用户名: 密码: 验证码:
掺杂LiNbO_3薄膜制备及铁电铁磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的飞速发展,集铁电性与铁磁性于一体的单相多铁材料受到人们的广泛关注,其在多态存储元件、自旋电子器件、存储介质、换能器、传感器和多功能设备等方面有重要的潜在应用。本文利用射频磁控溅射的方法,在Si(111)和Si(100)基片上制备了不同浓度、不同退火气氛的Fe、Co、Mn掺杂LiNbO_3薄膜,研究了不同掺杂元素、掺杂浓度、溅射气氛的氧氩比和退火气氛对薄膜铁电性和铁磁性的影响。利用X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)和X射线吸收精细结构(XAFS)技术对薄膜的组分含量、晶体结构、物相、元素价态和吸收原子的局域结构进行了分析,利用振动样品磁强计(VSM)和多功能物理测试系统(PPMS)对薄膜进行铁磁性能测量,TF2000铁电分析仪和阻抗分析仪对薄膜进行铁电性测量,获得研究结果如下:
     1. Fe掺杂LiNbO_3薄膜为R3C空间结构,薄膜中存在氧空位。Fe在薄膜中主要以Fe_(2+)和Fe_(3+)形式共存,没有形成Fe金属和氧化物团簇。在Si(111)基片上,薄膜中Fe含量从3at%到7at%时,饱和磁矩随着Fe含量的增加而增大,在7at%时最大,为196emu/cm~3。Fe含量增加到8.5at%时,饱和磁矩降低,继续增加Fe含量到11.5at%时,饱和磁矩又有所增加。在Si(100)基片上,7at% Fe掺杂LiNbO_3薄膜分别经过氩气、空气和氧气退火后,在空气下退火得到的饱和磁化强度最大,约为31emu/cm~3。7at% Fe掺杂LiNbO_3薄膜的剩余极化强度为3.8×10-5μC/cm~2,矫顽电场为25Kv/cm,铁电居里温度为630K。薄膜的磁性来源于不同占位的Fe_(3+)之间的超交换作用以及Fe_(2+)-O~(2-)-Fe_(3+)的双交换作用。
     2. Mn掺杂LiNbO_3薄膜为R3C空间结构,薄膜中存在氧空位。Mn在薄膜中主要以Mn~(2+)和Mn~(3+)形式共存,并没有形成Mn金属或氧化物团簇。在Si(111)基片上沉积的Mn掺杂LiNbO_3薄膜,当Mn含量从1.5at%到2.5at%时,薄膜的饱和磁矩随Mn含量的增加而增大,在2.5at%时最大,为28emu/cm~3。3.5at% Mn掺杂LiNbO_3薄膜经过氩气、空气和氧气退火后,在空气下退火得到饱和磁矩最大,为24emu/cm~3。在Si(100)基片上,当Mn的掺杂浓度从1.5at%到3.5at%时,薄膜的饱和磁矩随Mn掺杂量的增加而增大,在3.5at%时最大,接近41emu/cm~3。3.5at% Mn掺杂的薄膜经过氩气、空气和氧气退火后,在空气下退火得到最大饱和磁矩。8at% Mn掺杂LiNbO_3薄膜的剩余极化强度(Pr)为0.002μC/cm~2,矫顽电场(Ec)为29Kv/cm,铁电居里温度为686K。薄膜的磁性来源于Mn的3d和邻近Nb的4d轨道间的耦合以及不同价态Mn间的双交换作用。
     3. Co掺杂LiNbO_3薄膜为R3C空间结构。薄膜中存在氧空位。Co在薄膜中主要是以Co2+和Co3+形式存在,并没有形成Co金属或氧化物团簇。在Si(111)基片上,当Co含量从5at%到7.5at%时,薄膜的饱和磁矩随Co含量的增加而增大,在7.5at%时最大,为51emu/cm~3,继续增加到14at%时,薄膜的饱和磁矩降低。5at% Co掺杂的薄膜经过氩气、空气和氧气下退火后,在空气下退火的饱和磁矩最大,为45emu/cm~3。7.5at% Co掺杂LiNbO_3薄膜的铁磁居里温度为630K。在Si(100)基片上,当Co含量从5at%增加到8.5at%时,薄膜的饱和磁矩随Co含量的增加而增大,在8.5at%时最大,为33emu/cm~3,继续增加Co含量,饱和磁矩降低。5at% Co掺杂的薄膜经过氩气、空气和氧气下退火后,在空气下退火的饱和磁矩最大,为30emu/cm~3。5at% Co掺杂LiNbO_3薄膜的剩余极化强度(Pr)为0.01μC/cm~2,矫顽电场(Ec)为20Kv/cm,铁电转变温度为675K。薄膜的磁性是由氧空位与Co离子间耦合产生磁极子而形成宏观磁性。
With the development of information technology, single-phase multiferroics exhibitingcoexistence of ferromagnetism and ferroelectricity become the subject of intensiveinvestigations due to their potential applications in data-storage media, spintronic devices,multiple-stage memories, sensors, etc. M(Fe, Co, Mn)-doped LiNbO_3thin films are depositedon Si(111) and Si(100) substrates by RF magnetron sputtering technique. The effects ofpreparation parameters, such as doping concentration and annealing atmosphere, on theferroelectric and ferromagnetic properties of samples have been studied. The composition ofM-doped LiNbO_3films is determined by the X-Ray energy dispersive spectroscopy (EDS).The structural, magnetic and ferroelectric properties are characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectra(XANES), Extended X-ray absorption fine structure (EXAFS), vibrating samplemagnetometer (VSM), physics property measurement system (PPMS), TF Analyner 2000and impedance analyzer. In this paper, the results show that:
