用户名: 密码: 验证码:
La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4薄膜电荷有序超导态的磁通动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导体属于强关联电子材料,其中电子、自旋和晶格自由度之间存在较强的相互作用。目前研究发现高温超导铜氧化物在纳米尺度或是更大的尺度上存在电子不均匀性,其中最引人注目的是电荷条纹相。所谓电荷条纹相是指,在CuO_2面内,载流子自发聚集形成一维链状结构,与反铁磁背景发生分离并形成周期性调制结构。实验表明电荷条纹以及反铁磁涨落与高温超导电性有着密切联系。
     本论文主要研究了应力调制的La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4/LaSrAlO_4薄膜在磁场下的电输运性质和Ⅳ特性,讨论了条纹相稳定性和超导电性的关系以及静态条纹相对磁通相变的影响。此外,我们还利用超声衰减这一手段研究了La_(1.88)Sr_(0.12)Cu_(1-y)Zn_yO_4体系,面内掺杂对CuO_2面局域结构的影响,揭示了这一体系中存在较强的电子-声子耦合。论文共分五章,每章的主要内容分别概括如下:
     第一章综述了不同实验的手段在高温超导材料中观察到的反常实验现象,以及这些实验现象和电子非均匀态的联系;介绍电荷条纹相这一重要概念,以及它和高温超导电性的关系;最后我们介绍了电荷不均匀体系中的磁通分布和钉扎的特性。
     第二章介绍了利用磁控溅射在LaSrAlO_4(001)衬底上制备高品质La_(1.6-x)Nd_(0.4)Sr_xCuO_4和La_(1.88)Ba_(0.12)CuO_4外延薄膜的方法,以及利用光刻技术获得测量样品面内电阻和Ⅳ特性所需的微桥。我们发现薄膜的面内应力可以通过薄膜厚度来调节。通过对不同厚度La_(1.6-x)Nd_(0.4)Sr_xCuO_4和La_(1.88)Ba_(0.12)CuO_4外延薄膜零场下输运性质的研究,我们探讨了面内压应力对薄膜结构的影响,分析了T_c提高的物理机制可能源于c轴方向的拉伸和静态条纹相的破坏。
     第三章研究了应力调制下的La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4/LaSrAlO_4薄膜在磁场下的输运性质,发现了磁场下薄膜电阻的超导转变随着面内压应力的增加从平行展宽向扇形展宽过渡。同样应力的变化导致了同一组份薄膜的上临界场H_(c2),面内相干长度ξ_(ab)(T),以及有效磁通钉扎势U_0(H)发生相应的变化。我们认为应力的引入破坏了薄膜中的静态条纹相,超导电性得到了显著提高。H_(c2)、ξ_(ab)(T)和U_0(H)的变化主要与超导电性的变化相关。
     第四章我们研究了不同应力状态下的La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4/LasrAlO_4(LNSCO/LSAO)薄膜的Ⅳ特性。通过标度分析,发现受到压应力存在动态条纹的LNSCO薄膜中,磁通相表现出三维的特征。而在应力释放的厚膜中磁通物质表现出二维特征。特别是在磁通液态,磁通线更加接近自由的正反涡旋对的形式。而在低温下,磁通线受到静态条纹相的钉扎,形成准二维的磁通玻璃态。因此静态电荷条纹相使磁通物质发生从三维向二维过渡。此外在电流驱动下磁通液相的耗散源于正反涡旋对的自由运动,而磁通玻璃相的耗散源于磁通线的集体蠕动。
     第五章我们利用对材料微结构变化灵敏的超声声速和衰减这一实验手段研究La_(1.88)Sr_(0.12)Cu_(1-y)Zn_yO_4(y=0.00,0.01,0.02,0.03)多晶样品中Zn掺杂对这一体系局域结构畸变的影响。发现少量的Zn掺杂有利于样品中低温四方相(LTT)畴结构的形成,而过多的Zn掺杂会破坏LTT畴的形成。此外,局域晶格畸变随Zn掺杂的变化趋势和用muon自旋驰豫实验探测的La_(2-x)Sr_xCu_(1-y)Zn_yO_4(x=0.1,0.115,0.13)局域磁有序随Zn掺杂的变化规律一致。这很好的反应了在LSCO体系中,电荷、自旋和晶格的自由度是耦合在一起的。此外,我们还研究不同样品的超声衰减和声速随磁场的变化规律,给出了Zn掺杂可以钉扎动态条纹相的实验证据。
High-temperature superconductors are strongly correlated electronic materials, in which spin, charge, lattice are simultaneously active. Many experimental results have provided evidences for the existence of nanometer-scale electronic inhomogeneity in high-T_c cuprates. The charge stripes are one of the highly debating topics. In the CuO_2 plane, doped holes accommodate in striped pattern and separate the antiferromagnetic domains, forming a long-range modulation. The fluctuation of charge stripes as well as spin stripes are the key elements to the high-T_c superconductivity.
     In this dissertation, the transport properties as well as current-voltage (Ⅳ) characteristics in magnetic fields of strained La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4 films deposited on LaSrAl04 substrates were studied. The relation between stripe order and superconductivity and the effect of stripe order on the vortex phase transition are discussed. Moreover, the effect of in-plane impurity substitution on the local structural transformation in La_(1.88)Sr_(0.12)Cu_(1-y)Z_yO_4 was investigated by ultrasonic measurement and evidence for electron-lattice coupling in this system was found.
     In chapter one, anomalous phenomena related to charge inhomogeneity in high-T_c cuprates revealed by different experimental methods are introduced. The concept of charge stripe phase as well as its relation to high-T_c superconductivity is introduced. The vortex structure and flux pinning in the stripe-ordered superconducting state are also discussed.
