用户名: 密码: 验证码:
壳聚糖基有机—无机杂化膜的制备及其应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖,甲壳素的脱乙酰化产物,是自然界唯一生物可降解的聚阳离子多糖,具有分子链柔顺,容易成膜,可加工性好,价廉及便于分子设计等特点。但是,尽管壳聚糖容易成膜,但也存在纯壳聚糖膜在水中易溶胀,不耐酸、强度低、制膜过程中结构不易控制等基本问题。本论文采用高碘酸钠氧化、酰化反应、季铵化、希夫碱化等手段改性壳聚糖材料,以硅偶联剂为交联剂,制备了改性壳聚糖基含硅杂化膜材料,以及以天然高分子及其衍生物为原料制备了壳聚糖/羧甲基纤维素/硅,壳聚糖/双醛淀粉/硅杂化膜材料,并对所得材料的结构、性能以及对印染废水中染料、重金属离子的分离与吸附进行应用研究。另外,以棉纤维为基材,分别通过轧-烘-焙工艺及超声沉积法制备了氧化双醛壳聚糖杂化材料表面修饰的棉织物、壳聚糖季铵盐/硅以及壳聚糖酰化衍生物/多壁碳纳米管(MWCNT)杂化体系修饰的棉织物,并研究修饰后纤维结构和性能的变化。
     (1)采用纳米Si02为原料,以壳聚糖为基体,乙烯基硅氧烷为前驱体,采用共混法制得壳聚糖/改性Si02纳米杂化膜,并用于吸附溶液中直接染料。通过红外、SEM、热分析等对手段对该杂化膜的结构、表面形态进行表征。结果表明:Si02纳米粒子在壳聚糖相内均匀分散,无机相与有机相交界处,会出现空隙。与纯壳聚糖相比,杂化膜的溶胀性能降低,在NaCl、NaOH水溶液中溶胀率较小。机械强度有所增强,透光率下降,表面润湿性能下降。此外,对染料的吸附实验表明该纳米杂化膜具有较好的吸附直接染料性能。当染料浓度在60mg/L,吸附温度为55℃,pH为8,吸附4.5小时,杂化膜对直接桃红12B和直接耐晒蓝B2RL具有较高的吸附量。在实验研究范围内杂化膜对直接桃红12B和直接耐晒蓝B2RL等温吸附过程可以分别用Langmuir和Freundlich等温式来描述。
     (2)以壳聚糖(CS)和羧甲基纤维素(CMC)共混作为有机基体,用硅偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)作为交联剂,通过溶液共混法制备出有机-无机壳聚糖/羧甲基纤维素/硅复合杂化膜。通过红外光谱(FTIR)、热重分析(TGA)、扫描电镜(SEM)等方法对纯壳聚糖膜及壳聚糖/羧甲基纤维素/硅杂化膜的形态结构进行表征和分析,并测试不同膜的溶胀性能、耐酸性能及吸附染料和重铬酸根离子的性能。研究结果表明壳聚糖/羧甲基纤维素/硅杂化膜内引入了-COOH和-NH2官能团,具有两性离子的特征。由于硅偶联剂KH560的交联作用,使杂化膜溶胀性能降低,吸附染料性能提高。壳聚糖/羧甲基纤维素/硅杂化膜的耐酸性能较纯壳聚糖膜的有所提高。研究浓度、温度、pH和时间对复合膜吸附染料及重铬酸根离子性能的影响。实验结果表明:当KH560的用量为1%时,壳聚糖/羧甲基纤维素/硅杂化膜吸附染料效果最好。当吸附条件为30℃,染料浓度为120mg/L,pH分别为3.97,3.90时,杂化膜对弱酸性蓝RAW、酸性黑ATT的吸附性较好。当吸附条件为30℃,浓度为120mg/L,吸附时间50min, pH为3.83时,壳聚糖/羧甲基纤维素/硅复合膜对重铬酸根离子的吸附较好。
     (3)淀粉是生物高分子材料,无毒,环保,生物降解性好。通过高碘酸钠选择性氧化的方法,制备了淀粉双醛氧化物。利用醛基官能团与氨基官能团希夫碱反应,在壳聚糖酸溶液中交联制得壳聚糖/双醛淀粉杂化膜以及使用硅偶联剂氨丙基三乙氧基硅烷为交联剂,制备了壳聚糖/双醛淀粉/硅杂化膜;并将这两类膜用于吸附溶液中的直接染料,对壳聚糖/双醛淀粉膜以及壳聚糖/双醛淀粉/硅杂化膜吸附染料的作用机理进行了探讨。研究表明,在双醛淀粉还原交联的作用下,壳聚糖的某些特征吸收峰的强度和波数有明显的改变,从SEM照片可看出,壳聚糖/双醛淀粉杂化膜表面比较致密,各组分之间没有产生明显的相分离,而在壳聚糖/双醛淀粉/硅杂化膜内表面粗糙,有一些孔结构。并且壳聚糖/双醛淀粉与壳聚糖/双醛淀粉/硅杂化膜的热学性能与溶胀性能明显不同。双醛淀粉交联的壳聚糖硅杂化膜对直接染料的吸附性能要好于壳聚糖/双醛淀粉膜。而两种膜对直接染料蓝B2RL和桃红12B的吸附行为皆属于准二级动力学模型。
     (4)选择性氧化壳聚糖,获得双醛氧化壳聚糖。通过采用氨丙基三乙氧基硅烷(KH550)和乙二胺协同双醛壳聚糖,分别对棉织物进行表面修饰,获得双醛壳聚糖杂化材料修饰的棉织物。用红外、热分析、扫描电镜对双醛壳聚糖杂化材料修饰的棉织物进行结构表征,并对其物理机械性能以及抗紫外性能、吸附性能进行研究。探讨不同方法修饰后棉织物对直接桃红12B的吸附动力学。结果表明:用氨丙基三乙氧基硅烷(KH550)和乙二胺(EDA)协同双醛氧化壳聚糖修饰后棉织物的物理机械性能都比未处理样得到了改善,染料吸附性能,防紫外线指数UPF和抗皱性能均有明显增加。不同温度下的染色动力学数据表明,直接桃红12B在两种双醛壳聚糖杂化材料修饰的棉上的吸附符合准二级动力学模型。
     (5)制备了2,3-环氧丙基十二烷基二甲基壳聚糖氯化铵衍生物,利用所制备的壳聚糖季铵盐为阳离子化试剂,通过溶胶-凝胶法,硅偶联剂的水解缩合,在棉纤维表面上原位自发构筑壳聚糖季铵盐/硅杂化膜。SEM, EDS结果证实了壳聚糖季铵盐/硅杂化膜存在于纤维表面上。经壳聚糖季铵盐/硅杂化膜修饰后的棉纤维表面润湿性能、吸附性能均发生了显著的变化。随着沉积时间延长,纤维表面的疏水性能以及抗紫外性能增强。
