用户名: 密码: 验证码:
基于微乳液体系制备ZnO光催化材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业废水处理行业中,染料废水由于排放量大,组成复杂,种类繁多,可生化性差,具有毒性和致癌性,严重污染了环境,一直是废水处理中的焦点和难点。光化学催化氧化技术是在光化学氧化的基础上改进发展起来的一种深度氧化技术,可有效地氧化降解染料废水中大多数难降解的有机污染物,达到去毒、除臭、脱色,直至矿化为无害、无毒的小分子物质。在有机染料废水处理方面具有巨大的应用潜力,引起研究者的广泛关注。
     本文基于微乳液体系,从结构和形貌两方面对ZnO光催化剂进行改性,分别以聚苯乙烯微乳液为模板合成了介孔纳米ZnO光催化材料,采用阳离子辅助的水热微乳液法制备出了具有较高吸光特性的双晶结构六方哑铃状ZnO微晶,研究了制备条件对ZnO结构、形貌及性质的影响,提出可能的生长机理,得出了适宜的制备条件。此外,以介孔纳米ZnO和双晶结构六方哑铃状ZnO为光催化剂,以活性艳红KE-3B及活性艳红K-2BP模拟染料废水,进行了ZnO/UV体系降解模拟染料废水的研究,系统考察了各因素对染料脱色率的影响,获得了适宜的光催化降解条件,提出了染料的降解机理。
     研究结果显示:聚苯乙烯微乳液是一个良好的成孔中介,采用1 oC/min的升温速率在500°C煅烧前驱体6 h,所得介孔ZnO的比表面积为11.013 m2/g,孔容为0.135 cm~3/g,介孔分布在40.2 nm左右。与无孔ZnO相比,催化效率明显提高;以CTAB作为阳离子表面活性剂,采用水热微乳液法制备出了较高吸光特性的双晶结构六方哑铃状ZnO微晶,水热反应温度、反应时间、水与表面活性剂之比、助表面活性剂、表面活性剂的浓度、反应物浓度对ZnO微观结构和形貌都有不同程度的影响,在W=10,乙酸锌的浓度为0.5 mol/L,反应温度为140°C,反应时间为14 h,[CTAB]=0.21 mol/L,正丁醇为助表面活性剂时,所得双晶结构六方哑铃状ZnO微晶的平均直径为1μm、长为3μm,在紫外-可见光区吸光性能最好。ZnO/UV体系在光催化降解活性艳红KE-3B及活性艳红K-2BP时均符合Langmuir-Hinshelwood方程;催化剂的投加量、染料的初始浓度、溶液的pH值、H_2O_2的浓度及无机阴离子均影响染料的脱色率。
In the industrial wastewater treatment process, much attention has been focused on the treating dye wastewater due to its big emissions, multiple species, high toxicity, low biodegradability, toxic and carcinogenic properties, which has resulted in serious environmental pollution. Based on the improvement of the photochemical oxidation technology, photochemical catalytic oxidation technology, a kind of deep oxidation technology, has been developed. photochemical catalytic oxidation technology can degrade the most difficultyly degradable organic pollutants existed in the dye wastewater to nontoxic or low toxic small molecules, showing great potential application in organic dyes wastewater treatment.
     Based on the microemulsion system, the mesoporous ZnO material has been prepared by using homemade polystyrene microemulsion as templates in this paper. At the same time, the hexagonal cylinder-like ZnO with a regular twinning microstructure were successfully synthesized via a cationic surfactant-assisted hydrothermal microemulsion route. The effects of preparation conditions on the structure, morphology and properties of ZnO were investigated and the suitable preparation conditions were obtained. Moreover, the possible formation mechanism was also proposed.
     The photocatalytic performance of ZnO/UV system was investigated by using the mesoporous ZnO and hexagonal cylinder-like ZnO with a regular twinning microstructure as photocatalyst and the Reactive Brilliant Red KE-3B and Reactive Brilliant Red K-2BP as simulated dye wastewater, respectively. The effects of operating parameters on the decolorization ratio were studied and the the suitable operating conditions were obtained. Based on the experimental results, the probable pathways for the formation of intermediates were also proposed.
