用户名: 密码: 验证码:
鼠尾草酸联合三氧化二砷诱导白血病细胞凋亡的体内体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:急性髓系白血病(AML)是一种造血系统细胞异常增殖的恶性血液肿瘤。其发生和发展与白血病细胞凋亡异常密切相关。细胞具有增殖、分化和凋亡三方面的特征,在维持正常组织的生长平衡过程中三者互相协调、共同调节。一旦细胞凋亡受阻,打破细胞的平衡调节,造成明显的生长优势,就为肿瘤的发生奠定基础。因此诱导凋亡疗法是目前治疗白血病的最重要方法之一。三氧化二砷(As_2O_3)作为经典的凋亡诱导剂,不仅可使初治的APL患者有较高完全缓解率,对全反式维甲酸和化疗耐受的复发患者及其他类型的白血病也有良好的治疗作用,并且不会导致骨髓抑制。但是其毒副作用在一定程度上限制了As_2O_3在临床的应用。有研究表明As_2O_3的毒性呈剂量依赖性,因此,寻找少毒副作用增敏剂,与As_2O_3联合应用,增强其诱导凋亡的作用,降低其使用剂量,减轻其毒副作用,是拓宽As_2O_3临床应用范围的重要手段。鼠尾草酸(Carnosic acid,CA)是迷迭香提取物中的抗氧化多酚,作为无毒防腐添加剂,广泛应用于食品加工行业。研究发现CA具有多种药理作用,如抗氧化、抗肿瘤、抗血栓、抗炎等。近年来,最新研究证实CA能够增强全反式维甲酸和维生素D衍生物诱导白血病细胞分化的能力。CA在体内和体外是否具有诱导白血病细胞凋亡的能力?CA与As_2O_3联合是否具有协同作用?其内在的分子机制又是什么?针对上述问题,本实验着重探讨CA自身及联合As_2O_3诱导HL-60细胞(人急性髓系白血病细胞株)及人白血病小鼠模型体内白血病细胞凋亡的作用,并采用各种分子生物学技术,研究其内在的分子机制。
     方法:1、体外实验:选用人急性髓系白血病细胞株HL-60细胞为研究对象,CA自身及联合As_2O_3作用,采用台盼蓝染色,细胞计数仪计数,观察药物对细胞生长情况的影响;用MTT法检测细胞活性的改变;瑞氏-吉姆萨染色观察药物作用后细胞形态学改变;碘化丙锭(PI)染色,流式细胞术分析细胞周期改变;AnnexinV/FITC和PI染色计算细胞凋亡率;应用Western blot检测细胞周期、细胞凋亡及信号转导途径的相关蛋白caspase-9、BAD、p-BAD、p27、PTEN、Akt、p-Akt的表达:采用半定量逆转录聚合酶链反应(RT-PCR)检测PTEN mRNA的表达。
     2、体内实验:(1)HL-60/SCID小鼠动物模型的建立及鉴定:选取5周龄的联合免疫缺陷(SCID)小鼠,鼠尾静脉注射对数生长期的HL-60细胞1×10~7个,建立HL-60/SCID小鼠人白血病模型。观察小鼠的一般情况及生存时间;每周检查血常规,进行白细胞计数及血涂片检测;取濒死小鼠的脑、肝、脾、肾、骨髓及淋巴结肿块,进行组织病理学及细胞学检测;取濒死小鼠的骨髓细胞制成染色体标本,应用G显带法进行染色体核型分析。(2)剂量-效应实验:取接种1周后的SCID小鼠,随机分为3组,每天分别给与CA 200mg/Kg、300mg/Kg、500mg/Kg,i.g.,治疗4周后记录生存时间。(3)CA自身及与As_2O_3联合治疗HL-60/SCID小鼠的疗效观察:取接种1周后的SCID小鼠,随机分为4组:①对照组:每日给与橄榄油,i.g.+生理盐水,i.p.;②CA组:每日给与CA 500mg/Kg,i.g.+生理盐水,i.p.;③As_2O_3组:每日给与橄榄油,i.g.+As_2O_3 3mg/Kg,i.p.:④CA+As_2O_3组:每日给与CA 500mg/Kg,i.g.+As_2O_3 3mg/Kg,i.p.。给药4周。观察小鼠的一般情况及生存时间。取接种4周后的SCID小鼠,分组给药同(3)。给药10天后处死,取脾细胞制成单个细胞悬液,流式细胞术分析细胞周期改变和检测细胞凋亡率。取小鼠的脑、肝、脾、肾、骨髓及淋巴结肿块,进行组织病理学及细胞学检测,免疫组化检测caspase-3、p27、PTEN的表达改变。
     结果:1、体外实验:台盼蓝染色,细胞计数仪计数,和MTT法示,CA对HL-60细胞生长的抑制呈剂量、时间相关性,并且CA显著增强As_2O_3对HL-60细胞活性的抑制作用,差异有统计学意义(P<0.05)。瑞氏-吉姆萨染色,油镜下观察可见治疗组细胞有凋亡现象出现。单用CA组、As_2O_3组和CA+As_2O_3组作用48h后,处于G1期的细胞百分率(%)分别为:49.69±2.66、52.93±2.18和77.59±1.40,CA显著增强As_2O_3引起的细胞G1期停滞,差异有统计学意义(P<0.05)。Westrenblot示,与细胞周期改变一致,联合用药组p27蛋白表达明显高于单药组。表明p27参与了以上药物引起的G1期停滞。Annexin V-FITC/PI染色法显示加入15μM CA,使得凋亡率(%)从As_2O_3组的42.35±2.51上升到CA+As_2O_3组的75.5±2.45,差异有统计学意义(P<0.05)。说明CA能够诱导HL-60细胞凋亡,其作用随着浓度的增加而增强;并且能够加强As_2O_3诱导凋亡的作用。Westren blot示48h后,cleaved caspase-9在15μM CA组,4μM As_2O_3组和15μM CA+4μMAs_2O_3组的表达依次增强,均强于对照组;BAD的表达没有明显变化;p-BAD的表达依次减弱,均弱于对照组。说明药物诱导凋亡的作用与激活caspase-9,抑制BAD磷酸化有关。PTEN蛋白和mRNA的表达在15μM CA组,4μM As_2O_3组和15μM CA+4μM As_2O_3组依次增强,均强于对照组。Akt在15μM CA组,4μM As_2O_3组和15μM CA+4μM As_2O_3组的表达没有明显变化;p-Akt的表达依次减弱,均弱于对照组。提示CA、As_2O_3能够促进PTEN的表达,抑制Akt的磷酸化。
     2、体内实验:(1)HL-60/SCID小鼠动物模型的建立及鉴定:接种后14天外周血涂片可见HL-60细胞,发病晚期濒死小鼠白细胞计数数倍于正常,血涂片中HL-60细胞可占90%。白细胞计数第14、21、和28天WBC(10~9/L)分别为3.9±1.2、5.4±0.7和16.1±3.9。生存期为24—32天。取濒死小鼠解剖后,可见肝、脾、肾、睾丸肿大,并且肝、脾、肾及腹膜弥漫存在粟粒样白色结节(白血病细胞浸润),颈项、四肢、眼、淋巴结可见肿块。脑、肝、脾、肾、骨髓及淋巴结肿块组织病理切片和细胞涂片显示有大量白血病细胞浸润。染色体核型分析示动物体内白血病细胞与体外培养的HL-60细胞染色体核型一致。(2)剂量一效应实验:经过4周治疗后,生存期(天)分别为:200mg/Kg:34.9±3.28,300mg/Kg:42.6±5.82,500mg/Kg:47.0±6.17,提示小鼠生存期呈剂量相关性,差异有统计学意义(P<0.05)。(3)CA自身及与As_2O_3联合治疗HL-60/SCID小鼠的疗效观察:经过4周治疗后,生存期(天)分别为:对照组:27.0±2.49,CA组:50.8±3.12,As_2O_3组:62.2±2.66,CA+As_2O_3组:80.1±5.02,提示与单药相比,CA和As_2O_3联合生存期明显延长(P<0.05)。流式细胞术分析细胞停滞在G1期的细胞百分率(%)为:对照组:36.0±4.53,CA组:46.4±6.47,As_2O_3组:51.0±3.54,CA+As_2O_3组:75.2±8.53,说明CA显著增强As_2O_3引起的细胞G1期停滞,差异有统计学意义(P<0.05)。流式细胞术分析药物引起的细胞凋亡率(%)分别为:对照组:4.8±1.79,CA组:13.2±3.19,As_2O_3组:58.2±5.97,CA+As_2O_3组:76.2±4.87,CA能够促进As_2O_3诱导凋亡的能力(P<0.05)。组织病理切片和细胞涂片示:对照组可见大量的白血病细胞成团聚集,治疗组均可见不同数量的凋亡的白血病细胞。免疫组化示:联合用药组caspase-3、p27、PTEN的表达均高于单药组。
