用户名: 密码: 验证码:
羊角月牙藻(Selenastrum capricornutum)对高环多环芳烃的降解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是环境中广泛分布的一类持久性有机污染物,具有致畸性、致突变性和致癌性。PAHs的环数越多,化学稳定性越强,毒性越大。微生物降解是环境中PAHs去除的最主要途径,主要包括细菌、真菌和微藻。目前,细菌和真菌对PAHs降解的相关研究较多,而微藻降解PAHs的研究还比较少。作为一类有效降解环境中PAHs的微生物,微藻受到人们越来越多的关注。羊角月牙藻(Selenastrum capricornutum)是一种淡水绿藻,因为其在环境中分布广泛、易于培养和具有降解PAHs的能力,成为本论文的研究对象。本文以羊角月牙藻对PAHs的降解为研究对象,研究重金属离子、光照条件等因素对PAHs吸附、降解和代谢的影响,同时研究了藻的活性成分、氧自由基的生成对PAHs降解的作用机制。本论文深入研究了羊角月牙藻对高环PAHs的降解行为,是对微生物降解PAHs的有力补充,为水环境中PAHs污染的生物修复提供理论与实践依据。主要研究成果如下:
     1.对于低环的PAHs(芴、菲),重金属胁迫对PAHs的去除有显著的促进作用,在高浓度重金属(Cd2+:0.10mg L-1,Cu2+:1.0mg L-1,Ni2+:2.5mg L-1,Zn2+:1.0mg L-1)处理组中,经过7天的暴露后,培养基中高达99%的芴和89%的菲被去除。对于高环的PAHs(荧蒽、芘、苯并[a]芘),重金属对其在培养基中的去除效率没有影响。
     2.重金属对芴的降解具有显著影响。随着重金属浓度的升高,9-芴酮和9-羟基芴的生成量逐渐升高,在高浓度重金属处理组中,9-羟基芴为主要代谢产物,占芴总代谢产物含量的92.4%。结果表明重金属诱导芴降解,是芴从水中去除的最主要原因。低浓度的重金属(Cd2+:0.05mg L-1,Cu2+:0.05mg L-1,Ni2+:0.5mg L-1,Zn2+:0.05mg L-1)促进菲的降解,单羟基菲的总生成量最高(8.78±0.87μg)。随着重金属浓度的升高,菲代谢产物的生成量反而有所下降,与高浓度重金属处理组中菲的最高去除率相反,推测菲进一步降解为1-羟基萘,因为1-羟基萘的生成量在高浓度重金属处理组中最高(3.33μg),明显高于别的处理组(0.13-0.47μg)。因此,重金属的胁迫可以改变菲的降解途径。荧蒽、芘和苯并[a]芘这三种高环PAHs的代谢产物的种类及生成量,不受重金属胁迫的影响。
     3.在活藻细胞中,黄光比白光更有利于PAHs的生物降解;在死藻细胞中,白光照射下的PAHs降解率显著高于黄光。在7种PAHs中,苯并[a]蒽和苯并[a]芘的光活性最强,在活藻与死藻细胞的处理中都有很高的降解率;苯并[b]荧蒽、苯并[k]荧蒽与茚苯[c, d]芘这3种PAHs在活藻中有很高的降解率,但是在死藻中几乎没有降解;二苯并[a, h]蒽和二萘嵌苯最稳定,难以被活藻和死藻细胞降解。除了苯并[b]荧蒽、苯并[k]荧蒽与茚苯[c, d]芘之外,其他PAHs在死藻细胞中的降解率均高于活藻细胞。
     4.羊角月牙藻对苯并[a]芘(BaP)的降解效率高于小球藻(Chlorella sp.),经过七天的暴露,70.8%与27.6%的BaP分别被羊角月牙藻、小球藻的活藻细胞所降解;但是高达98.1%与100%的BaP分别被两者的死藻细胞所降解。死藻细胞比活藻细胞对BaP的降解效率更高,而且死藻细胞对BaP的高降解率与藻的种类无关,是由光照引起的光降解。BaP的降解效果与藻细胞的破坏程度相关,细胞破裂,胞内物质外泄是引起BaP降解的主要原因。从藻细胞中提取的叶绿素能促进BaP的降解,BaP在第4天的降解率为98%。表明叶绿素是死藻细胞中促进BaP降解的活性物质。121oC高温加热10min的叶绿素与光照分解的叶绿素依然能够促进BaP的降解,表明结构遭到破坏的叶绿素依然能起到光敏剂的作用。
     5.在光照的条件下,羊角月牙藻的活藻与死藻细胞可以促进水中氧自由基的生成,本论文检测了羟基自由基与单线态氧在白光照射下的动态变化。死藻细胞培养基中的羟基自由基的生成量远高于活藻细胞,经过7天的光照,死藻细胞处理组中的羟基自由基含量比活藻细胞处理组高83.6%。单线态氧的生成也羟基自由基不同,其生成量显著高于羟基自由基,而且活藻细胞中单线态氧的的生成率高于死藻细胞。藻细胞催化生成的氧自由基会与BaP反应,导致检测到的自由基含量减少。氧自由基氧化性强,在水中与BaP反应,是死藻细胞促进BaP降解的原因。
     6.羊角月牙藻对三环及四环的PAHs(芴、菲、荧蒽和芘)的代谢产物主要为单羟基化合物,对五环的BaP的主要代谢产物为双羟基化合物。说明羊角月牙藻细胞中既存在单加氧酶,也存在双加氧酶,对低环PAHs主要是采用单加氧酶系统进行代谢,对高环PAHs主要采用双加氧酶系统进行代谢。活藻细胞通过加氧酶系统对PAHs进行生物催化代谢,代谢产物为羟基类物质;死藻细胞中的叶绿素在光照下催化产生氧自由基,促进PAHs的光降解,降解产物为酮类和醌类物质。
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous environmentalpersistent organic pollutants. They are demonstrated to be mutagenic, teratogenic andcarcinogenic. PAHs with high molecular weights are chemically stable and theirtoxicity increases with their molecular weights. Microbial degradation is the mainway to get rid of PAHs in the environment, including bacteria, fungi and microalgae.Studies on the degradation of PAHs have mainly focused on bacteria and fungi, withless attention on microalgae. As an effective PAHs degradation microorganism,microalgae attract increasing attentions. Selenastrum capricornutum, a freshwatergreen microalga, was selected as the research object because of its wide distribution inthe environment, easy cultivation and has PAHs degradation ability. The aim of theresearch was to study the degradation of PAHs by S. capricornutum, including theeffect of heavy metals and different light irradiations. According to the activeingredients, reactive oxygen species and metabolites of benzo[a]pyrene (BaP) by liveand dead algal cells, the PAHs degradation mechanism by S. capricornutum wereinvestigated. The degradation of high molecular weight PAHs by S. capricornutumwas thoroughly studied, it provided an effective complement to microbiological degradation of PAHs, and had the potential to bioremediation of PAHs-pollutedaquatic environment. The results of this study were summarized as follows:
     1. For low molecular weight PAHs (fluorene and phenanthrene), heavy metaldosage posed a significant, positive effect on their removal, in the treatment of thehighest dose of heavy metals (HM3, Cd2+:0.10mg L-1, Cu2+:1.0mg L-1, Ni2+:2.5mgL-1, Zn2+:1.0mg L-1), with up to99%of fluorene and89%of phenanthrene wereremoved from the medium in7days, which was mainly due to the cellulardegradation induced by heavy metal stress. For high molecular weight PAHs(fluoranthene, pyrene and benzo[a]pyrene), the presence of heavy metals did notaffect the removal efficiency.