     1. Space structure of Fe-doped LiNbO_3films is R3C. There does not exist metallic Feclusters or Fe oxide secondary phases and the Fe ions exhibit +3 and +2 valence states insamples. There existed oxygen vacancies in samples. For Fe-doped LiNbO_3films depositedon Si(111) substrates, the saturation magnetization (Ms) increases with the addition of Fecontent to reach a maximum value which is 196emu/cm~3at 7at% Fe-doped, then followed bya decrease. For the sample deposited on Si(100) substrates, 7at% Fe-doped LiNbO_3films areannealed in Ar, Air and O2atmosphere. The maximum magnetic moment is about 31emu/cm~3in Air annealing atmosphere. The ferroelectric Curie temperature of Fe-doped LiNbO_3film is630K. The remnant polarization and the coercive field of Fe-doped LiNbO_3film are3.8×10-5μC/cm~2and 25Kv/cm, respectively. The origin of room ferromagnetism is ascribed tothe super-exchange interactions of Fe~(3+)in different occupational sites, mediated by theoxygen ions and the double-exchange interactions based on the Fe~(2+)-O~(2-)-Fe~(3+)pairs.
     2. Space structure of Mn-doped LiNbO_3films is R3C. There no exist metallic Mnclusters or Mn oxide secondary phases and the Mn ions exhibit +3 and +2 valence states insamples. There existed oxygen vacancies in samples. For Mn-doped LiNbO_3films depositedon Si(111) substrates, the Ms increases with the addition of Mn content to reach a maximumvalue at 2.5at% Mn doped, then followed by a decrease. The maximum magnetic moment is28emu/cm~3. 3.5at% Mn-doped LiNbO_3films are annealed in Ar, Air and O2atmosphere andthe maximum magnetic moment is about 24emu/cm~3in Air annealing atmosphere. For the sample deposited on Si(100) substrates, the Ms increases with the addition of Mn content toreach a maximum value at 3.5at% Mn doped, then followed by a decrease. The maximummagnetic moment is 41emu/cm~3in Air annealing atmosphere. The ferroelectric Curietemperature of Mn-doped LiNbO_3film is 686K. The remnant polarization and the coercivefield of Mn-doped LiNbO_3film are 0.002μC/cm~2and 29Kv/cm, respectively. The observedroom temperature ferromagnetism of Mn-doped LiNbO_3films could be ascribed to the d–delectron interaction between the Mn dopant and its neighboring Nb atoms and thedouble-exchange mechanism of Mn with mixed valences.