     结论:CA在体外实验中能够抑制HL-60细胞的增殖,具有一定的诱导细胞凋亡和细胞周期停滞的能力,并且呈时间、剂量依赖性。在体内实验中,CA亦能引起HL-60细胞凋亡,并能够延长白血病小鼠的生存时间,呈剂量依赖性。更为重要的是,CA与As_2O_3联合应用,不但能够在体外显著增加白血病细胞的凋亡率,引起细胞周期阻滞于G1期,并且在体内也能显著增强上述作用,并能显著延长小鼠生存时间。其协同效果明显高于单药组。
     在诱导凋亡作用机制的研究中,我们发现CA自身及联合As_2O_3,在体外能促进p27的表达,激活caspase-9,抑制BAD的磷酸化。且PTEN/Akt信号通路亦参与了各药物诱导的细胞凋亡和细胞周期的停滞。在体内研究中,CA自身及联合As_2O_3能够活化caspase-3,增强FTEN、p27的表达。
     综上所述,体内、体外实验证明CA能够增强As_2O_3抗白血病的作用,使得应用较小剂量的As_2O_3就能达到较好的治疗效果,降低其使用剂量,也就减轻了毒副作用,并且CA本身安全无毒,又具有一定的抑制白血病的效果,因此,CA有希望作为辅佐剂在As_2O_3联合疗法治疗白血病中发挥作用。
Objective:Acute myeloid leukemia(AML)is an aggressive hematologic malignancy. The development and progression of the leukemic disease invariably involve deregulation in the apoptotic response.Therefore,apoptosis-inducing therapy is one of the current primary treatments for AML.As_2O_3,as an apoptosis inducer,has shown substantial efficacy in treating both newly diagnosed and relapsed/refractory patients with acute promyelocytie leukemia(APL,a subset of AML).Moreover,As_2O_3 has clinical efficacy in patients with all-trans retinoic acid(ATRA)-resistant APL,for there seems to be no obvious cross-resistance between ATRA and As_2O_3.In addition, use of As_2O_3 generally does not lead to myelosuppression,providing a potential advantage over use of conventional cytotoxic agents.However,the reported chronic toxicities and carcinogenicity of As_2O_3 have hampered its acceptance as a first-choice drug.The major clinical limitation is a pronounced toxicity,which is dose dependent. Hence,one approach to overcoming the problem is combination therapy,which may allow for administration of lower doses of arsenic trioxide,minimizing toxicity and potential drug antagonism.Thus,it is of great importance to develop adjuvant agents, which have low toxicity,increase the apoptotic action of As_2O_3 and reduce the drug dosage to physiologically tolerable concentrations(<5μM).Carnosic acid,the major rosemary polyphenol,is an antioxidant food additive with non-toxicity.It has many pharmacological effects,such as antioxidant,antitumor,antithrombotic and antiinflammatory effect.The purpose of our study was to evaluate the effects of carnosic acid on apoptosis,to specifically concentrate on the cooperated effects of carnosic acid with low concentration of As_2O_3 in HL-60 human myeloid leukemia cells,and to further investigate the molecular mechanisms involved in these effects in vitro and in vivo.
     Methods:In vitro:Cell growth was determined by counting cells using a Coulter counter.Cellular viability was measured by MTT assay,and cell cycle distribution and apoptosis were monitored by flow cytometry(FCM).The protein expression of cleaved caspase-9,BAD,p-BAD,p27,PTEN,Akt,p-Akt were assessed by western blot analysis and the lever of PTEN mRNA was tested by RT-PCR analysis. In vivo:(1)Establishment and Evaluation of Human Acute myeloid Leukemia HL-60 Model in SCID Mice.SCID mice were transplanted by tail vein injection with 1×10~7 HL-60 cells.Leukemic cells were detected by chromosome karyotype analysis and histopathologic methods.