用户名: 密码: 验证码:
中低阶煤基乙炔多联产系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于中低阶煤的高效利用,采用中低阶煤基乙炔工艺路线代替石油乙烯工艺路线是缓解石油资源供应紧张的有效解决办法。
     本文依托国家重点基础发展计划973项目(2011CB201306),围绕中低阶煤分级转化联产低碳燃料和化学品展开研究,以氧热法煤转化残焦制备电石乙炔的低能耗新工艺为研究对象,开展了中低阶煤基化学品制备系统与动力系统集成、反应过程能量转化、能量耦合、能量损失的热力学机理研究以及工艺路线对比研究。旨在研究氧热法电石炉内部反应体系的热力学机理,提出氧热法煤基电石乙炔新工艺系统,以及开拓中低阶煤基化学品(乙炔、熟石灰、CO、热解气与热解焦油)生产工艺与燃料电池/蒸汽联合循环发电工艺、热解焦油制备乙烯工艺整合后的中低阶煤基化学品/动力多联产新系统,重点研究了氧热法电石炉内部的能量转化机理和化学反应平衡限度。本论文主要内容如下:
     首先,针对高温高能耗的关键单元——氧热法电石炉单元开展能量性质分析。建立氧热法电石制备反应过程的能量构型,采用△G-T图和α-H-ε图,分析反应过程能量耦合、能量转化的热力学机理以及高能耗产生的原因。结果显示氧热法电石炉中,部分碳与氧气燃烧生成CO炉气的燃烧反应具有较大的不可逆性,为过程支付了热力学代价。对于电石炉内部的化学反应过程,通过考察温度、压力、进料组成对反应体系的化学平衡限度影响,探讨了CaC2的产率和反应选择性随操作条件的变化规律,同时考虑了Ca蒸汽对化学反应平衡的影响。按反应体系升温过程和过程自发性变化情况,提出四阶段反应机理,获得了氧热法电石炉化学平衡的新认知。此外,还通过△G-T图来预测CaC2反应发生温度以及反应发生顺序。
     其次,提出适用于不同基准、多种产出条件下的工艺系统评价指标。从能量、环境以及经济性角度,综合对比了氧热法电石工艺与电热法电石工艺。从中选择最优的电石制备工艺来构建中低阶煤基氧热法乙炔工艺系统,并开展流程模拟研究。同时,借助新型图示火用分析方法——火用流结构Grassman图,开展能量分析与评价,考察了工艺系统的能量利用情况和火用损失分布。全系统的能量分析和火用分析结果表明,电石炉单元火用损失最大,占系统内部火用损失的57.52%。然后,对比评价中低阶煤基氧热法乙炔新工艺和中低阶煤基气化乙烯传统工艺两条煤基化学品路线,证实新工艺路线的节能减排特性。
     最后,中低阶煤基氧热法乙炔工艺系统副产大量CO炉气和热解焦油,二者均具有较高的再利用价值。鉴于高温CO炉气既具有化学能又具有热能,可采用融碳酸盐燃料电池/蒸汽联合循环回收电石炉气联产电和热,实现能量的梯级利用。而热解焦油含有多种有机化合物,具有较高的化学能。可以借鉴石油工艺来生产乙烯,探索焦油制乙烯新工艺。通过充分回收利用中低阶煤基氧热法乙炔工艺系统的副产品,最终提出中低阶煤基化学品/动力多联产工艺系统。
Based on high efficient utilization of middle-low-rank-coal, the middle-low-rank-coal-based oxy-thermal acetylene manufacturing process is established to replace the petroleum ethylene manufacturing process route. That is the most effective way to relieve the recent petroleum resource shortage.