     3. Space structure of Co-doped LiNbO_3films is R3C. There no exist metallic Co clustersand Co oxide secondary phases and the Co ions mainly exhibit +2 and +3 valence states insamples. There existed oxygen vacancies in samples. For Co-doped LiNbO_3films depositedon Si(111) substrates, the Ms increases with the addition of Co content to reach a maximumvalue at 7.5at% Mn doped, then followed by a decrease. The maximum magnetic moment is51emu/cm~3. The ferromagnetic Curie temperature of 7.5at% Co-doped LiNbO_3film is 630K.5at% Co doped LiNbO_3films are annealed in Ar, Air and O2atmosphere and the maximummagnetic moment is about 45emu/cm~3in Air annealing atmosphere. For the sample depositedon Si(100) substrates, the Ms increases with the addition of Co content to reach a maximumvalue at 8.5at% Mn doped, then followed by a decrease. The maximum magnetic moment is33emu/cm~3. 5at% Co-doped LiNbO_3films are annealed in Ar, Air and O2atmosphere and themaximum magnetic moment is about 30emu/cm~3in Air annealing atmosphere. Theferroelectric Curie temperature of Co-doped LiNbO_3film is 675K. The remnant polarizationand the coercive field of Co-doped LiNbO_3film are 0.01μC/cm~2and 20Kv/cm, respectively.The observed room temperature ferromagnetism of Co-doped LiNbO_3films could beascribed to the bound magnetic polarons (BMP)mechanism based on defects.
引文
[1] Anon. BREAKTHROUGH OF THE YEAR: Areas to Watch [J]. Science, 2007, 318(5858):1848-1849.
    [2]于明泽.磁控溅射法制备BiFeO3/CoFe2O4多铁性复合薄膜及性能研究[D].暨南大学凝聚态物理专业, 2010.
    [3] Min Wang, Guolong Tan. Multiferroic properties of Pb2Fe2O5ceramics[J]. Mater. Res. Bull.,2011(46):438-441.
    [4] Amit Kumar, K.L. Yadav. Magnetic, magnetocapacitance and dielectric properties of Cr doped bismuthferrite nanoceramics[J]. Mater. Sci. Eng. B, 2011(176):227-230.
    [5]卢德新,李佐宜,黄龙波等.射频磁控溅射制备铁电PLZT薄膜的研究[J].科学通报,1994(39):1177-1179.
    [6]王大伟.铁电薄膜性质的理论研究[D].吉林大学凝聚态物理专业, 2005.
    [7]饶伟.多铁BiFeO3薄膜的制备及性能研究[D].华中科技大学微电子学与固体电子学, 2007.
    [8]钟维烈.凝聚态物理学丛书—铁电体物理学[M].北京:科学出版社, 1996:1-10.
    [9] S.K. Pradhan, B.K. Roul. Effect of Gd doping on structural, electrical and magnetic properties ofBiFeO3electroceramic[J]. J. Phys. Chem. Solids, 2011(10):1180-1187.
    [10]舒铭航.磁记忆检测力-磁效应的数值模拟及试验研究[D].南昌航空大学测试计量技术及仪器专业, 2008.
    [11]王蕴杰.铁磁材料居里温度测量的matlab分析[J].青海师范大学学报(自然科学版, 2009(1):21-24.
    [12]钟文定.凝聚态物理学丛书—铁磁学(中册)[M].北京:科学出版社, 1998:1-15.
    [13] Schmid H. Multi-ferroic magnetoelectrics [J]. Ferroelectrics, 1994(162):317-338.
    [14] Guest Editors, Alois Loidl, Hilbert von Loehneysen, et al. Multiferroics[J]. J. Phys.: Condens. Matter.,2008(20):430301-430302.
    [15] Nicola A Hill. Why are there any magnetic ferroelectrics?[J]. J. Magn. Magn. Mater,2002(242-245):976-979.