(2)In dose-response experiments,mice were treated for 4 w with daily i.g.of CA(200mg/Kg,300mg/Kg,500mg/Kg),after 7 days of leukemia engraftment.The average survival time was observed.(3)Treatment of carnosie acid and carnosie aeid-As_2O_3 combination.Mice were divided into 4 groups(①control group,②CA group,③As_2O_3 group,④CA+ As_2O_3 group) to receive treatment for 4 w after 7 days of leukemia engraftment.The changes of common condition and the average survival time were observed.After 4 w of leukemia engraftment,the mice were divided into 4 group(①control group,②CA group,③As_2O_3 group,④CA+ As_2O_3 group)to receive treatment for 10 d.At the end of the experiment,all mice were killed by the institutionally approved method. Spleen,liver,long bone and lymph node metastasis were excised and examined by microscopy and immunohistochemistry.The cell cycle progression and the apoptosis of spleen cells were examined using FCM.
     Results:In vitro:Camosic acid inhibited cell growth and decreased cell viability in a dose- and time- dependent manner,and induced G1 arrest and apoptosis.Carnosic acid also augmented these effects when they were induced by a low(physiological) concentration of arsenic trioxide,which was associated with upregulation of p27 and activation of caspace-9.These effects were apparently mediated by the induction of PTEN expression and by blocking Akt pathway.
     In vivo:(1)Transplantation was always successful,and all animals died generally in 24-32 d.(2)After 4 w treatment,the average survival time was as follows: 200mg/Kg.34.9±3.28 days,300mg/Kg:42.6±5.82 days,500mg/Kg:47.0±6.17 days. These results showed camosic acid treatment increased the average survival time in a dose- dependent manner(P<0.05).(3)After 4 w treatment,the average survival time was as follows:control group:27.0±2.49 days,CA grpup:50.8±3.12 days,As_2O_3 group:62.2±2.66 days,CA+As_2O_3 group:80.1±5.02 days.The findings demonstrated that carnosic acid could particularly promote the average survival time induced by As_2O_3(P<0.05).The cells in G1 phase(%)were as follows:control group: 36.0±4.53,CA group:46.4±6.47,As_2O_3 group:51.0±3.54,CA+As_2O_3 group: 75.2±8.53.These data showed that carnosic acid could particularly promote cell cycle arrest of HL-60 cells induced by As_2O_3(P<0.05).The apoptotic cells(%)were as follows:control group:4.8±1.79,CA group:13.2±3.19,As_2O_3 group:58.2±5.97, CA+ As_2O_3 group:76.2±4.87.These observations showed that carnosic acid could enhance As_2O_3-induced apoptosis(P<0.05).Microscopy indicated that in the tissue of untreated animals,leukemic blasts infiltrated the parenchyme as very large perivascular masses associated with smaller aggregates of leukemic cells that obstructed sinusoids.In the tissue of treated animals,some cells with a condensed nucleus had apoptotic-like features.After drugs treatments,immunohistochemistry showed that cleaved caspase-3、p27、PTEN level was increased.
     Conclusions:These findings indicate that PTEN/Akt pathway has an important role in the cooperated induction of apoptosis and G1 arrest by carnosic acid and As_2O_3. Carnosic acid may have potential as an adjuvant in As_2O_3 -induced apoptosis therapy for its anticipated safety and its great potency in enhancing apoptosis-inducing action of low concentration of As_2O_3.