     In chapter two, the preparation of high quality La_(1.6-x)Nd_(0.4)Sr_xCuO_4 (LNSCO) and La_(1.88)Ba_(0.12)CuO_4 (LBCO) epitaxial films and photolithography method are introduced. The zero-field transport properties of LNSCO and LBCO films of different thickness were studied and the effect of in-plane compressive strain on the structure and the superconducting transition temperature T_c was discussed. The c-axis expansion and destabilization of static charge stripes are possibly responsible for the promotion of T_c.
     In chapter three, the in-plane resistivities of La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4/LaSrAlO_4 films were studied in magnetic fields. A crossover from parallel shift to fan-shape broadening in the resistivity transitions was observed as in-plane compressive strain increased. Moreover, the upper critical field, in-plane coherence length and the effective pinning potential of the films were also found to change with increasing in-plane compressive strain and which is closely related to the increase of superconductivity induced by the strain.
     In chapter four, the IV characteristics of two La_(1.44)Nd_(0.4)Sr_(0.16)CuO_4/ LaSrAlO_4 films with different strained state are presented. We provide clear evidences that in a superconducting state with dynamical stripe order, a typical 3D VG phase transition is found. While in a stripe-ordered superconducting state, the vortex phase transition bears 2D characteristics. Moreover, for the sample with static stripe order, we find that the correlation length used for scaling in the vortex liquid state is of KT-type, in which anti-vortex pairs dominate. Below the VG phase transition temperature T_g, the VG correlation length should be used in order to achieve good scaling collapse, indicating a quasi-2D vortex glass phase. Our findings indicate that the nature of vortex phase-transition is completely altered in the presence of the stripe order.
     In chapter five, the effect of in-plane substitution on the local structure has been studied by ultrasonic method in a series sample of La_(1.88)Sr_(0.12)Cu_(1-y)Zn_yO_4(y=0.00,0.01, 0.02, 0.03). It is found that a small amount of Zn doping greatly promotes the formation of local low-temperature tetragonal (LTT) phase, whereas further doping is harmful to it, whose tendency shows a marked resemblance to the Zn-concentration dependence of magnetic transition temperature T_N reported byμSR study. This result indicates that the spin, charge and lattice are simultaneously active in this system. Our results also provide additional evidence that the slight in-plane nonmagnetic doping introduces local pinning centers to stabilize the charge stripes in La_(1.88)Sr_(0.12)CuO_4.
引文
[1] J. G. Bednorz, K. A. Muller, Z. Phys. B 64,189 (1986)
    [2] J.R.Gavaler, Appl. Phys. Lett. 23,480 (1973)
    [3] L. R. Testardi, J. H. Wernick, and W. A. Royer, Solid State Commun. 15,1(1974).
    [4] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58,908 (1987).
    [5] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363,56 (1993).
    [6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,1175 (1957).
    [7] E. Dagotto, Science 309,257 (2005).
    [8] J. M. Tranquada, B. J. Sternleib, J. D. Axe, Y. Nakamura and S. Uchida, Nature 375, 561 (1995).
    [9] V. J. Emery, S. A. Kivelson, J. M. Tranquada, Proc. Natl. Acad. Sci. U.S.A. 96, 8814 (1999).
    [10] J. Zaanen, Nature 404,714 (2000), and references therein.
    [11] O. Fischer, M. Kugler, I. M. Aprile, and C. Berthod, Rev. Mod. Phys. 79,353 (2007)
    [12] K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature 415,412 (2002).
    [13] T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature 430,1001 (2004).