     (6)碳纳米管具有显著的电学、力学、热学等性能,是目前最有发展前景用于制备复合材料的纳米填充剂。利用所制备的N-邻苯二甲酰-O-琥珀酰化壳聚糖(PHCSSA),在超声作用下分散多壁碳纳米管(MWCNT),获得PHCSSA/MWCNT杂化溶液。利用获得的PHCSSA/MWCNT杂化溶液对棉织物进行浸渍沉积处理。用IR、SEM等手段对PHCSSA/MWCNT杂化膜沉积修饰的棉织物进行结构表征。研究了PHCSSA浓度、MWCNT用量、处理温度和处理时间等因素对改性棉织物表面性能,如抗紫外及吸附亚甲基蓝染料性能的影响。结果表明:N-邻苯二甲酰-O-琥珀酰化壳聚糖(PHCSSA)能够均匀分散多壁碳纳米管,棉织物经PHCSSA/MWCNT复合膜的沉积处理后,棉织物的防紫外性能得到了明显的提高,对亚甲基蓝染料的吸附性能也得到了改善。PHCSSA浓度为2g/L, MWCNT用量为7.5ng/mL,温度为50℃,超声处理30min,可使修饰后棉织物对亚甲基蓝染料具有较好的吸附性能和抗紫外性能。
Chitosan (CS), N-deacetylated form of chitin, is the second abundant renewable biopolymer. It has many unique properties such as soft molecular long chain, excellent forming film characteristics, ease of molecular design (synthesis, blending modification, grafting etc.). However, pure chitosan membrane is highly swollen in water, and has low mechanical strength and poor acid resistance property, in addition, membrane structure is difficult to control during the membrane process, the adsorption and separation mechanism of membranes need to be explored further. In this dissertation, chitosan was used as raw materials to prepare hybrid materials. Firstly, chitosan were premodificated by carboxylation, acylation reaction and shiff base reaction. After that, chitosan/silica hybrid membrane and chitosan/natural polymer/silica hybrid membrane material were prepared respectively with silicon coupling agent as crosslinking agent. The structure and performance of the obtained hybrid membranes were studied. In addition to, chitosan oxidation hybrid material, chitosan quaternary derivatives/silica, chitosan acylated derivatives/MWCNT hybrid systems were prepared respectively on the cotton fiber by dip-pad-cure propcesses and ultrasonic deposition method. The effect of these types of hybrid systems on structure, and performance of cotton fabrics were studied. These results are shown as follows:
     Chitosan/silica hybrid membrane was prepared by using chitosan and nano-SiO2modified in presence of coupling agent triethoxyvinylsilane. The distribution of SiO2on the surface of chitosan/silica hybrid membrane was investigated by SEM. The adsorption behaviors of direct dyes from aqueous solution onto chitosan/silica hybrid membrane were studied under various experimental conditions such as time, temperature, pH etc. The results showed that the nano-SiO2particles distributed enenly in the chitosan phase and there were interspaces between inorganic and organic phase in the hybrid membrane. Experimental results indicated that the adsorption capacity of hybrid membranes for the both direct dyes was higher when the concentration of Direct Pink12B and Direct blue B2RL were60mg/L, and adsorbed at55℃, pH8for4.5h. Adsorption equilibrium studies showed that adsorption of Direct Pink12B on hybrid membranes more followed Langmuir isotherm model while adsorption of Direct blue B2RL on hybrid membranes more followed Freundlich isotherm model.