引文
1.Testa U,Riccioni R.Deregulation of apoptosis in acute myeloid leukemia.Haematologica 2007;92:81-94.
    2.Tallman MS,Nabhan C,Feusner JH,et al.Acute promyelocytic leukemia:evolving therapeutic strategies.Blood 2002;99:759-67.
    3.Shen ZX,Chen GQ,Ni JH,et al.Use of arsenictrioxide(As2O3)in the treatment of acute promyelocytic leukemia(APL):Ⅱ.Clinical efficacy and pharmacokinetics in relapsed patients.Blood 1997;89:3354-60.
    4.Goering PL,Aposhian HV,Mass MJ,et al.The enigma of arsenic carcinogenesis:role of metabolism.Toxicol Sci 1999;49:5-14.
    5.Jing Y,Wang R,Xia L,et al.Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo.Blood 2001;197:264-9.
    6.Miller WH Jr,Schipper HM,Lee JS,et al.Mechanisms of action of arsenic trioxide.Cancer Res 2002;62:3893-903.
    7.Cerutti PA.Prooxidant states and tumor promotion.Science 1985;227:375-81.
    8.Fiander H,Schneider H.Dietary ortho phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms:the alleviation of oxidative stress and the detoxication of mutagenic xenobiotics.Cancer Lett 2000;156:117-4.
    9.Frankel EN,Huang S-W,Aeschbach R,et al.Antioxidant activity of a rosemary extract and its constituents,carnosic acid,carnosol,and rosmarinic acid,in bulk oil and oil-in-water emulsion.J Agric Food Chem 1996;131:131-35.
    10.Danilenko M,Wang Q,Wang X,et al.Camosic acid potentiates the antioxidant and prodifferentiation effects of 1a,25-dihydroxyvitarnin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium.Cancer Res 2003;63:1325-32.
    11.李颢,陈学良,李大庆,赵川莉,冯进波,张锑。鼠尾草酸联合三氧化二砷对 HL60细胞的影响.中华血液学杂志,2006;27(3):194-6.
    12.Li J,Yen C,Liaw D,et al.PTEN,a putative protein tyrosinephosphatase gene mutated in human brain,breast,andprostate cancer.Science 1997 Mar 28;275(5308):1943-7
    13.Steck PA,Pershouse MA,Jasser SA,et al.Identification of a candidate tumour suppressor gene,MMAC1,at chromosome 10q23.3 that is mutated in multiple advanced cancers.Nature Genet 1997,15:356.
    14.Li DM,Sun H.TEP1,encoded by a candidate tumor suppressorlocus,is a novel protein tyrosine phosphatase regulated by transforming growth factorβ.Cancer Res,1997,57:2124-29.
    15.Bellacosa A,Testa JR,Staal SP,et al.A retroviral oncogene,akt,encoding a serine-threonine kinase containing an SH2-1ike region.Science 199111;254(5029):274-7.
    16.Datta S R,Dudek H,Tao X,et al.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.Cell 1997;91:231-41.
    17.Cardone MH,Roy N,Stennicke HR,et al.Regulation of cell death protease caspase-9 by phosphorylation.Science 1998;282:1318-21.
    18.Ramaswamy S,Nakamura N,Vazquez F,et al.Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway.Proc Natl Acad Sci U S A 1999;96:2110-5.
    19.Hamada K,Sasaki T,Koni PA,et al.The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis.Genes Dev 2005;19:2054-65.
    20.Maehama T,Taylor GS,Dixon JE.PTEN and myotubularin:novel phosphoinositide phosphatases.Annu Rev Biochem 2001;70:247-79.
    21.Marks DC,Belov L,Davey MW,et al.The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells.Leuk Res 1992 Dec;16(12):1165-73.
    