     2. The addition of heavy metals had significant effect on the degradation offluorene. The metabolites of9-fluorenone and9-hydroxy fluorene were increasedwith the concentration of heavy metals. Exposure of the algal cells to the highest doseof heavy metals (HM3) resulted in the highest amounts of fluorene metabolites:9-hydroxy fluorene was the main metabolite, accounted for92.4%of total fluorenemetabolites. It was suggested that cellular degradation induced by heavy metals maybe the most important contributor to the degradation of fluorene. For phenanthrene,the low does of heavy metals (Cd2+:0.05mg L-1, Cu2+:0.05mg L-1, Ni2+:0.5mg L-1,Zn2+:0.05mg L-1) accelerated the degradation with highest level ofmonohydroxylated phenanthrene (8.78±0.87μg). Its removal was significantlyenhanced in HM3treatment but there was no corresponding increase in phenanthreneintermediates, implying that phenanthrene might have been further degraded to otherintermediates. One possible intermediate might be1-hydroxynaphthalene, which wasdetected in much higher quantity in HM3samples (3.33μg)) than in the other samples(0.13-0.47μg). The stress of heavy metals changed the degradation pathway ofphenanthrene. The metabolism of fluoranthene, pyrene and benzo[a]pyrene were notaffected by heavy metals.
     3. Gold light irradiation was more effective on the biodegradation of theselected PAHs in live algal cells than white light irradiation, but white light was moreeffective on PAHs photodegradation in dead cells. The degradation efficiency of seven PAHs, as well as the difference between live and dead microalgal cells, wasPAH compound-dependent. benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) werehighly transformed in both cells and dead cells, benzo[b]fluoranthene (BbF),benzo[k]fluoranthene (BkF) and indeno[1,2,3-c,d]pyrene (IP) were transformed onlyin live cells, while dibenzo[a,h]anthracene (DA) and benzo[g,h,i]perylene (BghiP)were the most stable and recalcitrant compounds with least degradation in either liveor dead cells. Besides of BbF, BkF and IP, the degradation of the other4PAHs in deadalgal cells were more effective than live cells.
     4. Live cells of Chlorella sp. was less effective in degradation of BaP underwhite light irradiation, with only27.6%of BaP being degraded at Day7, than S.capricornutum which had70.8%of BaP degradation. The dead cells of both specieshad higher capabilities to transform BaP than live cells, and the degradationpercentages of BaP by S. capricornutum and Chlorella sp. were100%and98.1%,respectively at the end of7days of exposure. It suggested that the degradation of BaPin dead cells was photodegradation, which was algal species independent. BaPdegradation efficiency was correlative with the damage of algal cells. Hightemperature killed and freeze-thawed dead algal cells can promote thephotodegradation of BaP. The leakage of cellular contents from broken cells causedBaP degradation under irradiation. Chlorophyll extracted from algal cells canpromoted the degradation of BaP,98%of BaP was degraded on Day4, suggestingthat chlorophyll was the photodegradation active substance. Both the chlorophylldestroyed by heating in121oC for10min and irradiating under white light for4days,could also accelerate the BaP degradation, illustrating that chlorophyll with structuredestruction could still acted as photosensitizer.
     5. Hydroxyl radical and singlet oxygen were generated in live and dead algalcells of S. capricornutum. The production of hydroxyl radical in dead algal cells was83.6%more than live cells after4days exposure. The production of singlet oxygenwas higher than hydroxyl radical, live algal cells were more effective to generatesinglet oxygen. The spiked of BaP would consume some reactive oxygen species,leading to the reduction of hydroxyl radical and singlet oxygen. Reactive oxygen species have strong oxidizability, reactived with BaP in aquatic environment.