     Novel chitosan/carboxylmethyl cellulose/silica hybrid membranes (CS/CMC/Silica) were prepared by combining chitosan with carboxyl methyl cellulose as the functional reagent and using3-glycidoxypropyltrimethoxysilane (GPTMS) as crosslinking agent. The hybrid membrane materials were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM) and thermolgravimetry (TG) analysis and used to adsorb Blue RAW, Black ATT and Cr2O72-iron in textile wastewater. The influence of dyes and metal ion concentration, solution temperature, pH and adsorption time on adsorption performance of hybrid membrane was investigated. Compared with chitosan itself, the hybrid membranes showed significant changes in the molecular constitutions and thermal properties, which were more stable in acid solution and had the lower swelling properties. Adsorption capacity increased with the increase of initial dyes, Cr2O72-concentration and absorbing time, and decreased with the increase of biosorbent dosage and temperature. Adsorption equilibriums of Cr2O72-ion, Black ATT and Blue RAW were reached in about60min,90min and160min, respectively, and the kinetic data conformed better to the pseudo-second order equation.
     Oxidized starch crosslinked chitosan membrane (CS/OSR) and chitosan/Oxidized starch/silica hybrid membrane (CS/OSR/Silica) were prepared respectively by combination chitosan and oxidized starch as the functional reagent and using3-aminopropyltriethoxysilane as crosslinking agent. Both of the hybrid membrane materials were characterized by FT-IR spectroscopy, scanning electron microscopy and TG thermal analysis methods, which were used to adsorb direct blue B2RL and pink12B in textile dyes from aqueous solutions. The influences of types of membrane, temperature, and pH and adsorption time on adsorption performance of hybrid membranes were studied. Compared with chitosan itself, hybrid membranes showed significant changes in the molecular constitutions and thermal properties. It was more stable in acid solutions. Adsorption capacity was found to increase with pH value and time. When pH was9.82, at60℃, adsorption equilibrium of blue B2RL and Pink12B was achieved in about90min and60min, respectively. The kinetic data conformed better to the pseudo-second order equation.