    22. Slack JL, Waxman S, Tricot G, et al. Advances in the management of acute promyelocytic leukemia and other hematologic malignancies with arsenic trioxide. Oncologist. 2002;7 Suppl 1:1-13.
    
    23. Sternsdorf T, Puccetti E, Jensen K, et al. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 1999 Jul;19(7):5170-8.
    
    24 . Perkins C, Kim CN, Fang G, et al. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express bcr-abl or overexpress MDR, MRD, Bcl-2 or Bcl-xl. Blood,2000,95 (3) 1014-21
    
    25. Puccetti E, Guller S, Orleth A , et al. Bcr-abl mediates arsenic trioxide induce apoptosis independently of its aberrant kinase activity. Cancer Res, 2000, 60 (13): 3409-13.
    
    26. Cai X, Shen YL , Zhu Q . Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrance potential collapse and retinoic acid signaling pathways. Leukemia, 2000,14 (2): 262-70
    
    27. Jing Y,Dai J , Chalmers Radman RM , et al. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via hydrogen peroxide-dependent pathway. Blood, 1999, 94 (6) :2102-11.
    
    28. Yang CH, Kuo ML, Chen JC, et al. Arsenic trioxide senisitivityis associated with low level of glutathione in cancer. Br J Cancer, 1999, 81 (5): 796-9 .
    
    29. Morisaki T, Katano M. Mitochondria-targeting therapeutic strategies for overcoming chemoresistance and progression of cancer. Curr Med Chem. 2003 Dec;10(23):2517-21.
    
    30. Nakagawa Y, Akao Y, Morikawa H, et al. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 2002 Mar 29;70(19):2253-69
    
    31. Lu M , levin J , Sulpice E. Effect of arsenic trioxide on viability ,prolifefation and apoptosis in human megaryocytic leukemia cells lines. Exp Hemato 1, 1999, 27 (5) : 845-52.
    32.Pu YS,Hour TC,Chen J,et al.Arsenic trioxide as a novel anticancer agent against human transitional carcinoma--characterizing its apoptotic pathway.Antieancer Drugs.2002 Mar;13(3):293-300
    33.Akao Y,Nakagawa Y,Akiyama K.Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro.FEBS Lett.1999 Jul 16;455(1-2):59-62
    34.Kapahi P,Takahashi T,Natoli G,et al.Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase.J Biol Chem.2000 Nov 17;275(46):36062-6
    35.Hayashi T,Hideshima T,Akiyama M,et al.Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment.Mol Cancer Ther.2002 Aug;1(10):851-60
    36.Mathas S,Lietz A,Janz M,et al.Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis.Blood.2003 Aug 1;102(3):1028-34.
    37.Lunghi P,Tabilio A,Lo-Coco F,et al.Arsenic trioxide(ATO)and MEK1inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells.Leukemia.2005 Feb;19(2):234-44
    38.Lunghi P,Costanzo A,Levrero M,et al.Treatment with arsenic trioxide(ATO)and MEK1 inhibitor activates the p73-p53AIP1 apoptotic pathway in leukemia cells.Blood.2004 Jul 15;104(2):519-25.Epub 2004 Mar 18
    39.Kurki S,Latonen L,Laiho M.Cellular stress and DNA damage invoke temporally distinct Mdm2,p53 and PML complexes and damage-specific nuclear relocalization.J Cell Sci.2003 Oct 1;116(Pt 19):3917-25.
    40.Kawai T,Akira S,Reed JC.ZIP kinase triggers apoptosis from nuclear PML oncogenic domains.Mol Cell Biol.2003 Sep;23(17):6174-86
    41.Ishitsuka K,Hanada S,Uozumi K,et al.Arsenic trioxide and the growth of human T-cell leukemia virus type Ⅰ infected T-cell lines.Leuk Lymphoma.2000May;37(5-6):649-55.
    42.Li YM,Broom YD.Arsenic target tubuins to induce apoptosis in myeloid leukemia cell.Cancer Res,1999,59(4):776-80.
    43. Fu W, Begley JG, Killen MW, et al. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem. 1999 Mar 12;274(11):7264-71
    
    44. Nakajima A, Tauchi T, Sashida G, et al. Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy. Leukemia. 2003 Mar;17(3):560-7
    
    45. Tabellini G, Tazzari PL, Bortul R, et al. Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. Br J Haematol. 2005 Sep; 130(5):716-25
    
    46. Pages G, Lenormand P, L AUemain G et al. Mitogen-activated proein kinase p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA, 1993, 90: 8319
    
    47. Chen YR, Wan XP, Templeton D et al. The role of c-Jun terminal kinase (JNK) in apoptosis induced by ultraviolet C and y radiation. J Biol Chem, 1996, 271(50) : 3199
    
    48. Chen YR, Meyer CF, Tan TH. Persistent activation of c-Jun N-terminal kinase1 (JNK1) in γ radiation-induced apoptosis. J Biol Chem, 1996, 271: 631
    
    49. Sutherland CL, Heath AW, Pelech SL et al. Differential activation of the ERK, JNK and p38 mitogen-activated protein kinase by CD40 and the B cell antigen receptor. J Immunol, 1996, 157: 3381
    
    50. Iwama K, Nakajo S, Aiuchi T, et al. Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide Int J Cancer. 2001 May 15;92(4):518-26.
    
    51. Jing, Y., Wang, R., Xia, L., et al.Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocyticleukemia cells in vitro and in vivo. Blood 2001,97:264-269.
    