    [14] M. Vershinin, A. Misra, S. Ono, Y. Abe, Y. Ando, and A.Yazdani, Science 303, 1995 (2004).
    [15] H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z.-X. Shen, and M. Greven, Phys. Rev. B 69,064512 (2004).
    [16] P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78,17 (2006).
    [17] S. Uchida,T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43,7942 (1991)
    [18] Y. Tokura, S. Koshihara, T. Arima, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, Phys. Rev. B 41,11657(1990).
    [19] A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75,473 (2003).
    [20] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75,1201 (2003).
    [21] Y. Ando, A. N. Lavrov, S. Komiya, K. Segawa, and X. F. Sun, Phys. Rev. Lett. 87, 017001 (2001).
    [22] G. S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. Lett. 77,5417 (1996).
    [23] Y. Ando, G. S. Boebinger, A. Passner, T. Kimura and K. Kishio, Phys. Rev. Lett. 75, 4662(1995).
    [24] S. Komiya and Y. Ando, Phys. Rev. B 70,060503 (2004).
    [25] H. Aubin, K. Behnia, S. Ooi, and T. Tamegai, Phys. Rev. Lett. 82,624 (1999).
    [26] Y. Ando, J. Takeya, Y. Abe, X. F. Sun, and A. N. Lavrov, Phys. Rev. Lett. 88,147004 (2002).
    [27] M. Chiao, R. W. Hill, C Lupien, B Popic, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 82,2943 (1999).
    [28] N. P. Ong et al., in Physics and Chemistry of Transition Metal Oxides, edited by H. Fukuyama and N. Nagaosa (Springer-Verlag, Berlin, 1999), p. 202.
    [29] G. E. Volovik, JETP Lett. 58,469 (1993).
    [30] X. F. Sun, S. Komiya, J. Takeya, and Y. Ando, Phys. Rev. Lett. 90,117004 (2003).
    [31] N. E. Hussey, Adv. Phys. 51,1685 (2002).
    [32] L. Taillefer, B. Lussier, R. Gagnon, K. Behnia and Herve Aubin, Phys. Rev. Lett. 79, 483 (1997).
    [33] S. Nakamae, K. Behnia, L. Balicas, F. Rullier-Albenque, H. Berger, and T. Tamegai, Phys. Rev. B 63,184509 (2001).
    [34] X. F. Sun, S. Ono, Y. Abe, S. Komiya, K. Segawa, and Y. Ando, Phys. Rev. Lett. 96, 017008 (2006).
    [35] K. McElroy, J. Lee, J. A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, and J. C. Davis, Science 309,1048 (2005).
    [36] X. J. Zhou, P. Bogdanov, S. A. Kellar, T. Noda, H. Eisaki, S. Uchida, Z. Hussain, Z.-X. Shen, Science 286,268 (1999).
    [37] J. M. Tranquada, N. Ichikawa, S. Uchida, Phys. Rev. B 59,14712 (1999).
    [38] M. V. Zimmermann et al., Europhys. Lett. 41,629 (1998).
    [39] X. J. Zhou, T. Yoshida, S. A. Kellar, P.V. Bogdanov, E. D. Lu, A. Lanzara, M. Nakamura, T. Noda,T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett. 86, 5578 (2001).
    [40] T. Yoshida, X. J. Zhou, M. Nakamura, S. A. Kellar, P. V. Bogdanov, E. D. Lu, A. Lanzara, Z. Hussain, A. Ino, T. Mizokawa, A. Fujimori, H. Eisaki, C. Kim, Z.-X. Shen, T. Kakeshita, and S. Uchida, Phys. Rev. B 63,220501 (2001).
    [41] Marc G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, Phys. Rev. Lett. 85,2585 (2000).
    [42] T. Tohyama, S. Nagai, Y. Shibata, and S. Maekawa, Phys. Rev. Lett. 82,4910 (1999).
    [43] M. Fleck, A. I. Lichtenstein, E. Pavarini and A. M. Oles, Phys. Rev. Lett. 84, 4962 (2000).
    [44] K. Yamada, C. H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birgeneau, M. Greven, M.A. Kastner, and Y.J. Kim, Phys. Rev. B 57,6165 (1998).
    [45] B. O. Wells, Y. S. Lee, M. A. Kastner, R. J. Christanson, R. J. Birgeneau, K. Yamada, Y. Endoh, and G. Shirane, Science 277, 1067 (1997).
    [46] C. Kittel, Introduction to Solid State Physics 6th edn, 317-358 (Wiley & Sons, New York, (1986).
    [47] B. Lake, H. M. Ronnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E. Mason, Nature, 415,299(2002).
    