     Experimental results showed that the polystyrene microemulsion was a good pore forming intermediary. The specific surface area, pore volume and pore size distribution of the synthesized mesoporous ZnO calcined at 500 oC for 6 h were 11.013 m~2·g~(-1), 0.135 cm~3·g~(-1) and 40.2 nm, respectively. The porous ZnO exhibited higher photocatalytic activity than that of nonporous ZnO when the two samples are calcined at the same temperature. In this study, a cationic surfactant-assisted microemulsion process combined with hydrothermal techniques had been developed for synthesizing hexagonal cylinder-like ZnO with a regular twinning microstructure. The results showed that the reaction temperature, the reaction time, the molar ratio (w) between water and CTAB, cosurfactant, the concentration of surfactant, the concentration of reactant exhibited obvious influence on the morphologies and structures of the products. The absorbance of products, which prepared at 140 oC for 14 h when w = 10, [CTAB] = 0.21 mol/L, with 1μm in diameter and 3μm in length, exhibited the strongest absorbance peak in UV-vis absorption spectra.
     The photocatalytic degradation rate of Reactive Brilliant Red KE-3B and Reactive Brilliant Red K-2BP were both followed the pseudo-first-order kinetic when ZnO/UV system was used. Moreover, the key operation parameters such as catalyst loading, initial dye concentration, solution pH, hydrogen peroxide dosage and anions (SO42?, NO3?, Cl? and CO32?) can affect the decolorization.
引文
[1] Gupta V. K., Ali I., Saini V. K.. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material[J]. J. Colloid Interface Sci. 2007, 315(1): 87-93.
    [2] Meshko V., Markovska L., Mincheva M., et al.. Adsorption of basic dyes on granular activated carbon and natural zeolite[J]. Water Res. 2001, 35: 3357-3366.
    [3] Neppolian B., Choi H. C., Sakthivel S., et al.. Murugesan, Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4[J]. Chemosphere, 2002, 46: 1173-1181.
    [4] Rafii F., Hall J. D., Cerniglia C. E.. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by clostridium species from the human intestinal tract[J]. Food Chem. Toxicol., 1997, 35: 897-901.
    [5] Aksu Z., Karabay?r G.. Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye[J]. Bioresour. Technol., 2008, 99: 7730-7741.
    [6] Demirbas E., Kobya M., Sulak M. T.. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon[J]. Bioresour. Technol. 2008, 99: 5368-5373.
    [7] Saien J., Soleymani A. R.. Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study[J]. J. Hazard. Mater., 2007, 144: 506-512.
    [8] Garcia J. C., Oliveira J. L., Silva A. E. C., et al.. Nozaki, N.E. de Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems[J]. J. Hazard. Mater., 2007, 147: 105-110.
    [9] Pirkanniemi K, Sillanpaa M.. Heterogeneous water phase catalysis as an environmental application: a review[J]. Chemosphere, 2002, 48: 1047-1060.
    [10] Chen C. C., Fan H. J., Jan J. L.. Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder[J]. Phys. Chem. C., 2008, 112: 11962-11972.
    [11] Curri M. L., Comparelli R., Cozzoli P. D., et al.. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye[J]. Mater. Sci. Eng. C, 2003, 23: 285-289.
    [12] Sakthivel S., Neppolian B., Shankar M. V., et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2[J]. Sol. Energy Mater. Sol. Cells, 2003, 77: 65-82.
    [13] Yu J. G., Yu X. X.. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ. Sci. Technol., 2008, 42: 4902-4907.
    [14] Khodja A. A., Sehili T., Pitichowshi J. F., et al. Photochem. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions[J]. J. Photochem. Photobiol. A, 2001141:231-239.
    [15] Lee J. C., Park S., Park H. J., et al.. Photocatalytic degradation of TOC from aqueous phenol solution using solution combusted ZnO nanopowders[J]. J. Electroceram., 2009, 22: 110-113.
    [16] Marci G., Augugliaro V., Munoz M. J. L., et al.. Dipole-Bound Anions of Adenine-Water Clusters. Ab Initio Study[J]. J. Phys. Chem. A, 2001, 105: 1033-1038.