    52. Lallemand-Breitenbach, V., Guillemin, M-C, Janin, A., et al. Retinoic acid and arsenic synergize toeradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp.Med., 1999,189: 1043-1052.
    53.Ramos AM,Fernández C,Amrán D,et al.Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells.Blood.2005 May 15;105(10):4013-20.
    54.Head KA.Ascorbic acid in the prevention and treatment of cancer.Altern Med Rev.1998 Jun;3(3)1 174-86.
    55.Han SS,Kim K,Hahm ER,et al.L-ascorbic acid represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia,HL-60.J Cell Biochem.2004 Oct 1;93(2):257-70.
    56.Bachleitner-Hofmann T,Gisslinger B,Grumbeck E,Gisslinger H.Arsenic trioxide and ascorbic acid:synergy with potential implications for the treatment of acute myeloid leukaemia7 Br J Haematol.2001 Mar;112(3):783-6
    57.江苏新医学院编.中药大辞典(下册)[M].上海:上海科学技术出版社,1985.1738.
    58.Aruoma OI,Halliwell B,Aeschbach R,et al.Antioxidant and pro-oxidant properties of active rosemary constituents:carnosol and carnosic acid.Xenobiotica 1992,22,257-268.
    59.Aruoma.Haraguchi H,Saito T,Okamura N,et al.Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis.Planta 1995,Med 61,333-336.
    60.Kuzmenko AI,Morozova RP,Nikolenko IA,et al..Chemiluminescence determination of the in vivo and in vitro antioxidant activity of RoseOx and carnosic acid.J Photochem Photobiol B 1999,48,63-67.
    61.Pearson DA,Frankel EN,Aeschbach R,et al.Inhibition of endothelial cell-mediated oxidation of low-density lipoprotein by rosemary and plant phenolics.J Agric Food Chem 1997(45),578-582.
    62.Oluwatuyi M,Kaatz GW,Gibbons S.Antibacterial and resistance modifying activity of Rosmarinus officinalis.Phytochemistry.2004 Dec;65(24):3249-54.
    63.Paris A,Strukelj B,Renko M,et al.Inhibitory effect of carnosic acid on HIV-1protease in cellofree assays.J Nat Prod.1993 Aug;56(8):1426-30.
    64. Offord EA, Mace K, Avanti O, et al.Mechanisms involved in the chemoprotective effects of rosemary extract studied in human liver and bronchial cells. Cancer Lett 1997(114); 275-281,.
    
    65. Kosaka K, Yokoi T. Camosic Acid, a Component of Rosemary (Rosmarinus officinalis L.), Promotes Synthesis of Nerve Growth Factor in T98G Human Glioblastoma Cells. Biol Pharm Bull 2003;26: 1620-2
    
    66. James M. Visanji, David G. Thompson, Philip J. Padfield. Induction of G2/M phase cell cycle arrest by carnosol and camosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Letters 2006; 237: 130-6.
    
    67. Steiner M, Priel I, Giat J, et al. Camosic acid inhibits proliferation and augments differentiation of human leukemic cells induced by 1,25-dihydroxyvitamin D3 and retinoic acid. Nutr Cancer 2001 ;41:135-44.
    
    68. Danilenko M, Wang Q, Wang X, et al. Camosic acid potentiates the antioxidant and prodifferentiation effects of 1a,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res 2003 ;63: 1325-32.
    
    69. Wang Q, Salman H, Danilenko M, et al. Cooperation between antioxidants and 1,25-dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP-1/Egr-1 pathway. J Cell Physiol 2005,204:964-74.
    
    70. Sharabani H, Izumchenko E, Wang Q, et al. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia. Int J Cancer. 2006;118:3012-21
    
    71. Bosma GC , Custer RP , Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature, 1983 ; 301 :527 - 530
    
    72. Rice AM, Wood JA ,Milrose CG, et al . Conditions that enable human hematopoietic stem cell engraftment in all NOD-SCID mice Transplantation ,2000,69 (5) :927-935.
    
    73. Chargui J ,Moya MJ ,Sanhadji K,et al. Anti-NK antibodies injected into recipient mice enhance engraftment and chimerism after allogeneic transplantation of fetal liver stem cells. Thymus ,1997 ,24 (4) :233-246.
    74.Kollet O,Peled A,Byk T,et al.B2 Microglobulin-deficient(B2mnull)NOD/SCID mice are excellent recipients for studying human stem cell function.Blood,2000,95(10):3102-3105.
    75.Ohsugi T,Yamaguchi K,Kumasaka T,et al.Rapid tumor death model for evaluation of new therapeutic agents for adult T2cell leukemia.Lab Invest,2004,84(2):263-266.
    76.Fahim FA,Esmat AY,Fadel HM,et al.Allied studies on the effect of Rosmarinus officinalis L.on experimental hepatotoxicity and mutagenesis.Int J Food Sci Nutr.1999 Nov;50(6):413-27.
    77.Myers MP,Stolarov JP,Eng C,et al.PTEN,the tumor suppressor from human chromosome 10q23,is a dual-specificity phosphatase.Proc N atl Acad Sci USA,1997,94(17):9052-9057.
    78.Deichmann M,Thome M,Benner A,et al.PTEN /MMAC1 expression in melanoma resection specimens.Br J Cancer,2002,87(12):1431-1436.
    79.Di Cstofano A,Pesce B,CordorrCardo C,et al.PTEN is essential for embryonic development and tumor suppression.Nat Genet,1998,19:348 - 355.
    80.Goberdhan DC,Wilson C.PTEN:turnout suppressor,multi-functional growth regulator and more.Hum Mol Genet.2003,12(2):239 - 248.
    81.Huang JH,Kontos CD.PTEN modulates vascular endothelial growth factor mediated signaling and angiogenic effects.J Biol Chem,2002,277(13):10760-10766.
    82.Hagenbeek TJ,Naspetti M,Malergue F,et al.The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling..J Exp Med,2004,200(7):883-894.
    83.Meuillet EJ,Mahadevan D,Berggeren M,et al.Thioredoxin-1 binds to the C2domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding:a mechanism for the functional loss of PTEN's tumor suppressor activity.Arch Biochem Biophys,2004,429(2):123-133.
    84.Hamada K,Sasaki T,Koni PA,et al.The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis.Genes Dev,2005,19(17): 2054-2065.
    