     Modified cotton fabrics were prepared by pad-dry-cure technique from the aldehyde chitosan solution containing3-aminopropyltriethoxysilane (KH550) and1,2-Ethanediamine (EDA) respectively. The structural characterization of the modified cotton fabrics was performed by attenuated total reflection ATR, scanning electron microscopy (SEM) and thermogravimetry (TG) analysis and physical mechanical properties were measured. The adsorption kinetics of modified cotton fabrics were also investigated by using the pseudo first-order and pseudo second-order kinetic model. The dyeing rate constant k1, k2and half adsorption time t1/2were calculated, respectively. The results showed that the mechanical properties of different modified cotton fabrics have been improved, and the surface color depth values of K/S, UV index UPF and anti-wrinkle properties were better than those of untreated cotton. Dyeing kinetics data at different temperatures indicated that Direct Pink12B up-take on the modified cotton fabrics fitted to pseudo second-order kinetic model.
     Using2,3-epoxy-propyl dodecyl dimethyl ammonium chloride as cationic chitosan reagent, by deposition, chitosan quaternary ammonium salt/silica hybrid sol hybrid film were constructed on cotton fiber. SEM and EDS anylysis results confirmed the quaternary ammonium salt/silica hybrid film was deposited on the surface of cotton fiber. After deposition modification, surface properties of modified cotton such as wetting ablity, adsorption properties produced significant changes. With the assembly of deposition time increased and anti-UV properties increased.
     MWCNT were evenly dispersed in N-phthaloyl-O-succinyl chitosan DMF solvent under ultrasound condition. Cotton fabrics were impregnated in N-phthaloyl-O-succinyl chitosan/MWCNT DMF solution. Structure of modified cotton fabric was characterized by using infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of PHCSSA concentration, MWCNT dosage, temperature and time on the surface properties (such as UV, hydrophobic properties and adsorption on methylene blue etc.) of modified cotton fabric was studied. The results showed that:N-phthaloyl-O-succinylated chitosan/MWCNT hybrid materials can be uniformly dispersed on the surface of cotton fabrics, UV performance, and adsorption performance on methylene blue dye of modified cotton fabrics have been significantly improved. When PHCSSA concentration of2g/L, MWCNT amount of7.5mg/L, bath ratio of1:100, the temperature is50℃, ultrasonic treatment30min, modified cotton fabrics had the higher UPF values and better adsorption on methylene blue.
引文
[1]Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J]. International Journal of Biological Macromolecules,2008,43(5):401-414.
    [2]Yi H, Wu LQ, Bentley WE, et al. Biofabrication with chitosan [J]. Biomacromolecules, 2005,6(6):2881-2894.
    [3]Pillai CKS, Paul W, Sharma C P. Chitin and chitosan polymers:Chemistry, solubility and fiber formation [J]. Progress in Polymer Science,2009,34:641-678.
    [4]Rinaudo M. Chitin and chitosan:Properties and applications [J]. Progress in Polymer Science,2006,31:603-632.
    [5]Kasaai MR. various methods for determination of the degree of N-Acetylation of chitin and chitosan:A Review [J]. Journal of Food Composition and Analysis,2009,57: 1667-1676.
    [6]Strand S P, Issa MM, Christensen BE, et al. Tailoring of chitosans for gene delivery: novel self-branched glycosylated chitosan oligomers with improved functional properties [J]. Biomacromolecules,2008,9:3268-3276.
    [7]Hayes M, Carney B, Slater J, Briick W. Mining marine shellfish wastes for bioactive molecules:Chitin and chitosan-Part B:Applications[J]. Biotechnology Journal,2008, 3:878-889.
    [8]车小琼,孙庆申,赵凯.甲壳素和壳聚糖作为天然生物高分子材料的研究进展[J].高分子通报,2008,(2):46-49
    [9]Krajewska B. Membrane-based processes performed with use of chitin/chitosan materials [J]. Separation and Purification Technology,2005,41:305-312.
    [10]魏美玲,滕祥红,赵小玻.无机-有机杂化材料研究进展[J].现代技术陶瓷,2005,103(1):15-20
    [11]Samuneva B, Djambaski P, Kashchieva E, et al. Sol-gel synthesis and structure of silica hybrid biomaterials[J]. Journal of Non-Crystalline Solids,2008,354:733-740.