     Depending on the National Basic Research Program of China (also called973Program, No.2011CB201306), the middle-low-rank-coal cascaded conversion for low-carbon fuel and chemicals cogeneration system is investigated. For further researching novel energy-saving process of coal-based oxy-thermal carbide acetylene manufacturing, the thermodynamic mechanism of system integration, energy conversion, energy coupling and energy loss of middle-low-rank-coal-based chemicals and power manufacturing system as well as some process route comparison are also discussed. With the detailed investigation of oxy-thermal carbide furnace thermodynamic mechanism, the novel coal-based oxy-thermal acetylene manufacturing process system is proposed. Simultaneously, combining middle-low-rank-coal-based chemicals (acetylene, lime hydrates, off-gas and pyrolysis tar) manufacturing process, fuel cell/steam combined cycle power producing process and coal tar phrolysis ethylene manufacturing process, the novel coal-based cogeneration system is also researched and developed. The most significant is energy conversion mechanism investigation and chemical reaction equilibrium exploration of oxy-thermal carbide furnace. The main contents are as follows:
     First of all, for high temperature and high energy consumption key unit, i.e. oxy-thermal carbide furnace, the thermodynamic analysis is carried on. The research work includes oxy-thermal carbide reaction process energy configuration establishing with△G-T and α-H-ε diagram analysis for thermodynamic mechanism of energy coupling, energy conversion and high energy consumption reason. The results show that the combustion reaction between partial carbon and oxygen to produce carbon monoxide in the oxy-thermal carbide furnace has great irreversibility and pays most of thermodynamic penalty. For internal reaction process of carbide furnace, by studying the temperature, pressure and feedstock composition affection of chemical reaction equilibrium limit, the yield of CaC2and reaction selectivity change with variation of the operating conditions is investigated. In the meantime, the calcium vapor affection of chemical reaction equilibrium is considered. In addition, by using△G-T diagram, the reaction temperature and reaction order of CaC2is predicted.
     Second, system evaluation index, which applies to different basis and multiple output of process system, is proposed. Comparing oxy-thermal carbide process with electro-thermal carbide process in the view of energy, environment and economy, the relatively desirable one is selected to establish the middle-low-rank-coal-based oxy-thermal acetylene manufacturing process system and relevant process simulation is then carried on. Simultaneously, with the novel exergy framework Grassman diagram analysis, the energy utilization and exergy loss distribution of process system are investigated. Energy analysis and exergy analysis results of entire system show that the calcium carbide production unit has the maximum exergy loss, which accounts for57.52%of the total internal exergy loss. Then novel middle-low-rank-coal-based oxy-thermal acetylene manufacturing process is compared with traditional middle-low-rank-coal-based gasification ethylene manufacturing process and these two coal-based chemicals manufacturing process routes are evaluated. The results prove that the new process route has the characteristics of energy-saving and emission-reduction.
     Finally, a large number of byproducts, which produced by the middle-low-rank-coal-based oxy-thermal acetylene manufacturing process system, e.g. carbon monoxide off-gas and pyrolysis tar, is highly reusable. Because of chemical and thermal energy of high-temperature CO off-gas, the molten carbonate fuel cell/steam combined cycle can be used to recycle the off-gas for generating electricity and heat and then the entire system can realize the energy cascade utilization. Besides, pyrolysis tar contains a variety of organic compounds, which have higher chemical energy. Referring to petroleum ethylene manufacturing process, those pyrolysis tars can be reused as the the feedstock of novel ethylene manufacturing process. By fully recycling by-products (i.e. carbon monoxide off-gas and pyrolysis tar) of middle-low-rank-coal-based oxy-thermal acetylene manufacturing process system, the middle-low-rank-coal-based chemicals/power cogeneration process system is finally proposed.
引文
[1]World Coal Institute. The coal resource:a comprehensive overview of coal [R]. Coal Resource Overview of Coal Report,2005
    [2]Rainer D, Jan D A, Stefan F, Reiner G, et al. Raw material changes in the chemical industry[J]. Chem. Eng. Tech.,2008,31,631-637.
    [3]Zhang, L. Research of coal substituting oil (natural gas) in China[J]. Phys. Procedia.,2012,25, 1409-1413
    [4]Zardi, U. Review of the developments in ammonia and methanol reactor[J]. Hydrocarb. Process.,1982,61,129-133
    [5]Hans, S. "Coking" of zeolites during methanol conversion:Basic reactions of the MTO-, MTP-and MTG-processes[J]. Catal. Today,2010,154,183-194
    [6]李国栋.粉状焦炭和粉状氧化钙制备碳化钙新工艺的基础研究[D].北京:北京化工大学,2013
    [7]Miller S A. Acetylene:its properties, manufacture and uses[M]. Academic Press:New York, 1965
    [8]Beavis C J. Calcium-carbide production[J]. J. IEE,1955,1,465-468.