    [48] K. Hirota, K. Yamada, I. Tanaka, and H. Kojima, Physica B 241-243, 817 (1998).
    [49] J. M. Tranquada, N. Ichikawa, K. Kakurai, and S. Uchida, J. Phys. Chem. Solids 60, 1019(1999).
    [50] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature 363,524-527 (1993).
    [51] A. Yazdani, B.A.Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science 275, 1767-1770(1997).
    [52] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567-569 (1998).
    [53] S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida and J. C. Davis, Nature 403, 746 (2003).
    [54] A. V. Balatsky, M. I. Salkola, and A. Rosengren, Phys. Rev. B 51, 15547-15551 (1995).
    [55] J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J. C. Davis, Science 295,466 (2002).
    [56] K. Park, S. Sachdev, Phys. Rev. B 64,184510 (2001).
    [57] E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87,067202 (2001).
    [58] U. Low, V. J. Emery, K. Fabricius, and K. Fabricius, Phys. Rev. Lett. 72,1918 (1994).
    [59] T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi1, and J. C. Davis, Nature 430,1001 (2004)
    [60] F. Ronning, C. Kim, D. L. Feng, D. S. Marshall, A. G. Loeser, L. L. Miller, J. N. Eckstein, I. Bozovic, and Z.-X. Shen Science 282,2067 (1998).
    [61] P. W. Anderson, N. P. Ong, J. Phys. Chem. Solids 67,1 (2006).
    [62] M. Randeria, R. Sensarma, N. Trivedi, F.-C. Zhang, Phys. Rev. Lett. 95, 137001 (2005).
    [63] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J. C. Davis, Science 315,1380 (2007).
    [64] K. Machida, Physica C 158,192 (1989).
    [65] J. Zaanen, O. Gunnarsson, Phys. Rev. B 40,7391 (1989).
    [66] H. J. Schulz, J. Phys. (Paris) 50,2833 (1989).
    [67] V. J. Emery, and S. A. Kivelson, Physica C 209,597 (1993).
    [68] U. Low, V. J. Emery, K. Fabricius, and S. A. Kivelson, Phys. Rev. Lett. 72,1918.1994,
    [69] Castellani, C, C. Di Castro, and M. Grilli, Phys. Rev. Lett. 75,4650 (1995).
    [70] M. Seul, and D. Andelman, Science 267,476 (1995).
    [71] N. Hasselmann, A. H. Castro Neto, C. Morais Smith, and Y. Dimashko, Phys. Rev. Lett. 82,2135(1999).
    [72] G. Seibold,, E. Sigmund, and V. Hizhnyakov, Phys. Rev. B 57, 6937 (1998).
    [73] J. H. Han, Q.-H. Wang, and D.-H. Lee, Int. J. Mod. Phys. B 15,1117 (2001).
    [74] J. Lorenzana, and G. Seibold, Phys. Rev. Lett. 89,136401 (2002).
    [75] C. S. Hellberg, and E. Manousakis, Phys. Rev. Lett. 78,4609(1997).
    [76] C. S. Hellberg, and E. Manousakis, Phys. Rev. B 61,11787 (2000).
    [77] S. R. White, and D. J. Scalapino, Phys. Rev. Lett. 80,1272 (1998).
    [78] S. R. White, and D. J. Scalapino, Phys. Rev. B 61,6320 (2000).
    [79] D. Poilblanc, and T. M. Rice, Phys. Rev. B 39,9749 (1989).
    [80] A. H. Castro Neto, and C. Morais Smith, cond-mat/0304094 (2003).
    [81] M. Franz, Science 305,1410 (2004).
    [82] J. Zaanen, Science 315,1372 (2007).
    [83] E. Fradkin, S. A. Kivelson, and V. Oganesyan, Science 315,196 (2007).
    [84] Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
    [85] M. Matsuda, M. Fujita, K. Yamada, R. J. Birgeneau, M. A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto and G. Shirane, Phys. Rev. B 62,9148 (2000).
    [86] J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41,1863 (1990).
    [87] V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, Science 319, 597 (2008).
    [88] H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, J. Bossy, A. Ivanov, D. L. Milius and I. A. Aksay and B. Keimer, Phys. Rev. B 61,14773 (2000).
    [89] P. Dai, H. A. Mook, R. D. Hunt, F. Dogan, Phys. Rev. B 63,054525 (2001).
    [90] C. Stock, W. J. L. Buyers, R. Liang, D. Peets, Z. Tun, D. Bonn, W. N. Hardy, and R. J. Birgeneau,, Phys. Rev. B 69,014502 (2004).
    [91] C. Stock, W. J. L. Buyers, Z. Yamani, C. L. Broholm, J.-H. Chung, Z. Tun, R. Liang, D. Bonn, W. N. Hardy, and R. J. Birgeneau, Phys. Rev. B 73,100504(R) (2006).
    [92] R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. A. Tennant, Y. Maeno, A. P. Mackenzie, Science 315,214 (2007).
    [93] P. Gegenwart, F. Weickert, M. Garst, R. S. Perry, Y. Maeno, Phys. Rev. Lett. 96, 136402 (2006).
    [94] Devereaux, T. P., Cuk, T., Shen, Z.-X. & Nagaosa, N. Phys. Rev. Lett. 93, 117004 (2004).
    [95] Bohnen, K.-P., Heid, R. & Krauss, M. Europhys. Lett. 64,104-110 (2003).
    [96] K. Kaneshita, M. Ichioka, and K. Machida, Phys. Rev. Lett. 88,115501 (2002).
    [97] D. Reznikl,, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu and J. M. Tranquada, Nature 440,1170 (2006).
    [98] L. Pintschovius, phys. Stat.sol.(b) 242,30-50 (2005).
    [99] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,550 (1998).
    [100] Emery, V. J., Kivelson, S. A. and Zachar, O. Phys. Rev. B 56,6120-6147 (1997).
    [101] B. Batlogg, in Physics of High-Temperature Superconductors, 228 (Springer, Berlin, 1992).
    [102] D. A. Huse, P. A. Matthew, and D. S. Fisher, Nature 358,553 (1992)
    [103] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32,1442 (1957)
    [104] P. W. Anderson, and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964)
    [105] M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur Phys. Rev. Lett 63,2303 (1989).
    [106] D. S. Fisher, M. P. A. Fisher, D. A. D. Huse, Phys. Rev. B 43,130 (1991).
    [107] R. H. Koch et al., Phys. Rev. Lett. 63,1511 (1989);
    [108] D. R. Strachan, M. C. Sullivan, P. Fournier, S. P. Pai, T. Venkatesan, and C. J. Lobb, Phys. Rev. Lett. 87,067007 (2001).
    [109] J. E. Ostenson, S. Bud'ko, M. Breitwisch, D. K. Finnemore, N. Ichikawa, and S. Uchida, Phys. Rev. B 56, 2820 (1997).
    [110] J. Sok, M. Xu, W. Chen, and B. J. Suh, J. Gohng, D. K. Finnemore, M. J. Kramer, L. A. Schwartzkopf, and B. Dabrowski, Phys. Rev. B 51,6035 (1991).
    [111] J. W. Loram, K. A. Mirza, and P. F. Freeman, Physica C 171,243 (1990).
    [112] C. J. van der Beek, M. Konczykowski, T. W. Li, P. H. Kes, and W. Benoit, Phys. Rev. B 54, R792 (1996)
    [113] T. W. Li, R. J. Drost, P. H. Kes, H. W. Zandbergen, N. T. Hien, A. A. Menovsky, and J. J. M. Franse, Physica C 274,197 (1997)
    