    [12]Han YH, Taylor A, Mantle MD, et al. Sol-gel-derived organic-inorganic hybrid materials [J]. Journal of Non-Crystalline Solids,2007,353:313-320.
    [13]Yeh JT, Chen CL, Huang KS. Synthesis and properties of chitosan/SiO2 hybrid materials [J]. Materials Letters,2007,61:1292-1295.
    [14]Liu YL, Su YH, Lai J-Y. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using g-glycidoxypropyltrimethoxysilane as a crosslinking agent. [J]. Polymer,2004,45:6831-6837.
    [15]吕建坤,柯毓才,漆宗能等.插层聚合制备黏土/环氧树脂纳米复合材料过程中黏士剥离行为的研究[J].高分子学报,2000(1):85-89.
    [16]Zhitomirsky 1, Hashambhoy A. Chitosan mediated electrosynthesis of organic-inorganic nanocomposites [J]. Journal of Materials Processing Technology, 2007,191:68-72.
    [17]许鑫华,吕丰,李冬光等.自组装壳聚糖接枝聚苯胺/葡萄糖氧化酶生物传感器的研究[J].高技术通讯,2004,(8):33-37.
    [18]Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility [J]. Biomaterials,2005,26:6176-6184.
    [19]蒋柳云,李玉宝,张利等.纳米羟基磷灰石/壳聚糖-羧甲基纤维素复合支架材料的研究[J].无机材料学报,2008,23(1):135-141.
    [20]Li Y, Liu L, Zhang W, et al. A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite [J]. Radiation Physics and Chemistry,2004,69:467-471.
    [21]He X, Yuan R, Chai Y, Shi Y. A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix [J]. Journal of Biochemical and Biophysical Methods,2008,70:823-829.
    [22]Yi HM, Wu LQ, Bentley WE, et al. Biofabrication with Chitosan [J].2005,6(6): 2881-2894.
    [23]Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration [J]. Biomaterials,2009,30:743-750.
    [24]谭学才,翟海云,李荫等.基于溶胶-凝胶壳聚糖/SiO2杂化材料的安培型葡萄糖生物传感器[J].高等化学学报,2004,25(9):1645-1647.
    [25]蒋柳云,李玉宝,张利等.纳米羟基磷灰石/壳聚糖/羧甲基纤维素三元复合骨修材料的制备和性能研究[J].功能材料,2007,38(5):798-801.
    [26]Zhao G, Xu JJ, Chen HY. Fabrication, Characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin [J]. Electrochemistry Communication,2006,81(1):148-154.
    [27]Wang X, Gu H, Yin F, Tu Y. A glucose biosensor based on prussian blue/chitosan hybrid film [J]. Biosensors and Bioelectronics,2009,24(5):1527-1530.
    [28]Lu X, Leng Y, Zhang QY. Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates [J]. Surface & Coatings Technology,2008,202:3142-3147.
    [29]Luo X L, Xu J J, and Wang J L. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application [J]. Chemical Communications,2005,16:2169-2171.
    [30]Gregory FP, Srinivasa RR. Chitosan:a soft interconnect for hierarchical assembly of nano-scale components [J]. Soft Matter,2007,3:521-527.
    [31]焦宁宁,王建明.聚合物纳米复合材料研究进展Ⅰ[J].石化技术与应用,2001,19(2):57-61.
    [32]徐云龙,肖宏,钱秀珍.壳聚糖/蒙脱土纳米复合材料的结构与性能研究[J].功能高分子学报,2005,18(3):383-386.
    [33]Li BQ, Hu QL, Qian XZ, et al. Bioabsorbable chitosan/hydro-xyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture [J]. Acta Polymerica Sinica,2002, (6):828-833.
    [34]Toskas G, Cherif C, Hund RD, et al. Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration [J]. Carbohydrate Polymers,2013,94:713-
    [35]Wan Y, Wu H, Yu AX, Wen DJ. Biodegradable polylactide/chitosan blends membranes [J]. Biomacromolecules,2006,7:1362-1372.
    [36]Duan B, Yuan XY, Hu Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning [J]. European Polymer Journal,2006, 42:2013-2022.