    [9]Robert J T. Acetylene-based chemicals from coal and other natural resources[M]. U.S. Press: Chemical Industries,1982.
    [10]Beavis C J. The use of electricity in the production of calcium carbide[J]. Proc. IEE,1955, 102,217-227.
    [11]Beavis, C. J. Calcium-carbide production[J]. J. IEE,1955,1,465-468.
    [12]Haggblad R, Wagner J, Hansen S, et al. Oxidation of methanol to formaldehyde over a series of Fel-xAlx-V-oxide catalysts[J]. J. Catal.,2008,258,345-355
    [13]Bunger J W, Russell C P. Process for high recovery of acetylene and lime from the reaction of calcium carbide with water[P]. US Patent Office, US6294148B1,2001-06-22
    [14]熊谟远.电石生产及其深加工产品[M].北京:化学工业出版社,1985
    [15]熊谟远.电石生产问答[M].北京:化学工业出版社,1979
    [16]胡清勋,催永利,刘欣梅等.电石工艺的技术进步[M].中国氯碱,2008,9,41-43
    [17]Tagawa H, Sugawara H. The kinetics of the formation of calcium carbide in a solid-solid reaction[J]. Bull. Chem. Soc. Jpn.,1962,35,1276-1279
    [18]Brookes C, Gall C E, Hudings R R. A model for the formation of calcium carbide in solid pellets[J]. The Canadian J. Chem. Eng.,1975,53,527-533
    [19]Jacob J M, Robert A H. A rotary kiln process for making calcium carbide[J]. Ind. Eng. Chem. Res.,1987,26,2063-2069
    [20]Yu J, Wu W, Wang M. Interfacial reactions between glass coatings and steel substrates induced by laser cladding[J]. Surf. Coat. Technol.,1995,72,112-119
    [21]Li G, Liu Q, Liu Z. CaC2 production from pulverized coke and CaO at low temperatures-influence of minerals in coal-derived coke[J]. Ind. Eng. Chem. Res.,2012,51, 10748-10754
    [22]Li G, Liu Q, and Liu Z. CaC2 production from pulverized coke and CaO at low temperatures reaction mechanisms[J]. Ind. Eng. Chem. Res.,2012,51,10742-10747
    [23]Robert V S, Henry H Y. Simultaneous chemical and phase equilibrium calculation[J]. Ind. Eng. Chem. Process Des. Dev.,1973,12,81-84
    [24]Juan Q. First-year university chemistry textbooks' misrepresentation of Gibbs energy[J]. J. Chem. Educ.,2011,89,87-93
    [25]Smith J M, Ness H C, Abbott M M. Introduction to chemical engineering thermodynamics[M]. 6th ed. McGraw-Hill:New York,2001
    [26]侯智,郑丹星,金红光.甲酸甲酯平和水共存下甲醇分解制燃气的化学平衡[J].燃烧科学与技术.2005,11,571-574
    [27]Prins M J, Ptasinski K J. Energy and exergy analyses of the oxidation and gasification of carbon[J]. Energy,2005,30,982-1002
    [28]Prins M J, Ptasinski K. J, Janssen F J. Thermodynamics of gas-char reactions:first and second law analysis[J]. Chem. Eng. Sci.,2003,58,1003-1011
    [29]Chibiryaeva A M, Yermakovac A, Kozhevnikovc I V. Chemical and phase equilibria calculation of pinene hydration in CO2-expanded liquid[J]. J. of Supercrit. Fluid.,2010,51, 295-305
    [30]Daniel L, Patrice C. Thermodynamic evaluation and optimization of the (Ca+C+O+S) system[J]. J. Chem. Thermodynamics.,2009,41,1111-1124
    [31]Guo J, Zheng D. Thermodynamic analysis of low-rank-coai-based oxygen-thermal acetylene manufacturing process system[J]. Ind. Eng. Chem. Res.2012,51,13414-13422
    [32]Muftah H E. Synthesis of calcium carbide in a plasma spout fluid bed[D]. Canada:McGill University.1996
    [33]Bernhard L. Calcium carbide[M]. Wiley:Ullman's encyclopedia of industrial chemistry.2012, 6,498-509
    [34]John N U, Sanborn N Y. Calcium carbide manufacture[P]. US Patent Office, US3144413, 1964-08-11
    [35]程向中.密闭炉法电石生产工艺的挖潜改造[J].现代化工,2000,20,34-35
    [36]Bruce H S, Altadena C. Calcium carbide process[P]. US Patent Office, US3044858, 1957-07-17
    [37]Ralph A C. Computerized process and apparatus for use with a submerged arc electric furnace to produce metallurgical]. US Patent Office, US4213955,1980-11-23
    [38]中国科学技术情报研究所.日本电石工业生产技术(出国参观考察报告)[R].北京:中国科学技术情报研究所,1965.