    [17] Yeber M. C., Rodriguez J., Freer J. et al.. Advanced oxidation of a pulp mill bleaching wastewater[J]. Chemosphere, 1999, 39: 1679-1688.
    [18] Hagfeldt A, Gratzel M. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(1): 49-52.
    [19] Ellmolla E. S., Chaudhuri M.. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process[J]. J. Hazard. Mater, 2010, 173: 445-449.
    [20]杨彧,贾殿赠,葛炜炜等.低热固相反应制备无机纳米材料的方法[J].无机化学学报, 2004, 20(8): 881-888.
    [21]钟胜,戴永年.真空蒸发冷凝制备超细锌粉的研究[J].昆明理工大学学报, 1998, 23(3): 76-79.
    [22] Meulenkamp E. A.. Synthesis and growth of ZnO nanoparticles[J]. J. Phys. Chem. B, 1998, 102(29): 5566-5572.
    [23]喻德忠,艾军,邹菁.纳米级金属氧化物的合成及其性质比较[J].武汉工程大学学报, 2007, 29(3): 1-3.
    [24]高铬,杨丽丽,刘晓艳等.退火温度对ZnO纳米棒结构和光学性能的影响[J].吉林师范大学学报, 2009, 2: 26-28.
    [25]王赛,周莹,汤林等.均匀沉淀法制备纳米ZnO[J].贵州化工, 2006, 31(5): 37-39.
    [26]王艳香,孙健,范学运等.直接沉淀法制备纳米ZnO粉体[J].中国陶瓷, 2007, 43(11): 31-33.
    [27] Sun J. H., Dong S. Y., Wang Y. K., et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. J. Hazard. Mater, 2009, 172: 1520-1526.
    [28]袁爱华,包小波,唐丽等.水热法制备ZnO纳米棒及其光催化性能研究[J].化学研究与应用, 2008, 20(2): 9-12.
    [29]江锦春,程文娟,张阳.微波水热条件对氧化锌晶体的形态和粒度的影响[J].人工晶体学报, 2005, 34(2): 255-258.
    [30]席国喜,姚路,路迈西.水热法在无机粉体材料制备中的研究进展[J]. 2007, 21: 134-136.
    [31]陈艺锋,唐谟堂,张保平等.气相氧化法制备氧化锌的结晶形貌[J].中国有色金属学报, 2004, 14(3): 504-508.
    [32]徐甲强,王焕新,张建荣等.微波水解法制备纳米及其气敏特性研究[J].无机材料学报, 2004, 19(6): 48-51.
    [33] Li X. C, He G. H, Xiao G. K, et al. Synthesis and morphology control of ZnO nanostructures in microemulsions[J]. J. Colloid Interface Sci., 2009, 333(2): 465-473.
    [34]周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO[J].应用化工, 2005, 34(11): 690-694.
    [35]张万忠,乔学亮,陈建国。微乳液法合成纳米材料的进展[J]。石油化工, 2005, 34(1): 84-88.
    [36] Y?ld?r?m ?. A., Caner D.. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method[J]. J. Alloys Compd., 2010, 506: 944-949.
    [37]信文瑜,姚敬华,杨中民. ZnO及其掺杂纳米粒子的反相微乳液法合成及表征.云南大学学报(自然科学版), 2003, 25 (1): 57-60.
    [38] Di L., Hajime Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis[J]. Chemosphere, 2003, 51:129-137.
    [39] Hakrabarti S. C., Dutta B. K.. Photocatalytic degradation of modeltextile dyes in wastewater using ZnO as semiconductor catalyst[J]. J. Hazard. Mater., 2004, 112: 269-278.
    [40] Wang J., Jiang Z., Zhang Z. H, et al. Study on inorganic oxidants assisted sonocatalytic degradation of Acid Red B in presence of nano-sized ZnO powder[J]. Sep. Purif. Technol., 2009, 67: 38-43.
    [41] Dhanalakshmi K. B., Latha S., Nandan S. A, et al. Dye sensitized hydrogene volution from water [J]. Int. J. Hydrogen Energy, 2001, 26: 669-674.
    [42] Vijayabalan A., Selvam K., Velmurugan R.,et al. Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4[J]. J. Hazard. Mater., 2009, 172: 914-921.