     6. For3-ring to4-ring PAHs (fluorene, phenanthren, fluoranthene and pyrene),most of the PAH metabolites by S. capricornutum were monohydroxylated PAHs. For5-ring PAH (BaP), dihydroxylated PAHs were the main metabolites. It was suggestedthat both monooxygenase and dioxygenase were existed in S. capricornutum. Themetabolism of low molecular weight PAHs was mianly by monooxygenase system,while via a dioxygenase pathway to metabolize high molecular weight PAHs. PAHshad biodegradation in live algal cell via oxygenase system, with hydroxylated PAHsas the main metabolites. PAHs had photodegradation in dead algal cells, the processwas that chlorophyll had photocatalytic generation of reactive oxygen species andthen had oxidation reaction with PAHs. The photodegradation products of PAHs wereketone and quinone compounds.
引文
曹晓星,田蕴,胡忠,郑天凌. PAHs降解基因及降解酶研究进展.生态学杂志,2007,26(6):917-924.
    陈花,吴俊林,李晓军.叶绿体中活性氧的产生和清除机制.现代生物医学进展,2008,8(10):1979-1981.
    陈文峻,蒯本科.植物叶绿素的降解.植物生理学通讯,2001,37(4):336-339.
    程子波,邹华,向丽,张一波.叶绿素作用下微囊藻毒素-LR的光降解.环境化学,2009,28(5):683-686.
    黄国兰,庄源益,戴树桂.颗粒物上多环芳烃的光转化作用.南开大学学报,1997,30(1):98-10.
    黄锦殷.分枝杆菌A1-PYR共代谢多环芳烃的途径与机理研究.硕士论文.中山大学,2013.
    姜彬慧,林碧琴.镍对纤维藻(Ankistrodesmus sp.)毒性作用研究.环境保护科学,1995,21(4):26-32.
    金志刚,张彤,朱怀兰.污染物生物降解.上海:华东理工大学出版社,1997.
    康跃惠,麦碧娴,黄秀娥,张干,盛国英,傅家谟.珠江三角洲地区水体表层沉积物中有机污染状况初步研究.环境科学学报,2000,20:164-170.
    李灵香玉,马香娟.羟基自由基(˙OH)的特性及其在光化学氧化中的反应机理.化工技术与开发,2006,35(8):27-29.
    罗孝俊.珠江三角洲河流、河口和邻近南海海域水体、沉积物中多环芳烃与有机氯农药研究,博士论文.中国科学院研究生院(广州地球化学研究所),15-17,2004.
    孙红文,李书霞.多环芳烃的光致毒效应.环境科学进展,1998,6:1-10.
    孙亚平,石辉.土壤和沉积物对多环芳烃吸附作用的研究进展.四川环境,2007,26(5):102-106.
    涂朱平,程克棣.植物细胞色素P450基因的异源表达系统研究进展.中国生物工程杂志,2003,23(7):32-37.
    王重刚,郑微云,余群,赵杨,陈纪新.苯并(a)芘和芘对梭鱼肝脏谷胱甘肽过氧化酶活性的影响.海洋科学,2002,26(6):35-38.
    王丽平,郑丙辉,孟伟.荧蒽与铜对三角褐指藻的单一和联合毒性.海洋通报,2007,26(4):111-115.
    魏树和,周启星, Pavel V.K., Galina A.B.有机污染环境植物修复技术.生态学杂志,2006,25(6):716-721.
    吴莹,张经.多环芳烃在渤海海峡柱状沉积物中的分布.环境科学,2001,22:74-77.
    谢笔钧.食品化学.第三版.科学出版社,2001,第七章:食品色素和着色剂.
    于小丽,张江.多环芳烃污染与防治对策.油气田环境保护,1996,6(4):53-56.
    张素丽,陈国建,姚超英.叶绿素光催化降解水中苯胺的研究.杭州化工,2002,32(2):23-24.
    张伟,冯俊,杨超,王淑芳,宋存江.白腐真菌的广谱生物降解性研究进展.环境污染与防治,2012,34(1):64-71.
    周宏,项斯端.重金属铜、锌、铅、镉对小形月牙藻生长及亚显微结构的影响.杭州大学学报,1998,25(2):85-92.
    周明耀.环境有机污染与致癌物质.成都:四川大学出版社,1990:62-103.
    Aksu Z. Application of biosorption for the removal of organic pollutants: a review.Process Biochemistry,2005,40:997-1026.
    Aksu Z., Akpinar D. Competitive biosorption of phenol and chromium (VI) frombinary mixtures onto dried anaerobic activated sludge. Biochemical EngineeringJournal,2001,7:183-193.
    Al Zarooni M., Elshorbagy W. Characterization and assessment of Al Ruwais refinerywastewater. Journal of Hazardous Materials,2006,136:398-405.
    Amor L., Kenens C., Veiga M.C. Kinetics of inhibition in the biodegradation ofmonoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology,2001,78:181-185.
    Arfsten D.P., Schaeffer D.J., Mulveny D.C. The effects of near ultraviolet lightradiation on the toxic effects of polycyclic aromatic hydrocarbons in animals andplants: a review. Ecotoxicology and Environmental Safety,1996,33:1-24.
    Aruoja V., Kurvet I., Dubourguier H.C., Kahru1A. Toxicity testing ofheavy-metal-polluted soils with algae Selenastrum capricornutum: a soilsuspension assay. Environmental Toxicology,2004,19(4):396-402.
    Avery S.V., Godd G.A., Gadd G.M. Microalgae removal of organic and inorganicmetal species from aqueous solution. In: Wong Y.S., Tam N.F.Y.(Eds.),Wastewater Treatment with Algae, Springer-Verlag Press, Berlin,1998, pp.55-72.
    Awasthi M., Rai L.C. Toxicity of nickel, zinc, and cadmium to nitrate uptake in freeand immobilized cells of Scenedesmus quadricauda. Ecotoxicology andEnvironmental Safety,2005,61:268-272.