    [39]新疆化工设计研究院.新疆圣雄能源开发有限公司60万吨电石项目环境影响评价书[R].新疆:化工设计研究院,2006
    [40]岳书才.竖炉氧燃喷吹生产碳化钙方法及装置[P].CN1843907A,2006-02-23
    [41]Cameron W. Calcium carbide[M].5th edition, Wiley:Kirk Othmer Encyclopedia of Chemical Technology,2012,4,532-551
    [42]Emily W. Air permit for the construction and operation of a calcium carbide manufacturing plant[D]. US:University of Missouri-Columbia,2010
    [43]Peter P, Werner H, Richard M. Acetylene[M]. Wiley:Ullmann's Encyclopedia of Industrial Chemistry,2012
    [44]Harold V A. Oxy-thermal process[P]. US Patent Office, US3017244,1962-05-09
    [45]李耀文,杨秀岭.干法乙炔工艺介绍[J].中国氯碱,2008,3,19-20
    [46]徐国华,蔡生吉,康金福.干法乙炔工艺的推广与应用[J].云南化工,2010,37,75-77
    [47]崔小明,聂颖.干法乙炔生产技术的研究开发现状[J].化工科技市场,2009,32,1-3
    [48]廖勇.于法乙炔生产过程研究及开发[D].河北:河北科技大学,2009
    [49]George E H. Dry lime acetylene generator[P]. US Patent Office, US2862805,1958-12-02
    [50]John A L. Dry acetylene generator[P]. US Patent Office, US4451268,1984-05-29
    [51]Bravi A. A process for producing calcium carbide and acetylene and products obtained therefrom[P]. Espace Patent, EP0034572,1981
    [52]Friedbert R. Process for the continuous manufacture of acetylene[P]. US Patent Office, US2701190,1955-10-03
    [53]Philippe C. Method for production of acetylene and plant for carrying out said method[P]. PCT Patent, WO2004090074,2004
    [54]Clifford H A, Eddie P. Acetylene generation[P]. US Patent Office, US2343185,1944-03-16
    [55]Charles N. Method of producing gas and a dry residue by the reaction of a solid and a liquid[P]. US Patent Office, US2233108,1941-02-25
    [56]赵中彦,任茂华.电石炉尾气用于合成氨或甲醇生产的工艺[P].CN200510085638.0,2006
    [57]周晓奇,李速延,李军.富碳氢工业尾气联产甲醇、车用天然气及合成氨的方法[P].CN200810018400.X,2008
    [58]Robert J B, Weeratunge M, Peter W, Henk K V. The impact of variable demand upon the performance of a combined cycle gas turbine (CCGT) power plant[J]. Energy,2011,36, 1956-1965
    [59]Silveira J L, Carvalho J A, Castro V I. Combined cycle versus one thousand diesel power plants; pollutants emissions, ecological efficiency and economic analysis[J]. Renew. Sust. Energ. Rev.,2007,11,524-35
    [60]Sims R E, Rogner H, Gregory K. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation[J]. Energ. Policy, 2003,31.1315-26
    [61]Saravanamuttoo H, Rogers G, Cohen H, et al. Gas turbine theory[M].6th ed. US:Pearson Education Limited,2009.
