302,2000.
    [62]A. Brenier, F. Bourgeois, B. Metrat, N. Muhlstein, and G. Boulon, "Spectroscopic properties and 1.351 μm of Nd3+-doped KY(WO4)2 and KGd(WO4)2 single crystals for Raman conversion," Opt. Mater., vol.16, pp.207-211,2001.
    [63]V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron., vol.17, pp. 1178-1179,1987.
    [64]S. V. Kurbasov, and L. L. Losev, "Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal," Opt. Commun., vol.168, pp.227-232,1999.
    [65]A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, "Picosecond parametric Raman laser based on KGd(WO4)2," Opt. Commun., vol.240, pp.239-244,2004.
    [66]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [67]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. Wang, and Y. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express, vol.13, pp.10120-10128,2005.
    [68]S. P. S. Porto, and J. F. Scott, "Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4," Phys. Rev.,vol.157, pp.716-719,1967.
    [69]T. T. Basiev, A. A. Sobol, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [70]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. T. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314, 1999.
    [71]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp.439-442, 2003.
    [72]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [73]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, and P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197,2007.
    [74]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, "Highly efficient Raman rrequency converter with strontium tungstate crystal," IEEE J. Quantum Electron., vol.42,78-84,2006.
    [75]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33,705-707,2008.
    [76]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang, "Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm," Laser Phys. Lett., vol.6, pp.363-366, 2009.
    [77]Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal" Appl. Phys. B, vol.93, pp.327-330,2008.
    [78]李述涛,《全固体黄光激光器》,山乐大学博士论文,2008.
    [79]张行愚,王青圃,常军,李平,王浩,李述涛,丛振华,陈晓寒,刘兆军,范书振,张琛,于浩海,张怀金,“全固体腔内倍频Nd:YAG/SrWO4/KTP拉曼激光器”,中国激光,vo1.36,pp.1798-1801,2009.
    [80]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [81]L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, "Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser," Appl. Phys. B, vol.94, pp.553-557,2009.
    [82]Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z.J. Zhu, F. G. Yang, Z. Y. You, "Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser," Laser Phys. Lett., vol.7, pp.491-494,2010.
    [83]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314 (1999).
    [84]T. T. Basiev, P.G. Zverev, A. A. Sobol, V. V. Fedorov, M. E. Doroshenko, V. V. Skomyakov, L. I. Ivleva, and V. V. Osiko, "Perspectives of tungstate crystals for Raman lasers," Novel Lasers and Applications-Basic Aspects, Washington DC, pp. LWB6,1999.
    [85]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [86]P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [87]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet,' IEEE J. Quantum Electron., vol.38, pp.1471-1478,2002.
    [88]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [89]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [90]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197,2007.
    [91]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [92]L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, "High efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal," Opt. Lett., vol.34, pp. 1687-1689,2009.
    [93]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, C. Zhang, H. H. Xu, H. J. Zhang, and X. T. Tao, "Diode-pumped actively Q-switched intracavity BaWO4 Raman laser with a ceramic Nd:YAG as the gain medium," Lasers & Electro-Optics & the Pacific RIM Conference on Lasers and Electronic-Optics, Vol.1 and 2, pp.1186-1187,2009.
    [94]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol.18, pp.5984-5992,2010.
    [95]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [96]A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun., vol.183, pp.277-287,2000.
    [97]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys. Lett., vol.3, pp.71-74,2006.
    [98]G. M. A. Gad, and H. J. Eichler, "Highly efficient 1.3μm second-Stokes PbWO4 Raman laser," Opt. Lett., vol.28, pp.426-428,2003.
    [99]A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagaev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, "Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: New χ(3)-active crystals for laser Raman shifters," Jpn. J. Appl. Phys., vol.37, pp. L923-L926,1998.
    [100]J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, "Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion," Opt. Lett., vol.30, pp.2427-2429,2005.