    [43] Yang L. Y, Dong S.Y., Sun J. H, et al. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst[J]. J. Hazard. Mater., 2010, 179: 438-443.
    [44] Poulios I., Kositzi M., Koursa A.. Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions [J]. J. Photochem. Photobiol. A, 1998, 115: 175-183.
    [45] Sobana N., Swaminathan M.. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO[J]. Sep. Purif. Technol., 2007, 56: 101-107.
    [46] Ravichandran L., Selvam K., Swaminathan M.. Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO[J]. Sep. Purif. Technol., 2007, 56: 192-198.
    [47] Liang H. C, Li X. Z., Yang Y.. H., et al. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films[J]. Chemosphere, 2008, 73: 805-812.
    [48] Gaya U. I., Abdullah A. H., Zainal Z., et al. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions[J]. J. Hazard. Mater., 2009(1), 168: 57-63.
    [49] Akyol A., Bayramoglu M.. Photocatalytic performance of ZnO coated tubular reactor[J]. J. Hazard. Mater., 2010, 180: 466-473.
    [50]万益群,钟己未,郭岚等.网络状纳米氧化锌光催化降解水中有机染料的研究[J].分析科学报, 2007, 23(1): 48-50.
    [51] Wu C. H., Guo P., Chang C. E, et al. Photodegradation of polychlorinated dibenzo-p-dioxins: comparison of photocatalysts[J]. J. Hazard. Mater., 2004, 114: 191-197.
    [52]王铮,李风亭.纳米氧化锆/氧化锌光催化降解酸性红B的研究[J].无机盐工业,2007,39(6):47-50.
    [53] Akyol A., Bayramo?lu M.. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst[J]. J. Hazard. Mater., 2005, 124: 241-246.
    [54] Daneshvar N., Salari D., Khataee A. R.. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters [J]. J. Photochem. Photobiol. A, 2003, 157(1): 111-116.
    [55] Wu C. H.. Effects of sonication on decolorization of C.I. Reactive Red 198 in UV/ZnO system[J]. J. Hazard. Mater., 2008, 153(3): 1254-1261.
    [56]朱亦仁,解恒参,姚坚等. ZnO粉体的制备及在光催化法处理造纸废水的应用[J].南京工业大学学报, 2005, 27(3): 21-24.
    [57] Balcioglu I. A., Arslan I.. Application of photocatalytic oxidation treatment to pretreated and raw effuents from the Kraft bleaching process and textile industry [J]. Environ. Pollut., 1998, 103: 261-268.
    [58] Sandhya R., Devipriya S., Yesodharan S.. Photocatalytic degradation of phosphamidon on semiconductor oxides [J]. J. Hazard. Mater., 2003, 102: 217-229.
    [59]张靖峰,杜志平,赵永红等.纳米氧化锌光催化降解壬基酚聚氧乙烯醚[J].日用化学工业, 2007, 37(1): 16-19.
    [60] Chittofrati A, Atijevic M. E.. Uniform particles of Zinc oxide of different morphologies [J]. Colloids Surf., 1990, 48(1): 65-67.
    [61] Koudelka L, Horak J.. Morphology of polyerystalline ZnO and its physical properties [J]. J. Mater. Sci., 1994, 29(6): 1497-1499.
    [62] Taguchi A, Schüth F.. Ordered Mesoporous Materials in Catalysis[J]. Microporous Mesoporous Mater., 2005, 77: 1-45.
    [63] Non-siliceous S. F.. Mesostructured and Mesoporous Materials[J]. Chem. Mater., 2001, 13(10): 3184-3195.
    [64] Stein A.. Advances in Microporous and Mesoporous Solids-highlights of Recent Progress[J]. Adv. Mater., 2003, 15(10): 763-775.
    [65] Sanchez C., Lebeau B., Boilot J. P.. Optical Properties of Functional Hybrid Organic-inorganic Nanocomposites[J]. Adv. Mater., 2003, 15(23): 1969-1994.
    [66] Xiao Y. H., Li K. Y., Li Y, et al. Synthesis of Mesoporous ZnO Nanowires Through a Simple in Situ Precipitation Method[J]. Nanotechnol., 2005, 16(6): 671-674.