    Babu T.S., Akhtar T.A., Lampi M.A., Tripuranthakam S., Dixon D.G., GreenbergB.M. Similar stress responses are elicited by copper and ultraviolet radiation in theaquatic plant Lemna gibba: implication of reactive oxygen species as commonsignals. Plant and Cell Physiology,2003,44:1320-1329.
    Baldrian P., Wiesche C., Gabriel J., Nerud F., Zadra il F. Influence of cadmium andmercury on activities of ligninolytic enzymes and degradation of polycyclicaromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and EnvironmentalMicrobiology,2000,66(6):2471-2478.
    Bayramo lu G., Arica M.Y. Removal of heavy mercury (II), cadmium (II) and zinc (II)metal ions by live and heat inactivated Lentinus edodes pellets. ChemicalEngineering Journal,2008,143:133-140.
    Bogan B.W., Lamar R.T. Polycyclic aromatic hydrocarbon-degrading capabilities ofPhanerochaete laevis HHB-1625and its extracellular ligninolytic enzymes.Applied and Environmental Microbiology,1996,62(5):1597-1603.
    Boki K., Kadota S., Takahashi M., Kitakouji M. Uptake of polycyclic aromatichydrocarbons by insoluble dietary fiber. Journal of Health Science,2007,53:99-106.
    Blumer M. Polycyclic aromatic compounds in nature. Scientific American,1976,234:35-45.
    Bortolato S.A., Arancibia J.A., Escandar G.M. Chemometrics-assisted fluorimetry forthe rapid and selective determination of heavy polycyclic aromatic hydrocarbons incontaminated river waters and activated sludges. Environmental Science andTechnology,2011,45(4):1513-1520.
    Cerniglia C.E., Baalen C.V., Gibson D.T. Metabolism of naphthalene by thecyanobacteria Osillatoria sp., strain JCM. Journal of General Microbiology,1980,116:485-494.
    Cerniglia C.E. Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. In:Hodgson E., Bend J.R., Philpot R.M.(Eds.), Reviews in Biochemical Toxicology,Vol.3, Elsevier/North Holland, NY,1981, pp.321-361.
    Cerniglia C.E., Gibson D.T., Baalen C.V. Naphthalene metabolism by diatoms fromthe Kachemak Bay region of Alaska. Journal of General Microbiology,1982,128:987-990.
    Cerniglia C.E., Heitkamp M.A. Microbial degradation of polycyclic aromatichydrocarbons (PAH) in the aquatic environment. In: Varanasi U.(Eds.),Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment, CRC,Boca Raton, FL, USA,1989, pp.41-68.
    Cerniglia C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation,1992,3:351-368.
    Cerniglia C.E. Biodegradation of polycyclic aromatic hydrocarbons. Current Opinionin Biotechnology,1993,4:331-338.
    Chan S.M.N., Luan T.G., Wong M.H., Tam N.F.Y. Removal and biodegradation ofpolycyclic aromatic hydrocarbons by Selenastrum capricornutum. EnvironmentalToxicology and Chemistry,2006,25(7):1772-1779.
    Chauhan A., Fazlurrahman, Oakeshott J.G., Jain R.K. Bacterial metabolism ofpolycyclic aromatic hydrocarbons: strategies for bioremediation. Indian Journal ofMicrobiology,2008,48(1):95-113.
    Chen S.N., Yin H., Ye J.S., Peng H., Zhang N., He B.Y. Effect of copper (II) onbiodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia. Chemosphere,2013,90(6):1811-1820.
    Cheung K.C., Poon B.H.T., Lan C.Y., Wong M.H. Assessment of metal and nutrientconcentrations in river water and sediment collected from the cities in the PearlRiver Delta, South China. Chemosphere,2003,52:1431-1440.
    Chong A.M.Y., Wong Y.S., Tam N.F.Y. Performance of different microalgal species inremoving nickel and zinc from industrial wastewater. Chemosphere,2000,41:251-257.
    Cody T.E., Radike M.J., Warshawsky D. The phototoxicity of benzo[a]pyrene in thegreen alga Selenastrum capricornutum. Environmental Research,1984,35:122-131.
    Connell D.W. Polycyclic aromatic hydrocarbons (PAHs): In Basic concepts ofenvironmental chemistry.1997.
    Doshi H., Ray A., Kothari I.L. Biosorption of cadmium by live and dead Spirulina: IRspectroscopic, kinetics, and SEM studies. Current Microbiology,2007,54:213-218.
    Eggen T., Majcherczyk A. Removal of polycyclic aromatic hydrocarbons (PAH) incontaminated soil by white rot fungus Pleurotus ostreatus. InternationalBiodeterioration and Biodegradation,1998,41:111-117.
    Elbekai R.H., El-Kadi A. The role of oxidative stress in the modulation of arylhydrocarbon receptor-regulated genes by As3+,Cd2+and Cr6+. Free RadicalBiology and Medicine,2005,39:1499-1511.
    Gogolev A., Wilke B.M. Combination effects of heavy metals and fluoranthene onsoil bacteria. Biology and Fertility of Soils,1997,25:274-278.
    Gogou A., Stratigakis N., Kanakidou M., Stephanou E.G. Organic aerosols in EasternMediterranean: components source reconciliation by using molecular markers andatmospheric back trajectories. Organic Geochemistry,1996,25:79-96.
    Gomes R.B., Nogueira R., Oliveira J.M., Peixoto J., Brito A.G. Determination of totaland available fractions of PAHs by SPME in oily wastewaters: overcominginterference from NAPL and NOM. Environmental Science and PollutionResearch,2009,16:671-678.
    Gonzalez-Gil G., Kleerebezem R., Lettinga G. Effects of nickel and cobalt on kineticsof methanol conversion by methanogenic sludge as assessed by on-line CH4monitoring. Applied and Environmental Microbiology,1999,65:1789-1793.