    [101]Z. H. Cong, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, H. J. Zhang, X. T. Tao, J. Y. Wang, H. Y. Zhao, and S. T. Li, "The characteristics of intracavity Nd:YAG/KLu(WO4)2 Raman laser," Laser Phys. Lett., vol.7, pp.862-866,2010.
    [102]H. H. Yu, Z. Li, A. J. Lee, J. Li, H. J. Zhang, J. Y. Wang, H. M. Pask, J. A. Piper, and M. H. Jiang, "A continuous wave SrMoO4 Raman laser," Opt. Lett., vol.36, pp.579-581,2011.
    [103]T. T. Basiev, S. N. Smetanin, A. V. Fedin, and A. S. Shurygin, "Intracavity SRS conversion in diode-pumpedmultifunctional Nd3+:SrMoO4 laser crystal," Quantum Electron., vol.40, pp. 704-709,2010.
    [104]T. Basiev, M. Doroshenko, L. Ivleva, I. Voronina, V. Konjushkin, V. Osiko, and S. Vasilyev, "Demonstration of high self-Raman laser performance of a diode-pumped SrMoO4:Nd3+ crystal," Opt. Lett., vol.34, pp.1102-1104,2009.
    [105]J. Sulc, H. Jelinkova, K. Nejezchleb, V. Skoda, T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, V. V. Osiko, and P. G. Zverev, "Pulsed self-Raman laser operation in Nd:SrMoO4 at 1.57 μm," Nonlinear Frequency Generation and Conversion:Materials, Devices, and Applications Vii, vol.6875, pp. E8751-E8751 8198,2008.
    [106]L. Han, F. Song, C. S. Wan, C. G. Zou, L. H. Yan, K. Zhang, and J. G. Tian, "Spectroscopic properties of self-exited Raman scattering of the Nd3+:SrMoO4 crystal," Acta Physica Sinica, vol.56, pp.1751-1757,2007.
    [107]P. Cerny, H. Jelinkova, J. Sulc, T. T. Basiev, M. E. Doroshenko, P. G. Zverev, A. V. Komyakova, V. V. Skomjakov, S. B. Kravtsov, and L. I. Ivleva, "Comparative study of picosecond stimulated Raman scattering in new crystals Nd:SrWO4 and SrMoO4," Solid State Lasers Xii, vol.4968, pp.178-184 192,2003.
    [108]P. G. Zverev, A. Y. Karasik, T. T. Basiev, L. I. Ivleva, and V. V. Osiko, "Stimulated Raman scattering of picosecond pulses in SrMoO4 and Ca-3(VO4)2 crystals," Quantum Electron., vol. 33, pp.331-334,2003.
    [109]A. A. Kaminskii, S. N. Bagaev, K. Ueda, K. Takaichi, and H. J. Eichler, "High-order picosecond SRS and self-SRS generation in Nd3+-doped CaMoO4, SrMoO4, and SrWO4 laser crystals," Crystallography Reports, vol.47, pp.653-657,2002
    [110]R. P. Mildren, H.M. Pask and J. A. Piper, "High-Efficiency Raman converter generating 1.5W of red-orange output," Advanced Solid-State Photonics, Technical Digest (Optical Society of America,2006), paper MC3,2006.
    [111]C. He, T. H. Chyba. "Solid-state bariumnitrate Raman laser in the visible region," Opt. Commun., vol.135, pp.273-278,1997.
    [112]E. O. Ammann, "Simultaneous simulated Raman scattering and optical frequency mixing in lithium iodate," Appl. Phys. Lett., vol.34, pp.838-840,1979.
    [113]R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, "Discretely tunable, all-solid-state laser in the green, yellow, and red," Opt. Lett., vol.30, pp.1500-1502 (2005).
    [114]P. Dekker, H. M. Pask, and J. A. Piper, "All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser," Opt. Lett., vol.32, pp.1114-1116,2005.
    [115]F. G. Yang, Z. Y. You, Z. J. Zhu, Y. Wang, J. F. Li, and C. Y. Tu, "End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal," Laser Phys. Lett., vol.7, pp.14-16,2010.