    [37]顾书英.生物可降解及生物材料的电场纺丝及应用[J].高分子通报,2005,(2):13-18.
    [38]李欢.明胶、胶原的静电纺丝研究进展[J].明胶科学与技术,2007,27(1):1-9.
    [39]Zhou YS, Yang DZ, Nie J. Electrospinning of chitosan/poly (vinyl alcohol)/acrylic acid aqueous solutions [J]. Journal of Applied Polymer Science,2006,102:5692-5697.
    [40]Jung K-H, Huh M-W, Meng W, et al. Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique [J]. Journal of Applied Polymer Science,2007,105:2816-2823.
    [41]Chen ZG, Mo XM, Qing FL. Electrospinning of collagen-chitosan complex [J]. Materials Letters,2007,63:3490-3494.
    [42]Desai K, Kit K. Effect of spinning temperature and blend ratios on electrospun chitosan/poly (acrylamide) blends fibers [J]. Polymer,2008,49:4046-4050.
    [43]Xu J, Zhang JH, GAO WQ, Liang HW, et al. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning [J]. Materials Letters,2009,63:658-660.
    [44]Shirosaki Y, Okayam T, Tsuru K, et al. Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application [J]. Chemical Engineering Journal,2008,137:122-128.
    [45]庞洪涛,张志焜.纳米二氧化钛/壳聚糖—维纳米复合材料制备及结构分析[J].功能材料,2007,38(2):313-3]6.
    [46]张利,李玉宝,魏杰等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J].功能材料,2005,36(3):441-444.
    [47]卢晓英,王秀红,屈树新,翁杰.纳米羟基磷灰石/壳聚糖杂化材料的制备[J].无机材料学报,2008,23(2):332-3366.
    [48]Akter N, Khan R, Salmieri S, Sharmin N, Dussault D, Lacroix M. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films:Effect of gamma radiation [J]. Radiation Physics and Chemistry,2012,81:995-998.
    [49]沈家骢等著.超分子层状结构—组装与功能[M].科学出版社,北京,2003,12.
    [50]Lei ZL, Bi SX, Yang H. Chitosan-tethered the silica particle from a layer-by-layer approach for pectinase immobilization [J]. Food Chemistry,2007,104:577-584.
    [51]Cong HP, Yu SH. Self-assembly of functionalized inorganic-organic hybrids [J]. Current Opinion in Colloid & Interface Science,2009,14(2):71-80.
    [52]张宏宇.基于氢键的聚合物多层膜的构筑与结构调控[D].博士论文,长春:吉林大学,2005.
    [53]Bai F, Zeng CM, Yang SX, et al. The formation of a novel supramolecular structure by amyloid of poly-L-glutamic acid [J]. Biochemical and Biophysical Research Communications,2008,369:830-834.
    [54]Zhou M, Liu XF, Zhang BQ, Zhu HM. Assembly of oriented zeolite monolayers and thin films on polymeric surfaces via hydrogen bonding [J]. Langmuir,2008,24: 11942-11946.
    [55]Etienne M, Walcarius A, Evaporation induced self-assembly of template silica and organosilica thin films on various electrode surfaces [J]. Electrochemistry Communication,2005,7 (12):1449-1456.
    [56]Nguyen TD. Portraits of colloidal hybrid nanostructures:Controlled synthesis and potential applications [J]. Colloids and Surfaces B:Biointerfaces,2013,103:326-344.
    [57]张邦文,李保卫,谢长生.聚合物有序纳米复合材料的研究进展[J].材料导报,2007,21(5):171-174.
    [58]Jia XE, Tan L, Xie QJ. Zhang YY, Yao SZ. Quartz crystal microbalance and electrochemical cytosensing on a chitosan/multiwalled carbon nanotubes/Au electrode [J]. Sensors and Actuators B,2008,134:273-280.
    [59]Li J, Zhang G, Ji S,et al. Layer-by-layer assembled nanohybrid multilayer membranes for pervaporation dehydration of acetone-water mixtures. Journal of Membrane Science,2012,415-416:745-757
    [60]Naik SP, Fan W, Yokoi T, Okubo T. Synthesis of a three-dimensional cubic mesoporous silica monolith employing an organic additive through an evaporation-induced self-assembly process [J]. Langmuir,2006,22 (14):6391-6397.