    Gordon L., Dobson A.D.W. Fluoranthene degradation in Pseudomonas alcaligenesPA-10. Biodegradation,2001,12:393-400.
    Haag W.R., Hoigné J., Gassman E., Braun A.M. Singlet oxygen in surface waters-partI: Furfuryl alcohol as a trapping agent. Chemosphere,1984,13(5/6):631-640.
    Halket J.M., Zaikin V.G. Derivatization in mass spectrometry--1. Silylation. EuropeanJournal of Mass Spectrometry,2003,9:1-21.
    Hall J.A., Golding L.A. Freshwater Algae (Selenastrum capricornutum). ChronicToxicity Test Protocol. NIWA report for the Ministry for the Environment.Wellington, New Zealand, NIWA Ecotoxicology Laboratory,1998.
    Hassen A., Saidi N., Cherif M., Boudabous A. Effects of heavy metals onPseudomonas aeruginosa and Bacillus thuringiensis. Bioresource Technology1998,65:73-82.
    Heitkamp M.A., Cerniglia C.E., Polycyclic aromatic hydrocarbon degradation by aMycobacterium sp. in microcosms containing sediment and water from a pristineecosystem. Applied and Environmental Microbiology,1989,55:1968-1973.
    Heitkamp M.A., Franklin W., Cerniglia C.E. Microbial metabolism of polycyclicaromatic hydrocarbons: isolation and characterization of a pyrene-degradingbacterium. Applied and Environmental Microbiology,1988,54:2549-2555.
    Heitkamp M.A., Freeman J.P., Miller D.W., Cerniglia C.E. Pyrene degradation by aMycobacterium sp.: identification of ring oxidation and ring fission products.Applied and Environmental Microbiology,1988,54:2556-2565.
    Henczová M., Deér A.K., Filla A., Komlósi K., Mink J. Effects of Cu2+and Pb2+ondifferent fish species: Liver cytochrome P450-dependent monooxygenase activitiesand FTIR spectra. Comparative Biochemistry and Physiology, Part C,2008,148(1):53-60.
    Hong Y.W., Yuan D.X., Lin Q.M., Yang T.L. Accumulation and biodegradation ofphenanthrene and fluoranthene by the algae enriched from a mangrove aquaticecosystem. Marine Pollution Bulletin,2008,56(8):1400-1405.
    Huang G.L., Sun H.W, Cong L.L. Study on the physiology and degradation of dyewith immobilized algae. Artificial Cells, Blood Substitutes, and ImmobilizationBiotechnology,2000,28:347-363.
    Huang T.L., Cong H.B. A new method for determination of chlorophylls in freshwateralgae. Environmental Monitoring and Assessment,2007,129:1-7.
    Huang X.D., Dixon D.G., Greenberg B.M. Impacts of UV radiation andphotomodification on the toxicity of PAHs to higher plant Lemna gibba(duckweed). Environmental Toxicology and Chemistry,1993,12:1007-1077.
    Huang X.D., Dixon D.G., Greenberg B.M. Increased polycyclic aromatic hydrocarbontoxicity following their photomodification in natural sunlight: Impacts on theduckweed Lemna gibba L. G-3. Ecotoxicology and Environmental Safety,1995,32:194-200.
    James D.E. Culturing Algae. Carolina Biological Supply Company, USA.1978.
    Johnson-Restrepo B., Olivero-Verbel J., Lu S.J., Guette-Fernández J., Baldiris-AvilaR., O’ Byrne-Hoyos I., Aldous K.M., Addink R., Kannan K. Polycyclic aromatichydrocarbons and their hydroxylated metabolites in fish bile and sediments fromcoastal waters of Colombia. Environmental Pollution,2008,151:452-459.
    Juhasz A.L., Britz M.L., Stanely G.A. Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Science andTechnology,1997,36(10):45-51.
    Juhasz A.L., Naidu R. Bioremediation of high molecular weight polycyclic aromatichydrocarbons: a review of the microbial degradation of benzo[a]pyrene.International Biodeterioration and Biodegradation,2000,45(1-2):57-88.
    Kanaly R.A., Harayama S. Minireview: biogradation of high-molecular-weightpolycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology,2000,182(8):2059-2067.
    Karcher W., Fordham R.J., Dubois J.J., Glaude P.G.J.M., Ligthart J.A.M. SpectralAtlas of Polycyclic Aromatic Compounds. Reidel, Dordrecht, Holland.1985.
    Keith L.H., Telliard W.A. Priority pollutants Ι-a perspective view. EnvironmentalScience and Technology,1979,13:416-423.
    Kim T.J., Lee E.Y., Kim Y.J., Cho K.S., Ryu H.W. Degradation of polyaromatichydrocarbons by Bukholderia cepacia2A-12. World Journal of Microbiology andBiotechnology,2003,19:411-417.
    Kirso U., Irha N. Role of algae in fate of carcinogenic polycyclic aromatichydrocarbons in the aquatic environment. Ecotoxicology and Environmental Safety,1998,41:83-89.
    Komβa D., Langebartels C., Sandermann H. Metabolic processes for organicchemicals in plants. In: Trapp S., McFarlane J.C.(Eds.), Plant Contamination,CRC, Boca Raton, FL, USA,1995, pp.69-103.
    Konstantinou I.K., Zarkadis A.K., Albanis T.A. Photodegradation of selectedherbicides in various natural waters and soils under environmental conditions.Journal of Environmental Quality,2001,30(1):121-130.
    Korashy H.M., El-Kadi A. The role of redox-sensitive transcription factors NF-κBand AP-1in the modulation of the Cyp1a1gene by mercury, lead and copper. FreeRadical Biology and Medicine,2008,44:795-806.