    [116]L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of HeNe laser modes induced by synchronous intracaviy modulation," Appl. Phys. Lett., vol.5, pp.4-5,1964.
    [117]A. J. De Maria, D. A. Stetser, and H. Heynau, "Self mode-locking of lasers with saturable absorbers," Appl. Phys. Lett., vol.8, pp.174-176,1966.
    [118]R. L. Fork, B. I. Greene, and C. V. Shank, "Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking", Appl. Phys. Lett., vol.38, pp.617,1981.
    [119]H. W. Mocker, and R. J. Collins, "Mode competiton and self-locking effects in a Q-switched ruby laser," Appl. Phys. Lett., vol.7, pp.270-273,1965.
    [120]U. Keller, and T. H. Chiu, "Resonant Passive Mode-Locked Nd:YLF Laser," IEEE J. Quantum Elect., vol.28, pp.1710-1721,1992.
    [121]U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett., vol.17, pp.505-507,1992.
    [122]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron., vol.2, pp.435-453,1996.
    [123]U. Keller, "Recent developments in compact ultrafast lasers," Nature, vol.424, pp.831-838, 2003.
    [124]G. J. Spiihler, T. Sudmeyer, R. Paschotta, M. Moser, K. J. Weingarten and U. Keller, "Passively mode-locked high-power Nd:YAG lasers with multiple laser heads", Appl. Phys. B, vol.71, pp. 19-25,2000.
    [125]F. Brunner, E. Innerhofer, S. V. Marchese, T. Sudmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, "Powerful red-green-blue laser source pumped with a mode-locked thin,disk laser," Opt. Lett., vol.29, pp.1921-1923,2004.
    [126]Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, "Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser," Opt. Lett., vol.34, pp.3316-3319,2009.
    [127]A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, "Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration," Opt. Lett., vol.35, pp.511-514,2010.
    [128]G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qian, "High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser," Laser Phys. Lett., vol.5, pp.647-650, 2008.
    [129]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, "Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser," Appl. Phys. B, vol.95,691-695, 2009.
    [130]A. Agnesi, F. Pirzio, A. Tomaselli, G. Reali, and C. Braggio, "Multi-GHz tunable-repetition-rate mode-locked Nd:GdVO4 laser," Opt. Express, vol.13, pp.5302-5307,2005.
    [131]V. Kubecek, M. Jelinek, M. Cech, P. Hirsl, and J. C. Diels, "0.4 mJ quasi-continously pumped picosecond Nd:GdVO4 laser with selectable pulse duration," Laser Phys. Lett., vol.7, pp. 130-134,2010.
    [132]Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, X. Y. Ma, "2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror," Appl. Phys. Lett., vol.86, pp.101103,2005.
    [133]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, "Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser," Opt. Lett., vol.34, pp.103-105, 2009.
    [134]B. B. Zhou, Z. Y. Wei, Y. D. Zhang, X. Zhong, H. Teng, L. H. Zheng, L. B. Su, and J. Xu, "Generation of 210 fs laser pulses at 1093 nm by a self-starting mode-locked Yb:GYSO laser," Opt. Lett., vol.34, pp.31-33,2009.
    [135]B. B. Zhou, Z. Y. Wei, Y. W. Zou, Y. D. Zhang, X. Zhong, G. L. Bourdet, and J. L. Wang, "High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser," Opt. Lett., vol.35, pp. 288-290,2010.
    [136]D. H. Sutter, I. D. Jung, F. X. Kartner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, "Self-starting 6.5-fs pulses from a Ti:sapphire laser using a semiconductor saturable absorber and double-chirped mirrors," IEEE J.Sel. Top. Quant Electron.., vol.4, pp.169-178,1998.
    [137]G. J. Spuhler, T. Sudmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, "Passively mode-locked high-power Nd:YAG lasers with multiple laser heads," Appl. Phys. B, vol.71, pp. 19-25,2000.
    [138]L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, "Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz," IEEE J.Sel. Top. Quant., vol.38, pp. 1331-1338,2002.