    [67] Lakshmi B. B., Patrissi C. J., Martin C. R.. Sol-gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures[J]. Chem. Mater., 1997, 9(11): 2544-2550.
    [68] Cambelli P., Gorbo P., Migliardini F.. Potentialities and Limitations of Lean de-NOx Catalysts in Reducing Automotive Exhaust Emissions[J]. Catal. Today, 2000, 59(3): 279-286.
    [69] Liu Z. F., Jin Z. G., Li W.. Assembly of Ordered ZnO Porous Thin Films by Cooperative Assembly Method Using Polystyrene Spheres and Ultrafine ZnO Particles[J]. Mater. Res. Bull., 2006, 41(1):119-127.
    [70] Daniel M. L., Kevin M. R., Michael A. M.. Preparation of Ordered Mesoporous Ceria with Enhanced Thermal Stability[J]. J. Mater. Chem., 2002, 12: 1207-1212.
    [71] Moon W. J., Yu J. H., Choi G. M.. The CO and H2 Gas Selectivity of CuO-doped SnO2-ZnO Composite Gas Sensor[J]. Sens. Actuators. B, 2002, 87: 464-470.
    [72] Bao J., Liu Z. L., Zhang Y., et al. Preparation of Mesoporous Cu/ZnO Catalyst and Its Application in Low-temperature Methanol Synthesis[J]. Catal. Commun., 2008, 9: 913-918.
    [73]耿旺昌,赖小勇,李晓天.具有结晶孔壁介孔镁锌氧复合物[J].物理化学学报, 2010, 26(2): 527-530.
    [74] Wang Z. J., Li Z. Y., Zhang H. N.. Improved Photocatalytic Activity of Mesoporous ZnO-SnO2 Coupled Nanofibers[J]. Catal. Commun., 2009, 11: 257-260
    [75] Naszályi L., Bosc F., Ayral A.. Sol-gel-derived Mesoporous SiO2/ZnO Active Coating and Development of Multifunctional Ceramic Membranes[J]. Sep. Purif. Technol., 2008, 59: 304-309.
    [76] Berg M. W. E., Polarz S., Tkachenko O. P.. Cu/ZnO Aggregates in Siliceous Mesoporous Matrices: Development of a New Model Methanol Synthesis Catalyst[J]. J. Catal., 2006, 241: 446-455.
    [77] Yoon D. H., Choi G. M.. Microstructure and CO Gas Sensing Properties of Porous ZnO Produced by Starch Addition[J]. Sens. Actuators. B, 1997, 45(3): 251-257.
    [78] Jiu J., Kurumada K., Tanigaki M.. Preparation of Nanoporous ZnO Using Copolymer Gel Template[J]. Mater. Chem. Phys., 2003, 81(1): 93-98.
    [79] Wagner T., Waitz T., Roggenbuck J., et al. Ordered Mesoporous ZnO for Gas Sensing[J]. Thin Solid Films, 2007, 515: 8360-8363.
    [80] Ugelstad J., Hansen F. K., Lange S.. Emulsion Polymerization of Styrene with Sodium Hexadecyl Sulphate/Hexadecanol Mixtures as Emulsifiers. Initiation in Monomer Droplets[J]. Die Makromol. Chem., 1974, 175: 507-521.
    [81] Tang P. L., Sudol E. D., Silebi C. A., et al. Miniemulsion Polymerization-A Comparative Study of Preparative Variables[J]. Appl. Polym. Sci., 1991, 43: 1059-1066.
    [82] Liu Y. M., Lv H., Li S. Q.. Photocatalytic Degradation of Reactive Brilliant Blue KN-R by TiO2/UV Process[J]. Desalination, 2010, 258: 48-53.
    [83] Hong R. Y., Li J. H., Chen L. L., et al. Synthesis, Surface Modification and Photocatalytic Property of ZnO Nanoparticles[J]. Powder Technol., 2009, 189: 426-432.
    [84]王红梅.压汞法测定多孔材料孔结构的误差[J].广州化工, 2009, 37(1): 109-111.