    [114] A. Wahl, V. Hardy, J. Provost, Ch. Simon, and A. Buzdin, ibid. 250,163 (1995)
    [115] M. Ichioka, M. Takigawa, and K. Machida, J. Phys. Soc. Jpn. 70,33 (2001).
    [116] Q. Li, M. Httcker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada, Phys. Rev. Lett. 99,067001 (2007).
    [117] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6,1181 (1973).
    [118] Berezinskii, Zh. Eksp. Teor. Fiz. 61,1144 (1971).
    [119] P. Minnhagen, Rev. Mod. Phys. 59,1001 (1987).
    
    [1] C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and J. Q. Wang, Phys. Rev. Letters 58,405 (1987).
    
    [2] C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, and Z. J. Huang, Science 235,567 (1987).
    
    [3] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H.K. Mao, Phys. Rev. B 50,4260 (1994).
    
    [4] F. Chen, Z. J. Huang, R. L. Meng, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 48,16047 (1993).
    
    [5] J.-P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. W. Seo and G. Van Tendeloo, Nature 394,453 (1998).
    
    [6] I. K. Schuller, Nature 394,419 (1998).
    
    [7] X. J. Chen, H. Q. Lin and C. D. Gong, Phys. Rev. B 61,9782 (2000).
    
    [8] H. Sato and M. Naito, Physica C 274,221 (1997).
    
    [9] M. Hanawa and I. Tskada, Appl. Phys. Letts. 91,232503 (2007).
    