    [139]S. C. Zeller, L. Krainer, G. J. Spuhler, R. Paschotta, M. Golling, D. Ebling, K. J. Weingarten, and U. Keller, "Passively modelocked 50 GHz Er:Yb:glass laser," Electron. Lett., vol.40, pp. 875-877,2004.
    [140]A. Yoshida, A. Schmidt, H. J. Zhang, J. Y. Wang, J. H. Liu, C. Fiebig, K. Paschke, G. Erbert, V. Petrov, and U. Griebner, "42-fs diode-pumped Yb:Ca4YO(BO3)3 oscillator," Opt. Express, vol. 18, pp.24325-24330,2010.
    [141]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol.306, pp. 666-669,2004.
    [142]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol.438, pp.197-200,2005.
    [143]A. K. Geim, and K. S. Novoselov, "The rise of graphene," Nature Materials, vol.6, pp.183-191, 2007.
    [144]Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers," Adv. Funct. Mater., vol.19, pp.3077-3083,2009.
    [145]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Express, vol.17, pp.17630-17635, 2009.
    [146]H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker," Appl. Phys. Lett., vol.95, pp. 141103,2009.
    [147]D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett., vol.97, pp.203106,2010.
    [148]L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. L. Bao, and K. P. Loh, "Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene," Opt. Lett., vol.35, pp.3622-3624,2010.
    [149]Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, "A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser," Nano Research, vol.3, pp.653-660,2010.
    [150]W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, "Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber," Appl. Phys. Lett., vol.96, pp.031106,2010.
    [151]"Laser Physics and Applications," vol. Ⅷ/1B1.
    [152]F. Trager (Ed.), "Springer Handbook of Lasers and Optics,"
    [1]A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal:a new material for diode-pumped lasers," Sov. J. Quant. Electron., vol.22, pp.1071-1072, (1992).
    [2]J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, "Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber," J. Opt. Soc. Am. B, vol.20, pp.652-661,2003.
    [3]C. Li, D. Shen, N. S. Kim, J. Lu, and K. Ueda, "Diode-pumped passively Q-switched Nd: GdVO4 lasers operating at 1.06 mu m wavelength," Appl. Phys. B:Lasers Opt., vol.70, pp. 471-474,2000.
    [4]Jie Liu, Y. G. Wang, W. M. Tian, L. Y. Gao, J. L. He, and X. Y. Ma, "Q-switched and mode-locked diode-pumped Nd:GdVO4 laser with low temperature GaAs saturable absorber," Opt. Mater., vol.28, pp.970-973,2006.
    [5]C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun., vol.205, pp.361-365,2002.
    [6]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient X(3)-materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [7]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634, 2004.
    [8]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.78, pp.685-687,2004.
    [9]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett., vol.1, pp.237-240,2004.
    [10]F. F. Su, X. Y. Zhang, Q. P. Wang, P. Jia, S. T. Li, B. Liu, X. L. Zhang, Z. H. Cong, and F. Q. Wu, "Theoretical and experimental study on a diode-pumped actively Q-switched Nd:GdVO4 self-stimulated Raman laser at 1173 nm," Opt. Commun., vol.277, pp.379-384,2007.
    [11]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, and X. L. Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser," J. Phys. D, vol.41, pp.055104-055107,2008.
    [12]P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper," Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm," Opt. Express, vol.15, pp.7038-7046, 2007.
    [13]A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, "High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4," Opt. Express, vol. 16, pp.21958-21963,2008.
    [14]A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, "Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser," Opt. Lett., vol.35, pp.682-684,2010.
    [15]丛振华,张行愚,王青圃,李述涛,陈晓寒,张晓磊,“主动调Q内腔式Nd:YAG/GdVO4拉曼激光器,”中国激光,vol.36,pp.19-22,2009.
    [16]W. W. Ge, H. J. Zhang, and Y. J. Wang, "The thermal and optical properties of BaWO4 single crystal," J. Crystal Growth, vol.276, pp.208-,2005.
    [17]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314 (1999).