    [16]南策文.专题:多铁性材料[J].科学通报, 2008, 53(10):1097.
    [17] Reji Thomas, JFScott, Dwarka N Bose, et al. Multiferroic thin-film integration onto semiconductordevices[J]. J. Phys.: Condens. Matter, 2010(22):423201-423217.
    [18]段星.多铁性材料的研究进展[J].中国陶瓷, 2009, 45(3):7-9.
    [19] Nicola A Hill. Why Are There so Few Magnetic Ferroelectrics?[J]. J. Phys. Chem. B,2000(104):6694-6709.
    [20]肖庆.掺杂LiNbO3薄膜的制备与磁性研究[D].天津理工大学材料学, 2011.
    [21] Ascher. E, Rieder. H, Schmid. H, et al. Some Properties of Ferromagnetoelectric Nickel-IodineBoracite, Ni3B7O13I[J]. J. Appl. Phys., 1966(37):1404-1405.
    [22] Freeman.A.J, Schmid.H. Magnetoelectric interaction phenomena in crystals[J]. London: Gordon &Breach Science Publishers, 1975:181-194.
    [23] T. Katsufuji, S. Mori, M. Masaki, et al. Dielectric and magnetic anomalies and spin frustration inhexagonal RMnO3(R=Y, Yb, and Lu)[J]. Phys. Rev. B, 2001(64):104419-104424.
    [24] R. Maier, J. L. Cohn, J. J. Neumeier, et al. Ferroelectricity and ferrimagnetism in iron-dopedBaTiO3[J]. Appl. Phys. Lett, 2001,78(17):2536-2538.
    [25] R. Maier, J. L. Cohn. Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3: Influence of ironon physical properties[J]. J. Appl. Phys, 2002,92(9):5429-5436.
    [26] A. Rajamani, G. F. Dionne, D. Bono, et al. Faraday rotation, ferromagnetism, and optical properties inFe-doped BaTiO3[J]. J. Appl. Phys, 2005,98(6):063907.
    [27] C. Song, F. Zeng,Y. X. Shen, et al. Local Co structure and ferromagnetism in ion-implanted Co-dopedLiNbO3[J]. Phys. Rev. B, 2006(73):172412-172415.
    [28] Meiya Li, Min Ning, Yungui Ma, et al. Room temperature ferroelectric, ferromagnetic andmagnetoelectric properties of Ba-doped BiFeO3thin films[J]. J. Phys.2007(40):1603-1607.
    [29] C. Song, Z. Wang,Y. C. Yang, et al. Room temperature ferromagnetism and ferroelectricity incobalt-doped LiNbO3film[J]. Appl. Phys. Lett., 2008(92):262901-262903.
    [30] Cheng Song, Changzheng Wang, Xuejing Liu, et al. Room Temperature Ferromagnetism inCobalt-Doped LiNbO3Single Crystalline Films[J]. Cryst. Growth Des., 2009, 2(9):1235-1239.
    [31] Y. H. Lin, J.C. Yuan, S.Y. zhang, et al. Multiferroic behavior observed in highly orientated Mn-dopedBaTiO3thin films[J]. Appl. Phys. Lett., 2009(95):033105-033107.
    [32] Fengzhen Huang, Xiaomei Lu, Weiwei Lin, et al. Thickness-dependent structural and magneticproperties of BiFeO3films prepared by metal organic decomposition method[J]. Appl. Phys. Lett.,2010(97):222901-222903.
    [33] C. Chen, F. Zeng , J.H. Li, et al. Strong d–d electron interaction inducing ferromagnetism in Mn-dopedLiNbO3[J]. Thin Solid Films, 2011(1016):28760-28764.
    [34] L.Y. Ding, F.X. Wu, Y.B. Chen, et al. Controllable microstructures and multiferroic properties ofPb(Zr0.53Ti0.47)O3-CoFe2O4composite films[J]. Appl. Surf. Sci., 2011(257):3840-3842.