    Kou J., Zhang H., Yuan Y., Li Wang Y., Yu T., Zou Z. Efficient photodegradation ofphenanthrene under visible light irradiation via photosensitized electron transfer.The Journal of Physical Chemistry C,2008,112:4291-4296.
    Lei A.P., Wong Y.S., Tam N.F.Y. Removal of pyrene by different microalgal species.Water Science and Technology,2002,46:195-201.
    Lei A.P., Hu Z.L., Wong Y.S., Tam N.F.Y. Removal of fluoranthene and pyrene bydifferent microalgal species. Bioresource Technology,2007,98(2):273-280.
    Lewis T., Nichols P.D., McMeekin T.A. Evaluation of extraction methods forrecovery of fatty acids from lipid-producing microheterotrophs. Journal ofMicrobiological Methods,2000,43:107-116.
    Lindquist B., Warshawsky D. Stereospecificity in algal oxidation of the carcinogenbenzo[a]pyrene. Birkh user Verlag,1985,41(6):767-769.
    Lindquist B., Warshawsky D. Identification of the11,12-dihydro-11,12-dihydroxybenzo[a]pyrene as a major metabolite produced by the green alga,selenastrum capricornutum. Biochemical and Biophysical ResearchCommunications,1985,130(1):71-75.
    Liu X.L., Wu F., Deng N.S. Photoproduction of hydroxyl radicals in aqueous solutionwith algae under high-pressure mercury lamp. Environmental Science andTechnology,2004,38:296-299.
    Liu X.L., Xu D., Wu F., Liao Z.H., Liu J.T., Deng N.S. Preliminary study on thephotoproduction of hydroxyl radicals in aqueous solution with aldrich humic acid,algae and Fe (lll) under high-pressure mercury lamp irradiation. Photochemistryand Photobiology,2004,79:259-2154.
    Lu J., Guo C.L., Li J., Zhang H., Lu G.N., Dang Z., Wu R.R. A fusant ofSphingomonas sp GY2B and Pseudomonas sp GP3A with high capacity ofdegrading phenanthrene. World Journal of Microbiology and Biotechnology,2013,29(9):1685-1694.
    Mackay D., Shiu W.Y., Illustrated handbook of physical chemical properties andenvironmental fate for organic chemicals. Lewis Press, Boca Raton, Florida.1992.
    Magdaleno A., De Rosa E. Chemical composition and toxicity of waste dumpleachates using Selenastrum capricornutum Printz (Chlorococcales, Chlorophyta).Environmental Toxicology,2000,15:76-80.
    Marking L.L. Toxicity of chemical mixtures. In: Rand G.M., Petrocelli S.R.(Eds.).Fundamentals of aquatic toxicology, Hemisphere, New York,1985, pp.164-176.
    Matsumura F., Esaac E.G. Degradation of pesticides by algae and aquaticmicroorganisms. In: Khan M.A.Q., Lech J.J., Menn J.J.(Eds.), Pesticide andXenobiotic Metabolism in Aquatic Organisms, American Chemical Society, ACSPress, Washington, DC,1979, pp.371-387.
    Matsunaga T., Takeyama H., Nakao T., Yamazawa A. Screening of marine microalgaefor bioremediation of cadmium-polluted seawater. Journal of Biotechnology,1999,70:33-38.
    Matsuzawa S., Nasser-Ali L., Garrigues P. Photolytic behavior of polycyclic aromatichydrocarbons in diesel particulate matter deposited on the ground. EnvironmentalScience and Technology,2001,35:3139-3143.
    Melikian A.A., Peng S., Prokopczyka B., El-Bayoumya K., Hoffmanna D., Wang X.,Waggoner S. Identification of benzo[a]pyrene metabolites in cervical mucus andDNA adducts in cervical tissues in humans by gas chromatographymass-spectrometry. Cancer Letters,1999,146:127-134.
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7:405-410.
    Monson P.D., Ankley G.T., Kosian P.A. Phototoxic response of Lumbriculusvariegatus to sediments contaminated by polycyclic aromatic hydrocarbons.Environmental Toxicology and Chemistry,1995,14(5):891-894.
    Monteiro C.M., Castro P.M.L., Malcata F.X. Use of the microalga Scenedesmusobliquus to remove cadmium cations from aqueous solutions. World Journal ofMicrobiology and Biotechnology,2009,25:1573-1578.
    Moreau C.J, Klerks P.L., Haas C.N. Interaction between phenanthrene and Zinc intheir toxicity to the sheepshead minnow (Cyprinodon variegates). Archives ofEnvironmental Contamination and Toxicology,1999,37:251-257.
    Moreno-Garrido I., Lubian L.M., Blasco J. Sediment toxicity tests involvingimmobilized microalgae (Phaeodactylum tricornutum Bohlin). EnvironmentInternational,2007,33:481-485.
    Nadal M., Wargent J.J., Jones K.C., Paul N.D., Schuhmacher M., Domingo J.L.Influence of UV-B radiation and temperature on photodegradation of PAHs:preliminary results. Journal of Atmospheric Chemistry,2006,55:241-252.
    Narro M.L., Cerniglia C.E., Baalen C.V., Gibson D.T. Metabolism of phenanthrene bythe marine cyanobacterium Agmenellum quadruplicatum PR-6. Applied andEnvironmental Microbiology,1992,58(4):1351-1359.
    Nassiri Y., Ginsburger-Vogel T., Mansot J.L., Wry J. Effects of heavy metals onTetraselmis suecica: ultrastructural and energy-dispersive X-ray spectroscopicstudies. Biology of the Cell,1996,86:151-160.
    Novotny C., Erbanova P., Sasek V., Kubatova A., Cajthaml T., Lang E., Krahl J.,Zadrazil F. Extracellular oxidative enzyme production and PAH removal in soil byexploratory mycelium of white rot fungi. Biodegradation,1999,10(3):159-168.