    [18]T. T. Basiev, P.G. Zverev, A. A. Sobol, V. V. Fedorov, M. E. Doroshenko, V. V. Skomyakov, L. I. Ivleva, and V. V. Osiko, "Perspectives of tungstate crystals for Raman lasers," Novel Lasers and Applications-Basic Aspects, Washington DC, pp. LWB6,1999.
    [19]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [20]P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [21]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp.1471-1478,2002.
    [22]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [23]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [24]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197,2007.
    [25]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [26]L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, "High efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal," Opt. Lett., vol.34, pp. 1687-1689,2009.
    [27]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol.18, pp.5984-5992,2010.
    [28]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [29]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, C. Zhang, H. H. Xu, H. J. Zhang, and X. T. Tao, "Diode-pumped actively Q-switched intracavity BaWO4 Raman laser with a ceramic Nd:YAG as the gain medium," CLEO/Pacific Rim 2009 Shanghai, China,2009.
    [30]V. Petrov, M. C. Pujol, X. Mateosl, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, "Growth and properties of KLu(WO4)2,and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev., vol.1, pp. 179-212,2007.
    [31]X. Mateos, V. Petrov, M. Aguilo, R.M. Sole, J. Gavalda, J. Massons, F. Diaz, and U. Griebner, "Continuous-wave laser oscillation of Yb3+ in monoclinic KLu(WO4)2," IEEE J. Quantum Electron., vol.40, pp.1056-1059,2004.
    [32]J. Zhang, J. Wang, H. Zhang, F. Xu, Z. Wang, Z. Shao, H. Zhao, and Y. Wang, "Growth and diode-pumped CW lasing of Nd:KLu(WO4)2," J. Cryst. Growth, vol.284, pp.108-111, 2005.
    [33]X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron., vol.42, pp.1008-1015,2006.
    [34]A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagaev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, "Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2: New x(3)-active crystals for laser Raman shifters," Jpn. J. Appl. Phys., vol.37, pp. L923-L926,1998.
    [35]J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, "Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion," Opt. Lett., vol.30, pp.2427-2429,2005.
    [36]Z. H. Cong, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, H. J. Zhang, X. T. Tao, J. Y. Wang, H. Y. Zhao, and S. T. Li, "The characteristics of intracavity Nd:YAG/KLu(WO4)2 Raman laser," Laser Phys. Lett., vol.7, pp.862-866,2010.
    [I]J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, "Growth and thermal properties of SrWO4 single crystal," J. Appl. Phys., vol.100, pp. 061513-063513-6,2006.
    [2]S. P. S. Porto, and J. F. Scott, "Raman Spectra of CaW04, SrWO4, CaMoO4, and SrMoO4," Phys. Rev., vol.157, pp.716-719,1967.
    [3]T. T. Basiev, A. A. Sobol, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [4]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314, 1999.
    [5]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp.439-442,2003.
    [6]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [7]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, and P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197,2007.
    [8]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, "Highly efficient Raman rrequency converter with strontium tungstate crystal," IEEE J. Quantum Electron., vol.42,78-84,2006.
    [9]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33,705-707,2008.
    [10]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang, "Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm," Laser Phys. Lett., vol.6, pp.363-366,2009.
    [11]Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal" Appl. Phys. B, vol.93, pp.327-330,2008.
    [12]李述涛,《全固体黄光激光器》,山东大学博士论文,2008.
    [13]张行愚,王青圃,常军,李平,王浩,李述涛,丛振华,陈晓寒,刘兆军,范书振,张琛, 于浩海,张怀金,“全固体腔内倍频Nd:YAG/SrWO4/KTP拉曼激光器”,中国激光,vol.36,pp.1798-1801,2009.
    [14]L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, "Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser," Appl. Phys. B, vol.94, pp.553-557,2009.
    [15]Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z.J. Zhu, F. G. Yang, Z. Y. You, "Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser," Laser Phys. Lett., vol.7, pp.491-494,2010.
    [16]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [17]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.