    [35]宋成.钴掺杂稀磁氧化物的局域结构与磁学性能[D].北京:清华大学材料科学与工程系, 2008.
    [36]刘学超,陈之战,施尔畏等. ZnO基稀磁半导体磁性机理研究进展[J].无机材料学报, 2009,24(1):1-7.
    [37]谈绍峰,李剑韬,张玲等.近化学计量比铌酸锂晶体制备方法的研究进展[J].科技信息,2009(11):1-8.
    [38] Vera Cuartero, Javier Blasco, Joaquín García, et al. Structural effects of Sc doping on the multiferroicTbMnO3[J]. Phys. Rev. B, 2010(81): 224117-224125.
    [39]聂义然.铟掺杂铌酸锂晶体生长及光学性能优化的研究[D].哈尔滨工业大学航天学院航天工程与力学系, 2007.
    [40] Y. Yamamoto, T. Sekino. Synthesis and structure of preferred-oriented Li2O-Nb2O5-TiO2thin filmwith superstructure[J].Mater. Lett., 2003(57):2702-2706.
    [41] Alexei A. Belik, Takao Furubayashi, Yoshitaka Matsushita, et al. Indium-Based Perovskites:A NewClass of Near-Room-Temperature Multiferroics[J]. Angew. Chem. Int. Ed., 2009(48):6117-6120.
    [42] He Junhui, Ye Zhizhen. Highly C-axis oriented LiNbO3thin film on amorphous SiO2buffer layerand its growth mechanism[J]. Chin. Sci. Bull., 2003, 48(21):2290-2294.
    [43]张澎丽,刘技文,赵捷等.铌酸锂薄膜制备的研究现状及进展[J].天津理工大学学报, 2006,22(4):43-47.
    [44]张旭,薛冬峰.铌酸锂晶体的结构及性能关系研究[J].功能材料学术文集, 2005(4):51-54.
    [45]张彭丽.近化学计量比铌酸锂薄膜的制备[D].天津理工大学材料科学与工程学院, 2006.
    [46]高磊.近化学计量比铌酸锂晶体生长与性质研究[D].山东大学凝聚态物理专业, 2006.
    [47]李青坤. LiNbO3与掺杂TiO2体系缺陷结构与性能的第一性原理方法研究[D].哈尔滨工业大学航天学院航天工程与力学系, 2007.
    [48] H. Fay, W. J. Alford. H. M. Dess. Dependence of Second Harmonic Phase- Matching Temperature inLiNbO3Crystals on Melt-compostion[J]. Appl. Phys. Lett., 1968(12):69-71.
    [49] P. Lerner, C. Legras, J. P. Duman. Stoechiometrie Des Monocristaux De Metaniobate De Lithium[J]. J.Cryst. Growth, 1968, 3(4):231-235.
    [50] N. Iyi, K. Kitamura, F. Izumi, et al. Comparitive Study of Defects Structures in Lithium Niobate withDifferent Compositions[J]. J. Solid State Chem., 1992(101):340-352.
    [51] G. E. Peterson, A. Carnevale. 93Nb NMR Line widths in Nonstoichiometric Lithium Niobate[J]. J.Chem. Phys., 1972(56):4848-4852.
    [52] S. C. Abrahams, P. Marsh. Defect Structure Dependence on Composition in Lithium Niobate[J]. ActaCrystallogr. Sect. B: Struct. Sci., 1986(42):61-64.
    [53]张一兵.铌酸锂的晶体结构[J].上饶师范学院学报, 2001, 21(6):52-56.
    [54]孙大智,熊瑛,杨晓萍.射频磁控溅射法LiNbO3薄膜的制备及其影响因素研究[J].天津理工大学学报, 2008, 24(4):39-42.
    [55]金桂,周继承.射频磁控溅射SiO2薄膜的制备与性能研究[J].武汉理工大学学报, 2006,28(8):12-15.
    [56] J.Lu, A.G¨unther, F.Schrettle, et al. On the room temperature multiferroic BiFeO3: magnetic, dielectricand thermal properties[J]. Eur. Phys. J. B, 2010:451-460.