    [10] M. K. Crawford, R. L. Harlow, E. M. McCarron, W. E. Farneth, J. D. Axe, H. Chou, Q.Huang, Phys. Rev. B 44,7749 (1991).
    
    [11] J. M. Tranquada, B. J. Sternleib, J. D. Axe, Y. Nakamura and S. Uchida, Nature 375, 561 (1995).
    
    [12] X. J. Zhou, P. Bogdanov, S. A. Kellar, T. Noda, H. Eisaki, S. Uchida, Z. Hussain, Z.-X. Shen,Science 286,268 (1999).
    
    [13] X. J. Zhou, T. Yoshida, S. A. Kellar, P.V. Bogdanov, E. D. Lu, A. Lanzara, M. Nakamura, T.Noda,T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z.-X. Shen, Phys. Rev.Lett. 86,5578 (2001).
    
    [14]王力衡,黄运天,郑海涛,薄膜技术,清华大学出版社, 1991年。
    
    [15] 吴自勤,王兵, 薄膜生长,科学出版社,2001年。
    
    [16] I. Tsukada, Phys. Rev. B 64,224501 (2001).
    
    [17] Y. Liu, J. F. Qu, M. Zhu, S. D. Zhang, S. J. Feng, and X. G Li, Phys. Rev. B 70, 224512(2004).
    
    [18] K. Fujita, T. Noda, K. M. Kojima, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 95, 097006(2005).
    
    [19] J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura,and S. Uchida,Phys. Rev. Lett. 78,338 (1997).
    