    [85] Sreethawong T., Chavadej S., Ngamsinlapasathian S., et al. Sol-gel Synthesis of Mesoporous Assembly of Nd2O3 Nanocrystals with the Aid of Structure-directing Surfactant[J]. Solid State Sci., 2008, 10: 20-25.
    [86] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Lett. Nat., 1992, 359: 710-712.
    [87] Sicard L., Lebeau B., Patarin J., et al. Study of the Mechanism of Formation of a MesostructuredHexagonal Alumina by Means of Fluorescence Probing Techniques[J]. Langmuir, 2002, 18: 74-82.
    [88] Ohtani B., Ogawa Y., Nishimoto S. I.. Photocatalytic Activity of Amorphous-anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions[J]. J. Phys. Chem. B, 1997, 101: 3746-3752.
    [89] Chen S. F., Zhao W., Zhang S. J., et al. Preparation, Characterization and Photocatalytic Activity of N-containing ZnO Powder[J]. Biochem. Eng. J., 2009, 148: 263-269.
    [90]石建稳,陈少华,王淑梅.多孔纳米氧化钛的制备及其光催化降解罗丹明B[J].人工晶体学报, 2010, 39(1): 158-162.
    [91] Daud N. K., Hameed B. H.. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst[J]. J. Hazard. Mater. 2010, 176: 938-944.
    [92] Zhang G. K., LüF., Li M., et al.. Huang, Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS[J]. J. Phys. Chem. Solids, 2010, 71: 579-582.
    [93] Ai Z., Yang P., Lu X.. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method[J]. J. Hazard. Mater. B, 2005, 124: 147-152.
    [94] Chen D., Ray A. K.. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension[J]. Water Res., 1998, 32: 3223-3234.
    [95] Neppolian B., Choi H.C., Sakthivel S., et al. Solar/UVinduced photocatalytic degradation of three commercial textile dyes[J]. J. Hazard. Mater. B, 2002, 89: 303-317.
    [96] Kansal S. K., Singh M., Sud D.. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J]. J. Hazard. Mater., 2007, 141: 581-590.
    [97] Al-Ekabi H., Serpone N.. Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix[J]. J. Phys. Chem. 1988, 92: 5726-5731.
    [98] Ou H. H., Lo S. L., Wu C. H.. Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol[J]. J. Hazard. Mater. B, 2006, 137: 1362-1370.
    [99] Wang J., Pan Z., Zhang Z., et al. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities[J]. Ultrason. Sonochem. 2006, 13: 493-500.
    [100] Daneshvar N., Salari D., Khataee A. R., et al. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters[J]. J. Photochem. Photobiol. A, 2003, 157: 111-116.
    [101] Chen Q. Q., Wu P. X., Li Y. Y., et al. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation[J]. J. Hazard. Mater. 2009, 168: 901-908.
    [102] Ravichandran L., Selvam K., Swaminathan M.. Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO[J]. Sep. Purif. Technol. 2007, 56: 192-198.
    [103] Zhu H. Y., Jiang R., Xiao L.,et al. Photocatalytic decolorization and degradation of Congo Red oninnovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation[J]. J. Hazard. Mater. 2009, 169: 933-940.
    [104] Lu C. S., Chen C. C., Mai F. D.,et al. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis[J]. J. Hazard. Mater. 2009, 165: 306-316.
    [105] Mijin D., Savi? M., Sne?ana P., et al. A study of the photocatalytic degradation of metamitron in ZnO water suspensions[J]. Desalination, 2009, 249: 286-292.
    [106] Anas S., Mangalaraja R.V., Ananthakumar S.. Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties[J]. J Hazard. Mater. 2010, 175: 889-895.
    [107] Huang M. H., Wu Y., Feik H., et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Adv. Mater. 2001, 13: 113-116.
    [108] Si P. C., Bian X. F., Li H., et al. Synthesis of ZnO nanowhiskers by a simple method[J]. Mater. Lett., 2003, 57(24): 4079-4082.
    [109] Peng Z. W., Dai G. Z., Chen P., et al. Synthesis, characterization and optical properties of star-like ZnO nanostructures[J]. Mater. Lett., 2010, 64(8): 898-900.