    [57]周元俊,谢自力,张荣等.薄膜材料研究中的XRD技术[J].显微、测量、微细加工技术与设备, 2009, 46(2):108-114.
    [58]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社, 2007(8):206-212.
    [59] Elke Beyreuther, Stefan Grafstr m, Lukas M. Eng. XPS investigation of Mn valence in lanthanummanganite thin films under variation of oxygen content[J]. Phys. Rev. B, 2006(73):155425-155433.
    [60] David Ehre, Hagai Cohen, Vera Lyahovitskaya, et al. X-ray photoelectron spectroscopy of amorphousand quasiamorphous phases of BaTiO3and SrTiO3[J]. Phys. Rev. B, 2008(77): 184106-184111.
    [61] R. C. Martins, M. G. A. Bahia, V. T. L. Buono. Surface analysis of ProFile instruments by scanningelectron microscopy and X-ray energy-dispersive spectroscopy: a preliminary study[J]. Int. Endod. J.,2002, 35(10):848-853.
    [62]马礼敦. X射线吸收光谱及发展[J].上海计量测试, 2007, 6(202):1-10.
    [63]石瑶,邹雁,陈晓枫等.纳米α- Fe2O3的XANES研究[J].化学学报, 2001(59):103-108.
    [64]寇元,殷元骥.近边X光吸收谱(XANES)的发展[J].化学通报, 1989(6):23-28.
    [65]顾本源,陆坤权. X射线吸收近边结构理论[J].物理学进展, 1999(11):106-125.
    [66] Fangting Lin, Wangzhou Shi. Influence of vacuum annealing on microstructure and magneticproperties of (Ba0.8Sr0.2)(Ti0.3Fe0.7)O3ceramic[J]. Phys. B, 2010(405):1750-1753.
    [67] K. R. S. Preethi Meher, M. Savinov, S. Kamba, et al. Structure, dielectric, and magnetic properties ofSr2TiMnO6 ceramics[J]. J. Appl. Phys., 2010(108):094108-094116.
    [68] Radheshyam Rai, Sunil Kumar Mishra, N.K. Singh, et al. Preparation, structures, and multiferroicproperties of single-phase BiRFeO3, R=La and Er ceramics[J]. Curr. Appl. Phys., 2011(11):508-512.
    [69]徐养毅.化学计量比Fe:LNIbO3结构与光折变性能[D].哈尔滨工业大学材料科学与工程学院,2006.
    [70] Sangita Pandey, Ram Kripal. EPR, optical absorption and superposition model study of Fe3+dopedstrontium nitrate single crystals[J]. J. Magn. Reson., 2011:1-6.
    [71] K. Balamurugana, N. Harish Kumara, J. Arout Chelvaneb, et al. Room temperature ferromagnetism inFe-doped BaSnO3[J]. J. Alloys Compd., 2009(472):9-12.
    [72] M.G.. Zhao, M. Chiu. Substitution site of the Fe3+impurity in crystalline LiNbO3[J]. Phys. Rev. B,1994(18):12556-12558.
    [73] V. P. Zakaznova-Herzog, H. W. Nesbitt, G. M. Bancroft, et al. High-resolution valence-band XPSspectra of the nonconductors quartz and olivine[J]. Phys. Rev. B, 2005(72): 205113.
    [74] Masaoki Oku, Shigeru Suzuki, Naofumi Ohtsu et al. Comparison of intrinsic zero-energy loss andShirley-type background corrected profiles of XPS spectra for quantitative surface analysis: Study ofCr, Mn and Fe oxides[J]. Appl. Surf. Sci., 2008(254):5141–5148.
    [75] Shiming Yan, Shihui Ge, Yalu Zuo, et al. Effects of carbothermal annealing on structure defects andelectrical and magnetic properties in Fe-doped In2O3[J]. Scripta Mater., 2009(61):387-390.
    [76] Shiming Yan, Shi huiGe, Wen Qiao, et al. Control of ferromagnetismin Fe-doped In2O3by carbothermal annealing[J]. J. Magn. Magn. Mater., 2011(323):264-267.