    [61]Pan JH, Chai SY, Lee WI. Photocatalytic properties of mesoporous TiO2 films derived from evaporation-induced self-assembly method [J]. Materials sScience Forum,2006, 510-511:58-61.
    [62]Etienne M, Walcarius A. Evaporation induced self-assembly of template silica and organosilica thin films on various electrode surfaces [J]. Electrochemistry communications,2005,7 (12):1449-1456.
    [63]Zhukov AA, Ghanem MA, Gonchar AV, et al. Magnetic nano-scale dot arrays from double-templated electrodeposition [J]. Journal of Magnetism and Magnetic Materials, 2004,272-276:1369-1371.
    [64]Zou YJ, Xiang CL, Sun LX, Xu F. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique[J]. Electrochimica Acta,2008,53:4089-4095.
    [65]Li BQ, Jia DC, Zhou Y, et al. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field [J]. Journal of Magnetism and Magnetic Materials,2006, 306:223-227.
    [66]Huguenin F, Zucolotto V, Carvalho AJF, et al. Layer-by-layer hybrid films incorporating WO3, TiO2, and chitosan [J]. Chemistry of Materials,2005,17: 6739-6745.
    [67]Yang H, Xu R, Xue XM, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal [J]. Journal of Hazardous Materials,2008,152:690-698.
    [68]Ruan QC, Zhu YC, Li, Xiao JW, Zeng Y, Xu. FF. Investigation of layer-by-layer assembled heparin and chitosan multilayer films via electrochemical spectroscopy [J]. Journal of Colloid and Interface Science,2009,333:725-733.
    [69]Chen HM, Tian XM, Zou H. Preparation and blood compatibility of new silica chitosan hybrid biomaterials [J]. Artificial Cells, Blood Substitutes,1998,26(4):431-436.
    [70]Yeh JT, Chen CL, Huang KS. Synthesis and properties of chitosan/SiO2 hybrid materials [J]. Materials Letters,2007,61:1292-1295.
    [71]Shirosakia Y, Tsurua K, Hayakawaa S, et al. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes [J]. Biomaterials,2005,26:485-493.
    [72]张军丽,王汉雄,曲黎等.壳聚糖/纳米SiO2杂化材料的研究[J].应用化工,2006,135(9):697-700.
    [73]朱爱萍,严忻,张灿等.溶胶-凝胶法制备壳聚糖/SiO2杂化材料[J].高等学校化学学报,2001,22(12):2113-2116.
    [74]魏铭,谭占鏊.壳聚糖/二氧化硅纳米复合膜的制备、结构与性能表征[J].武汉理工大学学报,2006,28(1):157-160.
    [75]彭湘红,万昆,刘聪.自组装的壳聚糖/Si02杂化膜[J].化工新型材料,2007,35(6):34-37.
    [76]Martinez Y, Retuert J, Yazdani-Pedram M, et al. Hybrid ternary organic-inorganic films based on interpolymer complexes and silica [J]. Polymer,2004,45:3257-3265.
    [77]Liu KH, Liu TY, Chen SY. Effect of clay content on electrostimulus deformation and volume recovery behavior of a clay-chitosan hybrid composite [J]. Acta Biomaterialia, 2007,3:919-926.
    [78]Wu H, Zheng B, Zheng XH, et al. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell [J]. Journal of Power Sources,2007,173:842-852.
    [79]Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles:Development and applications [J]. Nano Research,2008,1:99-115.
    [80]Chiu, HC, Liu CH, et al. Adsorptive removal of anionic dye by inorganic-organic hybrid anion-exchange membranes [J]. Journal of Membrane Science,2009,337: 282-290.
    [81]谭学才,黄婷婷,徐健君等.固定化辣根过氧化酶的壳聚糖/二氧化硅杂化膜的制备及表征[J].分析测试学报,2004,23(4):9-12.
    [82]Lei ZL, Bi SX, Yang H. Chitosan-tethered the silica particle from a layer-by-layer approach for pectinase immobilization [J]. Food Chemistry,2007,104:577-584.