    Ohnuki G., Toyooka T., Ibuki Y. UVB in solar-simulated light causes formation ofBaP-photoproducts capable of generating phosphorylated histone H2AX. MutationResearch,2010,702:70-77.
    Ohura T., Amagai T., Sugiyama T., Fusaya M., Matsushita H. Characteristics ofparticle matter and associated polycyclic aromatic hydrocarbons in indoor andoutdoor air in two cities in Shizuoka, Japan. Atmospheric Environment,2004,38:2045-2054.
    Pardos M., Benninghoff C., Thomas R.L. Photosynthetic and population growthresponse of the test alga Selenastrum capricornutum Printz to zinc, cadmium andsuspended sediment elutriates. Journal of Applied Phycology,1998,10:145-151.
    Peng R.H., Xiong A.S., Xue Y., Fu X.Y., Gao F., Zhao W., Tian Y.S., Yao Q.H.Microbial biodegradation of polyaromatic hydrocarbons. FEMS MicrobiologyReviews,2008,32(6):927-955.
    Peng Z.E., Wu F., Deng N.S. Photodegradation of bisphenol A in simulated lakewater containing algae, humic acid and ferric ions. Environmental Pollution,2006,144:840-846.
    Pereiro I.R., Irimia R.G., Cano E.R., Torrijos R.C. Optimisation of a gaschromatographic-mass spectrometric method for the determination of phenoxyacid herbicides in water samples as silyl derivatives. Analytica Chimica Acta,2004,524(1-2):249-256.
    Perraudin E., Budzinski H., Villenave E. Kinetic study of the reactions of ozone withpolycyclic aromatic hydrocarbons adsorbed on atmospheric model particles.Journal of Atmospheric Chemistry,2007,56:57-82.
    Potin O., Rafin C., Veignie E. Bioremediation of an aged polycyclic aromatichydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil.International Biodeterioration and Biodegradation,2004,54:45-52.
    Ramirez N., Cutright T., Ju L.K. Pyrene biodegradation in aqueous solutions and soilslurries by Mycobacterium PYR-1and enriched consortium. Chemosphere,2001,44(5):1079-1086.
    Ravelet C., Krivobok S., Sage L., Steiman R. Biodegradation of pyrene by sedimentfungi. Chemosphere,2000,40:557-563.
    Rehmann K., Noll H.P., Steinberg C.E.W., Kettrup A.A. Pyrene degradation byMycobacterium sp. strain KR2. Chemosphere,1998,36(14):2977-2992.
    Romero M.C., Salvioli M.L., Cazau M.C., Arambarri A.M. Pyrene degradation byyeasts and fliamentous fungi. Environmental Pollution,2002,117:159-163.
    Salicis F., Krivobok S., Jack M., Benoit-Guyod J.L. Biodegradation of fluorantheneby soil fungi. Chemosphere,1999,38:3031-3039.
    Salin M.L. Chloroplast and mitochondrial mechanisms for protection against oxygentoxicity. Free Radical Research,1991,13(1):851-858.
    Schoeny R., Cody T., Warshawsky D., Radike M. Metabolism of mutagenicpolycyclic hydrocarbons by photosynthetic algal species. Mutation Research,1988,197:289-302.
    Schummer C., Appenzeller B.M.R., Millet M., Wennig R. Determination ofhydroxylated metabolites of polycyclic aromatic hydrocarbons in human hair bygas chromatography-negative chemical ionization mass spectrometry. Journal ofChromatography A,2009,1216(32):6012-6019.
    Schutzendubel A., Majcherczyk A., Johannes C., Huttermann A. Degradation offluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection tothe production of extracellular enzymes by Pleurotus ostreatus and Bjerkanderaadusta. International Biodeterioration and Biodegradation,1999,43:93-100.
    Seo J.S., Keum Y.S., Li Q.X. Bacterial degradation of aromatic compounds.International Journal of Environmental Research and Public Health,2009,6(1):278-309.
    Semple K.T., Cain R.B., Schmidt S. Biodegradation of aromatic compounds bymicroalgae. FEMS Microbiology Letters,1999,170(2):291-300.
    Snyder M.J. Cytochrome P450enzymes in aquatic invertebrates: recent advances andfuture directions. Aquatic Toxicology,2000,48:529-547.
    Song H.G. Comparsion of pyrene biodegradation by white rot fungi. World Journal ofMicrobiology and Biotechnology,1999,15:669-672.
    Soto C., Hellebust J.A., Hutchinson T.C., Sawa T. Effect of napthalene and aqueouscrude oil extracts on the green flagellate Chlamydomonas angulosa. I. Growth.Canadian Journal of Botany,1975,53:109-117.
    Soto C., Hellebust J.A., Hutchinson T.C. Effect of napthalene and aqueous crude oilextracts on the green flagellate Chamldomonas angulosa. II. Photosynthesis andthe uptake and release of naphthalene. Canadian Journal of Botany,1975,53:118-126.
    Tae J.K., Lee E.Y., Kin Y.J., Cho K.S., Ryu H.W. Degradation of polyaromatichydrocarbons by Burkholderia cepacia2A-12. World Journal of Microbiology andBiotechnology,2003,19:411-417.
    Tang L., Tang X.Y., Zhu Y.G., Zheng M.H., Miao Q.L. Contamination of polycyclicaromatic hydrocarbons (PAHs) in urban soils in Beijing, China. EnvironmentInternational,2005,31:822-828.
    Terry P.A., Stone W. Biosorption of cadmium and copper contaminated water byScenedesmus abundans. Chemosphere,2002,47:249-255.