    [77]刘学超,陈之战,施尔畏等. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究[J].物理学报,2009, 58(1):498-504.
    [78] S. S. Lee, J. H. Kim, S. C. Wi, et al. Photoemission spectroscopy and x-ray absorption spectroscopystudy of delafossite AgTO2(T=Fe,Co,Ni)[J]. J. Appl. Phys., 2005(97):10A309.
    [79] Fangting Lin, Dongmei Jiang, Xueming Ma, et al. Effect of annealing atmosphere on magnetism forFe-doped BaTiO3ceramic[J]. Phys. B, 2008(403):2525-2529.
    [80] Qingyu Xua, Xiaohong Zheng, ZhengWen, et al. Enhanced room temperature ferromagnetism in porousBiFeO3prepared using cotton templates[J]. Solid State Commun., 2011(151):624-627.
    [81] Y. Chen, X.L. Xu, G.H. Zhang et al. Blue shift of optical band gap in Er-doped ZnO thin films depositedby direct current reactive magnetron sputtering technique[J]. Physica E, 2010(42):1713-1716.
    [82] B. Xu, K. B. Yin, J. Lin, et al. Room-temperature ferromagnetism and ferroelectricity in Fe-dopedBaTiO3[J]. Phys. Rev. B, 2009(79):134109-134113.
    [83] C. C. Wang, L. W. Zhang. Anomalous thermal hysteresis in dielectric permittivity of CaCu3Ti4O12[J]. Appl.Phys. Lett., 2008(92):132903-132905.
    [84] Amit Kumar, K.L. Yadav. Synthesis and characterization of MnFe2O4-BiFeO3multiferroic composites[J].Phys. B, 2011(406):1763-1766.
    [85] Chen-Yang Shi, Xin-Zhi Liu, Yong-Mei Hao, et al. Structural, magnetic and dielectric properties ofBi1-ySryFe(1-y)(1-x)Sc(1-y)xTiyO3(x = 0-0.2, y = 0.1-0.3) ceramics[J]. Mater. Res. Bull., 2011(46):378-383.
    [86]M. Zaghrioui, J.M. Greneche, C. Autret-Lambert, et al. Effect of Fe substitution on multiferroichexagonal YMnO3[J]. J. Magn. Magn. Mater., 2011(323):509-514.
    [87] F. Yan, T.J. Zhu, M.O. Lai, et al. Enhanced multiferroic properties and domain structure of La-dopedBiFeO3thin films[J]. Scripta Mater., 2010(63):780-783.
    [88]何娅丽.掺杂铌酸锂晶体的缺陷和性质研究[D].大连理工大学, 2007.
    [89] Kling A,Valdrez C,Marques J. G et.al. Incorporation of tungsten in lithium niobate by diffusion[J].Nucl. Instrum. Methods Phys. Res. Sect. B, 2002(190):524-527.
    [90] G. Q. Zhang, S. J. Luo, S. Dong, et al. Enhanced ferroelectricity in orthorhombic manganitesGd1-xHoxMnO3[J]. J. Appl. Phys., 2011(109):07D901-07D903.
    [91] Sanjeev Gautam1, Shalendra Kumar, P. Thakur, et al. Electronic structure studies of Fe-doped ZnOnanorods by x-ray absorption fine structure[J]. J. Phys. D: Appl. Phys., 2009(42):175406.
    [92]闫文盛,孙治湖,刘庆华等.用XANES研究Ga1-xMnxN稀磁半导体的Mn原子的局域结构[J].中国科学技术大学学报, 2007, 4-5(37):0565-0568.
    [93]李新刚,孟明,林培琰等. Co助剂对稀燃NOx阱Pt/Ba-Al-O结构和性能的影响[J].催化学报,2002(5):0417-0420.
    [94] Rebouta L, Smulders P.J.M, Boerma D.O., et al. Ion-beam channeling yields of host and impurityatoms in LiNbO3:computer simulations[J]. Phys. Rev. B., 1993, 48(6):3600-3610.