    [62]Bass R J. The potential benefits of strategically located energy storage and the integration of power from renewable sources[D], UK:Loughborough University,2008
    [63]Kwak H Y, Kim D J, Jeon J S. Exergetic and thermoeconomic analyses of power plants[J]. Energy,2003,28,343-360
    [64]Rosen M A, Dincer I. Exergoeconomic analysis of power plants operating on various fuels[J]. Appl. Therm. Eng.,2003,23643-658
    [65]Sarraf S J, Borelli S, Oliveira J. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants[J]. Energy,2008,33,153-162
    [66]Corrado P F, Sciubba E. Environmental assessment and extended exergy analysis of a "zero CO2 emission", high-efficiency steam power plant[J]. Energy,2006,31,3186-3198
    [67]Villela I A C, Silveira J. Ecological efficiency in thermoelectric power plants[J]. Appl. Therm. Eng.,2007,27,840-847
    [68]Giannantoni C, Lazzaretto A, Macor A, et al. Multicriteria approach for the improvement of energy systems design[J]. Energy 2005,30,1989-2016
    [69]Li H, Marechal F, Burer M, Favrat D. Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options[J]. Energy 2006,31,3117-3134.
    [70]Cooper J F, Cherepy N, Krueger R L. Tilted fuel cell apparatus[P]. US Patent Office, US6878479.2005-06-12
    [71]Cooper J F, Berner K. The carbon/air fuel cell conversion of coal-derived carbons[M]. The Carbon Fuel Cell Seminar, US:Palm Springs,2005
    [72]Heydron B, Crouch-Baker S. Direct carbon conversion:progressions of power[M]. Feature Research. New York:IOP publishing,2006.
    [73]Cooper J F. Direct conversion of coal derived carbon in fuel cells[M]. Recent Trends in Fuel Cell Science and Technology. US:Springer,2007
    [74]Cao D, Sun Y, Wang G. Direct carbon fuel cell:fundamentals and recent developments[J]. J. Power Sources,2007,167,250-270
    [75]Cooper J F, Selman R. Electrochemical oxidation of carbon for electric power generation:a review[M]. Electrochemical Society:ECS Transactions,2009,19,15-25
    [76]Cherepy N J, Krueger R, Fiet K. J, et al. Direct conversion of carbon fuels in a molten carbonate fuel cell[J]. J. Electrochem. Soc.,2005,152,80-87.
    [77]Huijsmans J P, Kraaij G J, Makkus R C, et al. An analysis of endurance issues for MCFC[J]. J. Power Sources,2000,86,117-121
    [78]Biedenkopf P, Bischoff M M, Wochner T. Corrosion phenomena of alloys and electrode materials in molten carbonate fuel cells[J]. Mater, and Corros.,2000,51,287-302.
    [79]Acres G J. Recent advances in fuel cell technology and its applications[J]. J. Power Sources, 2001,100,60-66
    [80]Liu Z, Liu Q, Li G. Method and system for the production of calcium carbide[P]. US Patent Office, US2011/0123428A1,2011-02-18
    [81]Kerstin H J, Frechen E W. Production of calcium carbide[P]. US Patent Office, US4391786 1983-09-14
    [82]金红光.能的综合梯级利用与燃气轮机总能系统[M].北京:科学出版社,2008
    [83]Mekhilef S. Comparative study of different fuel cell technologies[J]. J. Renew. Sustain. Ener., 2012,16,981-989
    [84]Yu L, Cao G, Zhu X, et al. Study on an environmental-friendly and high-efficient fuel cell energy conversion system[J]. J. Environ. Sci.,2003,15,97-101
    [85]汤敏.毫秒炉裂解技术[J].兰化科技.1984,3,133-141
    [86]李正西.砂子炉和管式炉的经济性对比[J].化工设计.1986,4,49-50
    [87]兰州化工厂.砂子炉裂解反应器运转和改造的初步经验[J].化学工程.1973,1,56-68
    [88]Howard. Precooling for ethylene recovery in dual demethanizer fractionation systems[P]. US Patent Office, US5361589,1994-11-08