    85. Di Cstofano A , Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell, 2000,100(4) :387 - 390.
    
    86. Waite KA, Eng C. Protean PTEN: form and function. Am J Hum Genet, 2002, 70 (4): 829-844.
    
    87. Eng C. PTEN: one gene, many syndromes. Hum Mutat, 2003,22 (3): 183 - 98.
    
    88. Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit, 2004,10(10): 235- 41.
    
    89. Wang SY, Gao J, Lei QY et al. Prostate-specific deletion of the murine PTEN tumor suppressor gene leads to metastatic prostatecancer. Cancer cell, 2003, 4 (3): 209-21.
    
    90. Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol, 2003, 3 (9): 478-483.
    
    91. MitaMM, MitaA, Rowinsky EK. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin B reast Cancer,2003,4 (2): 126-137.
    
    92. Ginn-Pease MM, Eng C. Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0-G1 in MCF-7 cells. Cancer Res, 2003,63 (2): 282-286.
    
    93. Vivanco I, Sawyers CL. The phosphatidylinosite 3-kinase AKT pathway in human cancer. Nat Rev Cancer, 2002, 2 (5): 489-501.
    
    94. Leslie NR, BennettD, Lindsay YE, et al. Redox regulation of PI3-kinase signalling via inactivation of PTEN . EMBO J, 2003, 22(20): 5501-5510.
    
    95. LijimaM, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattraxtant gradients. Cell, 2002,109 (6): 599-610.
    
    96. Dickerson EB, Thomas R, Fosmire SP, et al. Mutations of phosphatase and tensin homolog deleted from chromosome 10 in canine hemangiosarcoma. Vet Pathol, 2005,42(5): 618-632.
    
    97. Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects . J Biol Chem ,2002, 277 (13): 10760-10766.
    98. Suzuki A, Kaisho T, OhishiM, et al. Critical roles of PTEN in B cell homeostasis and immunoglobulin class switch recombination.J Exp Med, 2003, 197 (5) : 657-667.
    
    99. Zhang Z,Gao N,He H,et al.Vanadate activated Akt and promoted S phase entry.Mol Cell Biochem,2004,255(1-2):227-237
    
    100. Clarke RB.p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis.Breast Cancer Res,2003,5(3):162-163
    
    101. Di Vizio D,Cito L,Boccia A,et al.Loss of tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGGN)to invasive germ cell tumors.Oncogene,2005,24(11):1882-1894
    
    102. MAYO L D ,DONNER D B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of mdm2 from the cytolasm to the nucleus .Proc Natl Acad Sci USA ,2001,98(20) :11598-115603.
    
    103. HENSHALL D C ,ARA KI T ,SCHIN KL ER C K, et al . Activation of bcl-2-associated death protein and counter-response f Akt within cell populations during seizure-induced neuronal death.J Neurosci ,2002 ,22 (19) :8458-8465.
    
    104. XIN M ,DENG X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation . J Biol Chem ,2005 ,280 (11) :10781-10789.
    
    105. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318-1321.
    
    106. BARTLING B , TOSTL EBE H ,DARMER D , et al . Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells Biochem Biophys Res Commun , 2000,278 (3) :740-746.
    
    107. LI N ,BANIN S ,OU YANG H , et al . ATM is required for Ikappa B kinase ( IKKk) activation in response to DNA double strand breaks . J Biol Chem ,2001 ,276 (12) :8898-8903.
    
    108. GIBSON E M , HENSON E S , HANEY N , et al . Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release . Cancer Res ,2002,62(2) :488-496.
    
    109. Nam SY, J ung GA , Hur GC , et al . Upregulation of FLIP(S) by Akt , a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers . Cancer Sci, 2003 , 94 (12): 1066-1073.
    
    110. West KA , Brognard J , Clark AS ,et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells . J Clin Invest, 2003 ,111(1) :81-90.
    
    111. Zhang D , Brodt P. Type 1 insulin21ike growth factor regulatesMT1-MMP synthesis and tumor invasion via PI3-kinase/ Akt signaling . Oncogene , 2003 ,22 (7) :974-982.
    