    [95] J.S. Lee, Z.G. Khim, Y.D. Park, et al. Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3and KTaO3[J]. Solid-State Electron., 2003(47):2225-2230.
    [96] H. Akazawa, M. Shimada. Precipitation kinetics of LiNbO3and LiNb3O8crystalline phases inthermally annealed amorphous LiNbO3thin films[J]. phys. stat. sol., 2006(203):2823-2827.
    [97] L.W. Martin, Y.H. Chu, R. Ramesh. Advances in the growth and characterization of magnetic,ferroelectric, and multiferroic oxide thin films[J]. Mater. Sci. Eng. R, 2010(68):89-133.
    [98] Paul S. Bagus, Eugene S. Ilton. Effects of covalency on the p-shell photoemission of transition metals:MnO[J]. Phys. Rev. B, 2006(73): 155110-155123.
    [99] S. Ueda, A. Sekiyama, T. Iwasaki, et al. Electronic structures and p-d exchange interaction ofMn-doped diluted magnetic semiconductors[J]. Phys. Rev. B, 2008(78):205206-205213.
    [100] Libing Duan, Xiaoru Zhao, Jinming Liu, et al. Structural, thermal and magnetic investigations ofheavily Mn-doped ZnO nanoparticles[J]. J. Magn. Magn. Mater., 2011(323):2374-2379.
    [101]高海燕,相宏伟,李永旺. Ru助剂对Co/SiO2催化剂费托合成反应性能的影响[J].催化学报,2010(3):307-312.
    [102] Zhou Yiyang. Substitution position of the impurity ion Mn2+in LiNbO3[J]. Phys. Rev. B,1991(13):11374-11376.
    [103] Zhonghua Dai, Yukikuni Akishige. Electrical properties of multiferroic BiFeO3ceramics synthesizedby spark plasma sintering[J]. J. Phys. D: Appl. Phys., 2010(43):445403-445407.
    [104] Xingquan Zhang,YuSui, XianjieWang, et al. Multiferroic and magnetoelectric properties ofsingle-phase Bi0.85La0.1Ho0.05FeO3ceramics[J]. J. Alloys Compd., 2011(509):5908-5912.
    [105] Hao Gu, Yinzhu Jiang, Yongbing Xu, et al. Evidence of the defect-induced ferromagnetism in Na andCo codoped ZnO[J]. Appl. Phys. Lett., 2011(98):012502-012504.
    [106] F. Yan, S. Miao, I. Sterianou, et al. Multiferroic properties and temperature-dependent leakagemechanism of Sc-substituted bismuth ferrite–lead titanate thin films[J]. Scripta Mater.,2011(64):458-461.
    [107]朱三元.铁掺杂二氧化钛的XAFS和穆斯堡尔谱研究[J].中国科学技术大学, 2007.10.
    [108] Scott A. Chambers. Ferromagnetism in doped thin-film oxide and nitride semiconductors anddielectrics[J]. Surf. Sci. Rep., 2006(61):345-381.
    [109]孟明,林培琰,伏义路等.氧化态Co/γ-Al2O3催化剂的结构与反应性能研究Ⅱ.钴物种微观结构的XAFS表征[J].分子催化, 2000(3):0161-0165.
    [110] P. F. Xing, Y. X.Chen, Shi-Shen Yan, et al. Tunable ferromagnetism by oxygen vacancies in Fe-dopedIn2O3magnetic Semiconductor[J]. J. Appl. Phys., 2009(106):043909-043912.
    [111] R.V.K. Mangalam, Nirat Ray, Umesh V.Waghmare, et al. Multiferroic properties of nanocrystallineBaTiO3[J]. Solid State Commun., 2009(149):1-5.
    [112] L. E. Klebanoff, D. G. Van Campen and R. J. Pouliot. Spin-resolved and high-energy-resolution XPSstudies of cobalt metal and cobalt magnetic glass[J]. Phys. Rev. B, 1994(49):2047-2057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700