    [110] Zhao J. W., Qin L. R., Xiao Z. D., et al. Synthesis and characterization of novel flower-shaped ZnO nanostructures[J]. Mater. Chem. Phys., 2007, 105(): 194-198.
    [111] Wang F. Z., Ye Z. Z., Ma D. W., et al. Novel morphologies of ZnO nanotetrapods, Mater. Lett., 2005, 59(5): 560-563.
    [112] Lu C. H., Wu W. H., Rohidas B.. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders[J]. J. Hazard. Mater., 2008, 154(): 649-654.
    [113]苏良碧,官建国.微乳液及其制备纳米材料的研究[J].化工新型材料, 2002, 30(9): 17-19.
    [114]张万忠,乔学亮,陈建国.微乳液法合成纳米材料的进展[J].石油化工, 2005, 34(1): 84-88.
    [115] Lisiecki I., Pileni M. P.. Synthesis of copper metallic clusters using reverse micelles as microreactors[J]. J. Am. Chem. Soc. 1993, 115(10): 3887-3896.
    [116] Sun L. N.,Cao M. H.,Wang Y. H., et al. The synthesis and photoluminescent properties of calcium tungstate nanocrystals[J]. J. Cryst. Growth, 2006, 289(1): 231-235.
    [117] Cao M. H., Wang Y. H., Qi Y. J., et al. Synthesis and characterization of MgF2 and KMgF3 nanorods[J]. J. Solid State Chem. 2004, 177:(6) 2205-2209.
    [118] Yu J. G., Su Y. R., Cheng B., et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method[J]. J. Mol. Catal. A: Chem. 2006, 258(1-2): 104-112.
    [119]赵艳凝,李树国,滕洪辉等.微乳液法制备纳米材料的探究[J].吉林师范大学学报(自然科学版), 2006, 8(3): 35-37.
    [120] Liu Y., Chu Y.. Surfactant-assisted synthesis of single crystal BaWO4 octahedral microparticles[J]. Mater. Chem. Phys., 2005, 92, 59-63.
    [121] Gou L. F., Murphy C. J.. Solution-phase synthesis of Cu2O nanocubes [J]. Nano Letters, 2003, 3(2):231-234.
    [122] Fan W. L., Song X. Y, Sun S. X., et al. Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires[J]. J. Solid State Chem. 2007, 180(): 284-290.
    [123]张彩,张江娟,谢中运.微乳液特性及在纳米材料制备中的应用[J].江西化工, 2006, 3(1): 10-12.
    [124] Chen D. L., Gao L.. Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process[J]. J. Colloid Interface Sci., 2004, 279 137-142.
    [125] Yang J., Lin C., K., Wang Z., L., et al. In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal snthesis and luminescence properties[J]. Inorg. Chem., 2006, 45: 8973-8979.
    [126] Zhao Y., N., Cao M. S., Jin H. B., et al. Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs[J]. Scripta Materalia, 2006, 54: 2057-2061.
    [127] Chen L. Y., Liu Z. Y., Bai S. L., et al. Synthesis of 1-dimensional ZnO and its sensing property for CO[J]. Sens. Actuators B, 2010, 143: 620-628.
    [128] Wei X. Q., Li H. C., Yuan C. E., et al. Preparation of nano-ZnO supported on porous carbon and the growth mechanism[J]. Microporous Mesoporous Mater., 2009, 118: 307-313.
    [129] Gong Q., Li G., Qian X. F., et al. Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route[J]. J. Colloid Interface Sci., 2006, 304: 408-412.
    [130] Ahsanulhaq Q., Kim S. H., Kim J. H., et al. Structural properties and growth mechanism of flower-like ZnO structures obtained by simple solution method[J]. Mater. Res. Bull., 2008, 43(12): 3483-3489.
    [131] Yang J. H., Zheng J. H., Zhai H. J., et al. Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates[J]. J. Alloys Compd., 2009, 475: 741-744.
    [132] Sun G. B., Cao M. H., Wang Y. H., et al. Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property[J]. Mater. Lett., 2006, 60: 2777-2782.
    [133] Chen R., Cheng G., So M. H., et al. Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsionassisted hydrothermal process exhibit anti-Helicobacter pylori properties[J]. Mater. Res. Bull., 2010, 45(5): 654-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700