    [18]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser with Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol.42, pp.927-933,2006.
    [19]X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of diode-pumped actively Q-switched lasers," IEEE J. Quantum Electron., vol.35, pp.1912-1918,1999.
    [20]X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of passively Q-swiched lasers," J. Opt. Soc. Am. B, vol.17, pp.1166-1175,2000.
    [21]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Opt. Commun., vol.194, pp. 401-407,2001.
    [22]A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V, A. Orlovich, O. V. Kuzmin, V. L. Hait, W, Kiefer, and M. B. Danailov, "Sub-nanosecond microchip laser with intracavity Raman conversion," Appl. Phys. B, vol.76, pp. 509-514,2003.
    [23]J. M. Yarborough, J. Falk, and C. B. Hitz, "Enhancement of optical second harmonic generation by utilizing the dispersion of air," Appl. Phy. Lett., vol.18, pp.70-73,1971.
    [24]W. Koechner, Solid-state laser engineering, in:Arthur L. Schawlow (Ed.), Springer Series in Optical Sciences, Springer, Berlin,1999, fifth revised and updated edition.
    [1]U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett., vol.17, pp.505-507,1992.
    [2]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron., vol.2, pp.435-453,1996.
    [3]U. Keller, "Recent developments in compact ultrafast lasers," Nature, vol.424, pp.831-838, 2003.
    [4]G. J. Spuhler, T. Sudmeyer, R. Paschotta, M. Moser, K. J. Weingarten and U. Keller, "Passively mode-locked high-power Nd:YAG lasers with multiple laser heads", Appl. Phys. B, vol.71, pp. 19-25,2000.
    [5]F. Brunner, E. Innerhofer, S. V. Marchese, T. Sudmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, "Powerful red-green-blue laser source pumped with a mode-locked thin,disk laser," Opt. Lett., vol.29, pp.1921-1923,2004.
    [6]Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, "Diode-pumped passively mode-locked Yb:Y3Ga5012 laser," Opt. Lett., vol.34, pp.3316-3319,2009.
    [7]A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, "Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration," Opt. Lett., vol.35, pp.511-514,2010.
    [8]G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qian, "High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser," Laser Phys. Lett., vol.5, pp.647-650, 2008.
    [9]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, "Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser," Appl. Phys. B, vol.95,691-695, 2009.
    [10]A. Agnesi, F. Pirzio, A. Tomaselli, G. Reali, and C. Braggio, "Multi-GHz tunable-repetition-rate mode-locked Nd:GdVO4 laser," Opt. Express, vol.13, pp.5302-5307,2005.
    [11]V. Kubecek, M. Jelinek, M. Cech, P. Hirsl, and J. C. Diels, "0.4 mJ quasi-continously pumped picosecond Nd:GdVO4 laser with selectable pulse duration," Laser Phys. Lett., vol.7, pp. 130-134,2010.
    [12]Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, "Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector", Opt. Lett., vol.26, pp.199-201,2001.
    [13]Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, X. Y. Ma, "2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror," Appl. Phys. Lett., vol.86, pp.101103,2005.
    [14]W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, "Mode locking of ceramic Nd:yttrium aluminum garnet with grapheme as a saturable absorber", Appl. Phys. Lett., vol.96, pp.031106,2010.
    [15]V. Kubecek, W. Zendzian, J. K. Jabczynski, J. Kwiatkowski, H. Jelinkova, A. Stintz, and J. C. Diels, "Side pumped Nd:YAG slab laser mode-locked using multiple quantum well saturable absorbers," Laser Phys. Lett., vol.5, pp.29-33,2008.
    [16]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, "Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser," Opt. Lett., vol.34, pp.103-105, 2009.
    [17]D. Z. Li, X. D. Xu, S. S. Cheng, D. H. Zhou, F. Wu, Z. W. Zhao, C. T. Xia, J. Xu, J. Zhang, H. M. Zhu, and X. Y. Chen, "Polarized spectral properties of Nd3+ ions in CaYAlO4 crystal," Appl. Phys. B, vol.101, pp.199-205,2010.