    [20] J. E. Ostenson, S. Bud'ko, M. Breitwisch, D. K. Finnemore, N. Ichikawa, and S. Uchida,Phys. Rev. B 56,2820 (1997).
    [21] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. 87,047003 (2001).
    [22] M. Abrecht, D. Ariosa, D. Cloetta, S. Mitrovic, M. Onellion, X. X. Xi, G. Margaritondo, and D. Pavuna, Phys. Rev. Lett. 91,057002 (2003).
    [23] Arumugan S, Mori N, Takeshita N, Takashima H, Noda T, Eisaki H and Uchida S, Phys. Rev. Lett. 88,247001 (2002).
    [24] M. K. Crawford, R. L. Harlow, S. Deemyad, V. Tissen, J. S. Schilling, E. M. McCarron, S. W. Tozer, D. E. Cox, N. Ichikawa, S. Uchida, and Q. Huang, Phys. Rev. B. 71,104513 (2005).
    [25] Boebinger G. S, Ando Y, Passner A, Kimura T, Okuya M, Shimoyama J, Kishio K, Tamasaku K, Ichikawa N and Uchida S Phys. Rev. Lett. 77 5417 (1996)
    [26] H. Sato, A. Tsukada, M. Naito, and A. Matsuda, Phys. Rev. B 62,799 (2000).
    [27] T. Adachi, N. Kitajima, T. Manabe, Y. Koike, K. Kudo, T. Sasaki, and N. Kobayashi, Phys. Rev. B 71,104516(2005).
    [28] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,550 (1998).
    [1] S. Wakimoto, R. J. Birgeneau, Y. Fujimaki, N. Ichikawa, T. Kasuga, Y. J. Kim, K. M. Kojima, S.-H. Lee, H. Niko, J. M. Tranquada, S. Uchida, and M. V. Zimmermann, Phys. Rev. B 67, 184419(2003).
    [2] T. Adachi, N. Kitajima, T. Manabe, Y. Koike, K. Kudo, T. Sasaki, and N. Kobayashi, Phys. Rev. B 71,104516 (2005).
    [3] Q. Li, M. Hucker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada, Phys.Rev. Lett. 99,067001 (2007).
    [4] T. Suzuki, Y. Oshima, K. Chiba, T. Fukase,T. Goto H. Kimura, and K. Yamada, Phys. Rev. B 60,10500 (1999).
    [5] M. Suzuki, and M. Hikita, Phy. Rev. B 44,249 (1991).
    [6] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
    [7] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,550 (1998).
    [8] S. Arumugan, N. M6ri, N. Takeshita, H. Takashima, T. Noda, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 88,247001 (2002).
    [9] M. K. Crawford, R. L. Harlow, S. Deemyad, V. Tissen, J. S. Schilling, E. M. McCarron, S. W. Tozer, D. E. Cox, N. Ichikawa, S. Uchida, and Q. Huang, Phys. Rev. B 71,104513 (2005).
    [10] J. -S. Zhou, and J. B. Goodenough, Phys. Rev. B 56,6288 (1997).
    [11] V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, Science 319,597 (2008).
    [12] L. Pintschovius, phys. Stat.sol.(b) 242, 30-50 (2005).
    [13] Y. Q. Zhang, J. F. Qu, X. Q. Xiang, X. L. Lu, and X. G. Li, Physica C 460-462,1388 (2007).
    [14] Y. Liu, J. F. Qu, M. Zhu, S. D. Zhang, S. J. Feng, and X. G. Li, Phys. Rev. B 70, 224512 (2004).
    [15] I. Tsukada, Phys. Rev. B 64,224501 (2001).
    [16] H. Sato, A. Tsukada, M. Naito, and A. Matsuda, Phy. Rev. B 61,12447 (2000).
    [17] S. I. Vedeneev, Cyril Proust, V. P. Mineev, M. Nardone, G. L. J. A. Rikken, Phys. Rev. B 73 (2006)014528.
    [18] W. D. Si, and X. X. Xi, Appl. Phy. Lett.78,240 (2001).
    [19] M. Ichioka, and K. Machida, J. Phys. Soc. Jpn. 68,4020 (1999).
    [20] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66,1125(1994).
    [21] T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41,6621 (1990).
    [22] D. H. Kim, K. E. Gray, R. T. Kampwirth, and D. M. McKay, Phys. Rev.B 42, 6249 (1990).
    [23] M. Suzuki, Phys. Rev. B 46,14230 (1992).
    [24] W. A. Caldwell, N. Tamura, R. S. Celestre, A. A. MacDowell, H. A. Padmore, T. H. Geballe, G. Koster, B. W. Batterman, J. R. Patel, Phys.Rev. Lett. 92,216105 (2004).
    [25] Y. Li and Z. X. Zhao, Physica C 351,1 (2001).
    [1] D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43 130 (1991).
    [2] R. H. Koch et al., Phys. Rev. Lett. 63,1511 (1989).
    [3] R.Koch, V. Foglietti, and M. P. A. Fisher, Phys. Rev. Lett. 64,2586 (1990).
    [4] P. Gammel, L. Schneemeyer, and D. Bishop, Phys. Rev. Lett. 66,953 (1991).
    [5] A. M. Petrean et al., Phys. Rev. Lett. 84,5852 (2000).
    [6] R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. A. Tennant, Y. Maeno, and A. P. Mackenzie, Science 315,214 (2007).
    [7] E. Fradkin, S. A. Kivelson, and V. Oganesyan, Science 315,196 (2007).
    [8] V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer Science 319, 597 (2008).
    [9] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).
    [10] Y. Ando, A. N. Lavrov, S. Komiya, K. Segawa, X. F. Sun, Phys. Rev. Lett. 87, 017001 (2001).
    [11] Y. Ando, K. Segawa, S. Komiya, A. N. Lavrov, Phys. Rev. Lett. 88,137005 (2002).
    [12] T. Noda, H. Eisaki, S. Uchida, Science 286,265 (1999).
    [13] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