    [89]Kaminsky. Olefin purification by adsorption of acetylenics and regeneration of adsorption[P]. US Patent Office, US6080905,2000-06-27
    [90]Sanders. Systems and methods for the seperation of propylene and propane[P]. US Patent Office, US2008/0167512A1,2008-05-12
    [91]Stacker. Pressure swing adsorption control method and apparatus[P]. US Patent Office, US4761165,1988-08-02
    [92]Guo J, Wu X, Jing S, et al. Vapor-liquid equilibrium of ethylene+mesitylene system and process simulation for ethylene recovery[J]. Chinese J. Chem. Eng.,2011,19,543-548
    [93]Dincer I, Rosen M A. Exergy energy, environment and sustainable development[M]. US: Elsevier,2007
    [94]Thilak N R, Iniyan S, Ranko G. A review of renewable energy based cogeneration technologies[J]. Renew. Sust. Energ Rev.,2011,15,3640-3648
    [95]Wahlund B, Yan J, Westermark M. A total energy system of fuel upgrading by drying biomass feedstock for cogeneration:a case study of Skellefte bioenergy combine[J]. Biomass Bioenerg.,2002,23,271-81
    [96]Williams R H, Larson E D. Biomass gasifier gas turbine power generating technology[J]. Biomass Bioenerg.,1996,10,149-66
    [97]Holanda D M, Balestieri J. Cogeneration in a solid-wastes power-station:a case-study[J]. Appl. Energy,1999,63,125-39
    [98]Drescher U, Briiggemann D. Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants[J]. Appl. Therm. Eng.,2007,27,223-8
    [99]Kuo J T. Bagasse gasification cogeneration plant performance[J]. J. WREC,2000,6, 1385-1389.
    [100]McDonald C F. A hybrid solar closed-cycle gas turbine combined heat and power plant concept to meet the continuous total energy needs of a small community[J]. Heat Recov. Syst.,1986,6, 399-419
    [101]Mittelman G, Kribus A, Dayan A. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems[J]. Energy Convers Manage.,2007,48,2481-90
    [102]Qiu K, Hayden A. Performance of low bandgap thermophotovoltaic cells in a small cogeneration system[J]. Sol. Energy,2003,74,489-95.
    [103]Hallaj A S, Alasfour F, Parekh S, et al. Conceptual design of a novel hybrid fuel cell/desalination system[J]. Desalination,2004,164,19-31
    [104]Ishizawa M, Okada S, Yamashita T. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment[J]. J Power Sources 2000,86,294-7
    [105]Healy G W. The calculation of an internal energy balance in the smelting of calcium carbide[J]. J. S. Afr. I. Min. Metall.,1995,9,225-232
    [106]Xiong J, Zhao Hai, Zheng Chuguang. Exergy Analysis of a 600 MWe Oxy-combustion Pulverized-Coal-Fired Power Plant[J]. Energy Fuel.,2011,25,3854-3864
    [107]Grant S B, Sinisha J, Turgay E, et al. Simulation of CO2 sequestration in coal beds:The effects of sorption isotherms[J]. Chem. Geol.,2005,217,201-211
    [108]Aspen Plus. Aspen plus IGCC model[M]. US:Aspen Technology.2008
    [109]郑丹星.流体与过程热力学[M].北京:化学工业出版社.2009
    [110]Barin I. Thermochemical data of pure substances:part Ⅰ and Ⅱ[M]. Weinheim, Germany:VCH Verlagsgesellschaft Gmbh,1989
    [111]Barin I, Knacke O. Thermochemical properties of inorganic substances[M]. US: Springer-Verlag,1977
    [112]Lide D R. CRC handbook of chemistry and physics[M]. CRC Press,2006
    [113]Kameyama H, Yoshida K, Yamauchi S, Fueki K. Evalution of reference exergies for the elements[J]. Appl. Energ.,1982,11,69-83
    [114]陈钢,黄学群.LCC低阶煤转化提质技术的开发与应用[J].化肥设计.2011,49,7-11
    [115]Pitzer K S. Thermodynamics[M].3rd ed., US:McGraw-Hill,1995
    [116]Micheal, F. TRC thermodynamic tables, non-hydrocarbons[M]. Texas A & M University System,1986