    [18]E. F. Kustov, V. P. Petrov, D. S. Petrova, and J. P. Udalov, "Absorption and luminescence spectra of Nd3+ and Er3+ ions in monocrystals of CaYAlO4," Phys. Stat. Sol. (a), vol.41, pp.379-383, 1977.
    [19]H. R. Verdun, and L. M. Thomas, "Nd:CaYAlO4-a new crystal for solid-state lasers emitting at 1.08μm," Appl. Phys. Lett., vol.56, pp.608-610,1990.
    [20]E. Stephens, L. D. Schearer, and H. R. Verdun, "A tunable Nd:CaYAlO4 laser," Opt. Commun., vol.90, pp.79-81,1992.
    [21]H. H. Yu, X. D. Xu, D. Z. Li, Z. P. Wang, and J. Xu, "High-power disordered Nd:CaYAlO4 lasers at 1.08 μm," Opt. Lett., vol.35, pp.2666-2668,2010.
    [22]C. L. Melcher, and J. S. Schweitzer, "Cerium-doped lutetium oxyorthosilicate:a fast, efficient new scintillator," IEEE Trans. Nucl. Sci., vol.39, pp.502-505,1992.
    [23]J. M. Chen, R. H. Mao, L. Y. Zhang, and R. Y. Zhu, "Large Size LSO and LYSO crystals for future high energy physics experiments," IEEE Trans. Nucl. Sci., vol.54, pp.718-724,2007.
    [24]B. Q. Yao, Z. P. Yu, X. M. Duan, Z. M. Jiang, Y. J. Zhang, Y. Z. Wang, G. J. Zhao, "Continuous-wave laser action around 2-μm in Ho3+:Lu2SiO5," Opt. Express, vol.17, pp. 12582-12587,2009.
    [25]X. M. Duan, B. Q. Yao, L. Ke, Y. L. Ju, and Y. Z. Wang, "3.5 W continuous wave Ho:LSO laser at room temperature," Laser Phys. Lett., vol.6, pp.715-717,2009.
    [26]M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, "Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping," Appl. Phys. B, vol.80, pp.171-176,2005.
    [27]F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, "Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation," Opt. Lett., vol.31, pp.1555-1557,2006.
    [28]D. Z. Li, X. D. Xu, D. H. Zhou, C. T. Xia, F. Wu, J. Xu, Z. H. Cong, J. Zhang, and D. Y. Tang, Laser Phys. Lett., vol. DOI 10.1002/lapl.201010092 (2010).
    [29]J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, "Dual-wavelength self-mode-locked Ti:sapphire laser," Opt. Lett., vol.18, pp.1074-1076,1993.
    [30]W. H. Knox, and F. A. Beisser, "Two-wavelength synchronous generation of femtosecond pulses with<100-fs jitter," Opt. Lett., vol.17, pp.1012-1014,1992.
    [31]D. R. Dykaar, S. B. Darack, and W. H. Knox, "Cross-locking dynamics in a two-color mode-locked Ti:sapphire laser," Opt. Lett., vol.19, pp.1058-1060,1994.
    [32]C. J. Zhu, J. F. He, and S. C. Wang, "Generation of synchronized femtosecond and picosecond pulses in a dual-wavelength femtosecond Ti:sapphire laser," Opt. Lett., vol.30, pp.561-563, 2005.
    [33]M. R. X. de Barros, and P. C. Becker, "Two-color synchronously mode-locked femtosecond Ti:sapphire laser," Opt. Lett., vol.18, pp.631-633,1993.
    [34]D. R. Dykaar, and S. B. Darack, "Sticky pulses:two-color cross-mode-locked femtosecond operation of a single Ti:sapphire laser," Opt. Lett., vol.18, pp.634-636,1993.
    [35]Z. Zhang, and T. Yagi, "Dual-wavelength synchronous operation of a mode-locked Ti:sapphire laser based on self-spectrum splitting," Opt. Lett., vol.18, pp.2126-2128,1993.