    [14] J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura,and S. Uchida, Phys. Rev. Lett. 78,338 (1997).
    [15] J. E. Ostenson, S. Bud'ko, M. Breitwisch, D. K. Finnemore, N. Ichikawa, and S. Uchida, Phys. Rev. B 56,2820 (1997).
    [16] J. Gohng and D. K. Finnemore, Phys. Rev. B 46,398 (1992).
    [17] J. Sok, M. Xu, W. Chen, and B. J. Suh, J. Gohng, D. K. Finnemore, M. J. Kramer, L. A. Schwartzkopf, and B. Dabrowski, Phys. Rev. B 51,6035 (1991).
    [18] J. W. Loram, K. A. Mirza, and P. F. Freeman, Physica C 171,243 (1990).
    [19] C. J. van der Beek, M. Konczykowski, T. W. Li, P. H. Kes, and W. Benoit, Phys. Rev. B 54, R792 (1996).
    [20] T. W. Li, R. J. Drost, P. H. Kes, H. W. Zandbergen, N. T. Hien, A. A. Menovsky, and J. J. M. Franse, Physica C 274,197 (1997).
    [21] A. Wahl, V. Hardy, J. Provost, Ch. Simon, and A. Buzdin, ibid. 250,163 (1995).
    [22] X. Q. Xiang, Y. Q. Zhang, J. F. Ding, and X. G. Li, unpublished.
    [23] M. Ichioka, M. Takigawa, and K. Machida, J. Phys. Soc. Jpn. 70,33 (2001).
    [24] L. F. Cohen and H. J. Jensen, Rep. Prog. Phys. 60,1581 (1997).
    [25] T. Sasagawa, K. Kishio, Y. Togawa, J. Shimoyama, and K. Kitazawa, Phys. Rev. Lett. 80 (1998)4297.
    [26] D. R. Strachan, M. C. Sullivan, P. Fournier, S. P. Pai, T. Venkatesan, and C. J. Lobb, Phys. Rev. Lett. 87,067007 (2001).
    [27] M. C. Sullivan, D. R. Strachan, T. Frederiksen, R. A. Ott, M. Lilly, and C. J. Lobb, Phys. Rev. B 69,214524 (2004).
    [28] Y. J. Yun, I. C. Beak and M. Y. Choi, Phys. Rev. Lett. 97,215701 (2006).
    [29] H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, and K.Kajimura, Phys. Rev. B 50, 12959 (1994).
    [30] Q. Li, M. Hucker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada, Phys. Rev. Lett. 99, 067001 (2007).
    [31] E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V. Oganesyan, J. M. Tranquada, and S. C. Zhang, Phys. Rev. Lett. 99,127003 (2007).
    [32] P. Minnhagen, Rev. Mod. Phys. 59,1001 (1987).
    [33] J. Holzer, R. S. Newrock, C. J. Lobb, T. Aouaroun, and S. T. Herbert, Phys. Rev. B 63, 184508(2001).
    [34] Y. J. Yun, I. C. Baek, and M. Y. Choi, cond-mat/0509151; Y. J. Yun, I. C. Baek, and M. -Y. Choi, Europhys. Lett 76,271 (2006).
    [35] J. Um, B. J. Kim, P. Minnhagen, and M. Y. Choi, Phys.Rev. B 74,094516 (2006).
    [36] E. Granato and D. Dominguez, Phys. Rev. B 71,094521 (2005).
    [1] D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu, and J. M. Tranquada, Nature 440,1170 (2006).
    [2] E. Dagotto, Science 309,257 (2005).
    [3] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
    [4] J. P. Attfield, A. L. Kharlanov, and J. A. McAllister, Nature 394,157 (1998).
    [5] K. Fujita, T. Noda, K. M. Kojima, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 95, 097006 (2005).
    [6] H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z. X. Shen, and M.Greven, Phys. Rev. B 69,064512 (2004).
    [7] C. M. Smith, A. H. Castro Neto, and A. V. Balatsky, Phys. Rev. Lett. 87,177010 (2001).
    [8] K. Hirota, K. Yamada, I. Tanaka, H. Kojima, Physica B 241-243,817 (1998).
    [9] S. Komiya, and Y. Ando, Phys. Rev. B 70,060503 (2004).
    [10] G. S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. Lett. 77,5417 (1996).
    [11] Y. Ando, G. S. Boebinger, A. Passner, T. Kimura, and K. Kishio, Phys. Rev. Lett. 75, 4662 (1995).
    [12] J. M. Tranquada, N. Ichikawa, K. Kakurai, and S. Uchida, J. Phys. Chem. Solid 60, 1019 (1999).
    [13] X. G. Li, R. K. Zheng, G. Li, H. D. Zhou, R. X. Huang, J. Q. Xie, and Z. D. Wang, Europhys. Lett. 60,670 (2002).
    [14] J. F. Qu, Y. Liu, F. Wang, X. Q. Xu, and X. G. Li, Phys. Rev. B 71,094503 (2005).
    [15] M. Fujita, H. Goka, K. Yamada, and M. Matsuda, Phys. Rev. Lett. 88,167008 (2002).
    [16] J. F. Qu, Y. Q. Zhang, X. L. Lu, X. Q. Xiang, Y. L. Liao, G. Li, and X. G. Li, Appl. Phy. Lett. 89,162508 (2006).
    [17] I. Watanabe, T. Adachi, K. Takahashi, S. Yairi, Y. Koike, K. Nagamine, Phys. Rev. B 65, 180516(2002).
    [18] T. Adachi, S. Yairi, K. Takahashi, Y. Koike, I. Watanabe, and K. Nagamine, Phys. Rev. B 69, 184507(2004).
    [19] T. Goto, T. Suzuki, K. Chiba, T. Shinoda, M. Mori, T. Fukase, Physica B 246, 572 (1998).
    [20] A. R. Moodenbaugh, L. J. Wu, Y. M. Zhu, L. H. Lewis, and D. E. Cox, Phys. Rev. B 58, 9549 (1998).
    
    [21] S. Wakimoto, R. J. Birgeneau, Y. Fujimaki, N. Ichikawa, T. Kasuga, Y. J. Kim, K. M. Kojima, S.-H. Lee, H. Niko, J. M. Tranquada, S. Uchida, and M. V. Zimmermann, Phys. Rev. B 67,184419(2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700