    The World Bank Group. Pollution prevention and abatement handbook, towardcleaner production. The World Bank Group, Washington, D.C.,1998, pp.457.
    Thomas S.D., Li Q.X. Immunoaffinity chromatography for analysis of polycyclicaromatic hydrocarbons in corals. Environmental Science and Technology,2000,34:2649-2654.
    Torres M.A., Barros M.P., Campos S.C.G., Pinto E., Rajamani S., Sayre R.T.,Colepicolo P. Biochemical biomarkers in algae and marine pollution: a review.Ecotoxicology and Environmental Safety,2008,71:1-15.
    Van den Hurk P., Faisal M., Roberts Jr M.H. Interaction of cadmium andbenzo[a]pyrene in mummichog (Fundulus heteroclitus): effects on acute mortality.Marine Environmental Research,1998,46:525-528.
    Vialaton D., Richard C. Phototransformation of aromatic pollutants in solar light:photolysis versus photosensitized reactions under natural water conditions. Aquaticsciences,2002,64:207-215.
    Wang C.P., Sun H.W., Li J.M., Li Y.M., Mang Q.M. Enzyme activities duringdegradation of polycyclic aromatic hydrocarbons by white rot fungusPhanerochaete chrysosporium in soils. Chemosphere,2009,77(6):733-738.
    Wang J.Z., Guan Y.F., Ni H.G., Luo X.L., Zeng E.Y. Polycyclic aromatichydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations,fluxes and fate. Environmental Science and Technology,2007,41:5614-5619.
    Wang L., Zhang C.B., Wu F., Deng N.S. Photodegradation of aniline in aqueoussuspensions of microalgae. Journal of Photochemistry and Photobiology B,2007,87:49-57.
    Wang L., Zheng B. Toxic effects of fluoranthene and copper on marine diatomPhaeodactylum tricornutum. Journal of Environmental Sciences,2008,20:1363-1372.
    Wang P., Luo L.J., Ke L., Luan T.G., Tam N.Y.F. Combined toxicity of polycyclicaromatic hydrocarbons and heavy metals to biochemical and antioxidant responsesof free and immobilized Selenastrum capricornutum. Environmental Toxicologyand Chemistry,2013,32(3):673-683.
    Warshawsky D., Cody T., Radike M., Reilman R., Schumann B., LaDow K.,Schneider J. Biotransformation of benzo[a]pyrene and other polycyclic aromatichydrocarbons and heterocyclic analogs by several green algae and other algalspecies under gold and white light. Chemico-biological Interactions,1995,97:131-148.
    Warshawsky D., Keenan T.H., Reilman R., Cody T.E., Radike M.J. Conjugation ofbenzo[a]pyrene metabolites by freshwater green alga Selanastrum capricornutum.Chemico-biological Interactions,1990,74:93-105.
    Warshawsky D., Radike M., Jayasimhulu K., Cody T. Metabolism of benzo(a)pyreneby a dioxygenase enzyme system of the freshwater green alga Selenastrumcapricornutum. Biochemical and Biophysical Research Communications,1988,152(2):540-544.
    Weinstein J.E. Photoperiod effects on the UV-induced toxicity of fluoranthene tofreshwater mussel glochidia: absence of repair during dark periods. AquaticToxicology,2002,59:153-161.
    Wetzel A., Alexander T., Brandt S., Werner D. Reduction by fluoranthene of copperand lead accumulation in Triticum aestivum L. Bulletin of EnvironmentalContamination and Toxicology,1994,53:856-862.
    Wild S.R., Jones K.C. The effect of sludge treatment on the organic contaminantcontent of sewage sludges. Chemosphere,1989,19:1765-1777.
    Wong J.P.K., Wong Y.S., Tam N.F.Y. Nickel biosorption by two chlorella species, C.Vulgaris (a commercial species) and C. Miniata (a local isolate). BioresourceTechnology,2000,73:133-137.
    Ye D.Y., Siddiqi M.A., Maccubbin A.E., Kumar S., Sikka H.C. Degradation ofpolynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. EnvironmentalScience and Technology,1996,30(1):136-142.
    Zepp R.G., Schlotzhauer P.F. Photoreactivity of selected aromatic hydrocarbons inwater. In: Joncs P.W., Leber P.(Eds.), Polynuclear Aromatic Hydrocarbons, AnnArbor Science Publishing, Ann Arbor, MI,1979, pp.141-158.
    Zepp R.G., Schlotzhauer P.F. Influence of algae on photolysis rates of chemicals inwater. Environmental Science and Technology,1983,17:462-468.
    Zepp R.G., Skurlatov Y.I., Pierce J.T. Algal-induced decay and formation ofhydrogen peroxide in water: Its possible role in oxidation of anilines by algae. In:Zika R.G., Cooper W.J.(Eds.), Photochemistry of Environmental Aquatic Systems,1987, Chapter16.
    Zhang K., Liang B., Wang J.Z., Guan Y.F., Zeng E.Y. Polycyclic aromatichydrocarbons in upstream riverine runoff of the Pearl River Delta, China: Anassessment of regional input sources. Environmental Pollution,2012,167:78-84.
    Zhang L., Huang G.L., Yu Y.T. Immobilization of microalgae for biosorption anddegradation of butyltin chlorides. Artificial Cells, Nanomedicine, andBiotechnology,1998,26:399-410.
    Zheng Z., Obbard J.P. Removal of surfactant solubilized polycyclic aromatichydrocarbons by Phanerochaete chrysosporium in a rotating biological contactorreactor. Journal of Biotechnology,2002,96:241-249.
    Zhong Y., Luan T.G., Lin L., Liu H., Tam N.F.Y. Production of metabolites in thebiodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of
    Mycobacterium sp. and Sphingomonas sp. Bioresource Technology,2011,102(3):
    2965-2972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700