    [36]G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, "Dual-wavelength synchronously mode-locked Nd:CNGG laser," Opt. Lett., vol.33, pp. 1872-1874,2008.
    [37]A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, X. Tao, "Multi-wavelength diode-pumped Nd:LGGG picosecond laser," Appl. Phys. B, vol.99, pp.135-140,2010.
    [38]H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, "Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity," Opt. Express, vol.18, pp.1479-1486,2010.
    [39]J. Liu, W. W. Wang, C. C. Liu, X. W. Fan, L. H. Zheng, L. B. Su, and J. Xu, "Efficient diode-pumped self-mode-locking Yb:LYSO laser," Laser phys. Lett., vol.7, pp.104-107,2010.
    [40]Q. Hao, W. X. Li, and H. P. Zeng, "Double-clad fiber amplifier for broadband tunable ytterbium-doped oxyorthosilicates lasers," Opt. Express, vol.15, pp.16754-16759,2007.
    [41]J. Du, X. Y. Liang, Y. Xu, R. X. Li, G. J. Zhao, C. F. Yan, L. B. Su, J. Xu, and Z. Z. Xu, "Diode-pumped efficient laser action of Yb3+:LYSO crystal," Chin. Opt. Lett., vol.5, pp.172-, 2007.
    [42]S. X. Xu, W. X. Li, Q. Hao, H. Zhai, and H. P. Zeng, "Efficient laser-diode end-pumped passively Q-switched mode-locked Yb:LYSO laser based on SESAM," Chin. Phys. Lett., vol.25, pp.548-,2008.
    [43]B. K. Brickeen, and E. Geathers, "Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO," Opt. Express, vol.17, pp.8461-8466,2009.
    [44]D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, "Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO," Laser phys. Lett., vol.7, pp.798-804,2010.
    [45]C. L. Wang, and C. L. Pan "Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array," Opt. Lett., vol.20, pp.1292-1294,1995.
    [46]L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, "Bunch of restless vector solitons in a fiber laser with SESAM," Opt. Express, vol.17,8103-8108,2009.
    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol.306, pp. 666-669,2004.
    [2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol.438, pp.197-200,2005.
    [3]A. K. Geim, and K. S. Novoselov, "The rise of graphene," Nature Materials, vol.6, pp.183-191, 2007.
    [4]Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers," Adv. Funct. Mater., vol.19, pp.3077-3083,2009.
    [5]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Express, vol.17, pp.17630-17635, 2009.
    [6]H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker," Appl. Phys. Lett., vol.95, pp. 141103,2009.
    [7]D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, "Sub 200 fs pulse generation from a graphene mode-locked fiber laser," Appl. Phys. Lett., vol.97, pp.203106,2010.
    [8]L. M. Zhao, D. Y Tang, H. Zhang, X. Wu, Q. L. Bao, and K. P. Loh, "Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene," Opt. Lett., vol.35, pp.3622-3624,2010.
    [9]W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, "Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber," Appl. Phys. Lett., vol.96, pp.031106,2010.
    [10]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol.457, pp.706-710,2009.
    [11]L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Opt. Commun., vol.272, pp.431-434,2007.
    [12]E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, "Nanosecond-pulse fiber lasers mode-locked with nanotubes," Appl. Phys. Lett., vol.95, pp. 11108,2009.
    [13]X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, "Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser," Opt. Express, vol.17, pp.5580-5584,2009.
    [14]M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett., vol.22, pp.799-801,1997.
    [15]J. U. Kang, "Broadband quasi-stationary pulses in mode-locked fiber ring laser," Opt. Commun., vol.182, pp.433-436,2000.
    [16]Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, "87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser," Electron. Lett., vol.41, pp.399-400,2005.
    [17]D. Y. Tang, L. M. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt. Express, vol.13, pp.2289-2294,2005.
    [18]L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, "120nm bandwidth noise-like pulse generation in an erbium-doped fiber laser," Opt. Commun., vol.281, pp.157-161,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700