    112. Qian Y, Corum L , Meng Q , et al. PI3K induced actin filament remodeling through Akt and p70S6Kl : implication of essential rolein cell migration . Am J Physiol Cell Physiol, 2004,286 (1) :C153-C163.
    
    113. Kim D , Kim S , Koh H , et al. Akt/ PKB promotes cancer cell invasion via increased motility and metalloproteinase production.FASEB J , 2001 ,15 (11) :1953-1962.
    
    114. Grille SJ , Bellacosa A , Upson J , et al . The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines .Cancer Res , 2003 ,63 (9) :2172-2178.
    
    115. Nakashio A, Fujita N , Tsuruo T. Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. Int J Cancer, 2002 ,98 (1) :36-41.
    
    116. BONDAR V M ,SWEENEY-GOTSCH B ,ANDREEFF M , et al. Inhibition of the phosphatidylinositol3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo . Mol Cancer Ther ,2002 ,1 (12) :989-997.
    
    117. AN J ,HALLAHAN D E. Growth factor-independent activation of protein kinase B contributes to the inherent resistance of vascular endothelium to radiation-induced apoptotic response . Cancer Res ,2003 ,63 (22) :7663-7667.
    118.CLARK A S,WEST K,STREICHER S,et al.Constitutiveand inducible Akt activity promotes resistance to chemotherapy,trastuzumab,or tamoxifen in breast cancer cells.Mol Cancer Ther,2002,1(9):707-717.
    119.SHINGU T,YAMADA K,HARA N,et al.Synergistic augmentation of antimicrotubule agent-nduced cytotoxicity by a hosphoinositide 3-inase inhibitor in human malignant gliomacells.Cancer Res,2003,63(14):4044-047.
    120.GUPTA A K,BA KANAUSKAS VJ,CERNIGLIA GJ,et al.The Ras radiation resistance pathway.Cancer Res,2001,61(10):4278-282.
    121.SA KUNTALA W G,JULIE L,EL ISABETH B,et al.The nsulin-ike growth factor-Ⅰ receptor kinase inhibitor,NVP2ADW742,sensitizes small cell lung cancer cell lines to the fleets of chemotherapy.Clin Cancer Res,2005,11(15):1563-571.
    122.Min YH,Eom J I,Cheong JW,et al.Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia:its significance as a prognostic variable.Leukemia,2003,17(5):995-997.
    123.Longo PG,Laurenfi L,Gobessi S,et al.Thc Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease.Leukemia.2007Jan;21(1):110-20.Epub 2006 Oct 5.
    124.Xu Q,Simp son SE,Scialla TJ,et al.Survival of acute myelo id lcukemia cells requires PI3 kinase activation.Blood,2003,102(3):972-980.
    125.Skorski T,Bcllacosa A,Nicborowska-Skorska M,et al.Transformation of hematopoietic cells by BCR-ABL requires activation of a PI23k/Akt-dependcnt pathway.EMBO J,1997,16(20):6151-6161.
    126.Abbott RT,Tripp S,Perkins SL,et al.Analysis of the PI-3-Kinase-PTEN -AKT pathway in human lymphoma and leukemia using a cell line microarray.Mod Pathol,2003,16(6):607-612.
    127.Zhou M,Gu L,Findley HW,et al.PTEN reverses MDM 2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res, 2003,63 (19): 6357-6362.
    
    128. Sakai A , Thieblemont C, Wellmann A , et al. PTEN Gene A Iterations in Lymphoid Neoplasms. Blood, 1998, 92 (9): 3410-3415.
    
    129. Aggerholm A, Gronbaek K, Guldberg P, et al. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur J Haematol, 2000, 65 (2): 109-113.
    
    130. Liu TC, Lin PM, Chang JG, et al. Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. Am J Hematol. 2000 Apr;63(4): 170-5.
    
    131 . Nakahara Y, Nagai H, Kinoshita T, et al. Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma. Leukemia. 1998 Aug; 12(8): 1277-80
    
    134. Olipitz W, Hopfinger G, Aguiar RC, et al. Defective DNA-mismatch repair: a potential mediator of leukemogenic susceptibility in therapy-related myelodysplasia and leukemia. Genes Chromosomes Cancer. 2002 Jun;34(2):243-8.
    
    135. Suzuki A, de la Pompa JL, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998 Oct 22;8(21):1169-78.
    
    136. Dahia PL, Aguiar RC, Alberta J, et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet 1999;8:185-193.
    
    137. Tabellini G, Tazzari PL, Bo rtul R, et al. Novel 2'-substituted, 3'-deoxy -pho-sphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. Br J Haematol, 2004,126 (4) :574-582.
    
    138. Hisatake J, O'Kelly J, Uskokovic MR, et al. Novel vitamin D(3) analog, 21-(3-methyl-3-hydroxy-butyl)-19-nor D(3), that modulates cell growth, differentiation, apoptosis, cell cycle, and induction of PTEN in leukemic cells. Blood. 2001 Apr 15;97(8):2427-33.
    139. MCGOWAN CH. Regulation of the eukaryotic cell cycle. Prog Cell Cycle Res 2003; 5:1-4.
    
    140. Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700