    [117]Berman R G, Brown T H. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2:representation, estimation, and high temperature extrapolation[J]. Contrib. Mineral. Petrol.,1985,89,168-138
    [118]Berman R G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2[J]. J. Petrol.,1988,29,445-522
    [119]Dinsdale A T. SGTE data for pure elements[M]. CALPHAD:Comput. Coupling Phase Diagrams Thermochem.,1991,15,317-425
    [120]Aline L S, Celia F M, Iduvirges L M. Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method:A detailed study of the conditions of carbon deposition[J]. Int. J. Hydrogen Energ.,2009,34,4321-4330
    [121]Petr V, Jindrich L. Calculation of chemical equilibrium in comple system:system restrictions[J]. Cal. Chem. Equilibria,2000,65,1443-1454
    [122]Mas V, Kipreos R, Amadeo N, et al. Thermodynamic analysis of ethanol/water system with the stoichiometric method[J]. Int. J. Hydrogen Energ.,2006,31,21-28
    [123]Wang J, Kayoko M, Takayuki T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz, and kaolinite[J]. Energ. Fuel,2001,15,1145-1152
    [124]GB 21343-2008.电石单位产品能源消耗限额[S].2008
    [125]Ahland E, Falbe J. Chemical feedstocks from coal[M]. Wiley:New York,1982
    [126]Fujishige M, Yokogawa H, Ujiie S, Tokiya M. Production of calcium carbide by blast furnace process[P]. JPO Patent, JP61178412,1986-08-11
    [127]Foster k M. Method of and apparatus for generating acetylene[P]. US Patent Office, US3498767,1970-03-03
    [128]Paul J C, Robert J S. Plural purpose sludge incinerating and treating apparatus and method[P]. US Patent Office, US3623975,1969-06-13
    [129]Badami M, Mura M. Exergetic analysis of an innovative small scale combined cycle cogeneration system[J]. Energy,2010,35,2535-2543
    [130]Carl W, Felix W. Process of preparing acetylene[P]. US Patent Office, US1916592,1933
    [131]Johnson G W. Improvements in the operation of shaft furnaces[P]. GB724565,1953
    [132]Zheng D, Cao W. Retrofitting for DME process by energy-flow framework diagram[J]. Chem. Eng. Process.,2007,46,2-9
    [133]杨秀玲,唐朋跃,常炳杰.干法乙炔技术的研究与开发[J]中国氯碱201012(4):13-16
    [134]Badische A, Soda F. Improvements in the operation of shaft furnaces[P]. German Patent Office, GB724565,1953-03-17
    [135]Frank M J, Peter M. Sludge treatment with CaO or CaC2 and recovery of CaO therefrom[P]. US Patent Office, US5242601,1993-09-07
    [136]GB/T 14909-2005能量利用中火用分析方法导则[S].2005
    [137]韩饮生,孙芳.乙炔法PVC与乙烯法PVC对比[J].聚氯乙烯,2009,37,5-12
    [138]Bedont P, Grillo O, Massardo A F. Off-design performance analysis of a hybrid system based on an existing MCFC stack[J]. ASME Con. Prcc.2002,387,301-315
    [139]Stefano C, Paolo C, Giampaolo M. CO2 capture from combined cycles integrated with molten carbonate fuel cells original[J]. Int. J. Greenh. Gas. Con.,2010,4,441-451
    [140]Vittorio V, Flavio N. Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen [J]. Int. J. Hydrogen Energ., 2010,35,794-806
    [141]肖瑞华.煤焦油化工学[M].北京:冶金工业出版社,2002
    [142]史得军,胡清勋,崔永利等.电石合成工艺进展[J].无机盐工业,2010,5,123-126
    [143]王志方.天然气制乙炔工艺的氢能利用与多联产系统[D].北京:北京化工大学,2008
    [144]高林.煤基化工—动力多联产系统开拓研究[D].北京:中国科学院工程热物理研究所,2005
    [145]张新敬,谭春青,隋军等.我国工业节能现状调研和对策[J].中国能源,2008,11,234-237
    [146]赵振可.煤基多联产系统总体性能分析[D].上海:上海交通大学,2011
    [147]林汝谋,金红光,高林.化工动力多联产系统及其集成优化机理[J].热能动力工程,2006,4,356-378
    [148]王莉.甲苯甲醇烷基化制对二甲苯热力学研究[D].北京:北京化工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700