    [83]Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration [J]. Biomaterials,2009,30:743-750.
    [84]Chiang ZC, Li HY, Chao AC, et al. Characterization of the morphology and hydrophilicity of chitosan/caffeic acid hybrid scaffolds [J]. Journal of Polymer Research,2011,18:2205-2212.
    [85]Shirosaki Y, Tsuru K, Hayakawa S, et al. Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration [J]. Acta Biomaterialia,2009,5:346-355.
    [86]Zhang YF, Yin P, Zhao XQ, et al. O-Carboxyrnethyl-chitosan/organosilica hybrid nanoparticles as non-viral vectors for gene delivery [J]. Materials Science and Engineering C,2009,29:2045-2049.
    [87]Hsiao MH, Tung TH, Hsiao CS, Liu DM. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery[J]. Carbohydrate Polymers,2012,89:632-639,
    [88]Depan D, Kumar AP, Singh RP. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite [J]. Acta Biomaterial, 2009,5:93-100.
    [89]Zhu AP, Zhang Z, Shen J. Preparation and characterization of novel silica-butyrychitosan hybrid biomaterials [J]. Journal of Materials Science:Materials in medicine,2003,14(1):27-31.
    [90]Tamaki R, Chujo Y. Synthesis of chitosan/silica gel polymer hybrids [J]. Composite Interfaces,1999,6(3):259-272.
    [91]Hu HW, Xin JH., Hu H, Chan A, He L. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films [J]. Carbohydrate Polymers,2013,91:305-313.
    [92]Sun HL, Lu LY, Chen X, et al. Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol [J]. Applied Surface Science,2008,254: 5367-5374.
    [93]Xi FN, Wu JM, Lin XF. Novel nylon-supported organic-inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent [J]. Journal of Chromatography A,2006,1125:38-51.
    [94]Wang XY, GU HF, Yin F, et al. A glucose biosensor based on Prussian blue/chitosan hybrid film [J]. Biosensors and Bioelectronics,2009,24:1527-1530.
    [95]Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration [J]. Biomaterials,2009,30:743-750.
    [96]Zhong SL, Cui XJ, Sun CG, et al. Crosslinked organic/inorganic proton exchange membranes with multilayer structure [J]. Solid State Ionics,2012,227:91-95.
    [97]Chen JH, Liu QL, Zhang X H,et al. Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane [J]. Journal of Membrane Science,2007,292:125-132.
    [98]Wang YB, Jiang ZY, Li HF,et al. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC [J]. Chemical Engineering and Processing,2010,49:278-285.
    [99]Pandey RP, Shahi VK. Functionalized silica-chitosan hybrid membrane for dehydration of ethanol/water azeotrope:Effect of cross-linking on structure and performance [J]. Journal of Membrane Science,2013,444:116-126.
    [100]Zha F, Li S, Chang Y, et al. Preparation and adsorption kinetics of porous Y-glycidoxypropyltrimethoxysilane crosslinked chitosan-β-cyclodextrin membranes [J]. Journal of Membrane Science,2008,321:316-323.
    [101]Chao AC. Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus [J]. Journal of Membrane Science,2008,311:306-318.
    [102]Saxena A, Tripathi B P, Shahi VK. An improved process for separation of proteins using modified chitosan-silica cross-linked charged ultrafilter membranes under coupled driving forces:Isoelectric separation of proteins [J]. Journal of Colloid and Interface Science,2008,319:252-262.
    [103]Enescu D, Hamciuc V, Pricop L, et al. Polydimethylsiloxane modified chitosan I. Synthesis and structural characterization of graft and crosslinked copolymers [J]. Journal of Polymer Research,2009,16(1):73-80.
    [104]Enescu D, Hamciuc V, Harabagiu V, et al. Copper (Ⅱ), nickel (Ⅱ), cobalt (Ⅱ)/chitosan-polydimethylsiloxane complexes [J]. Journal of Optoelectronic and Advances Materials,2008,10:1473-1477.
    [105]Enescu D, Hamciuc V, Ardeleanu R,et al. Polydimethylsiloxane modified chitosan. Part Ⅲ:preparation and characterization of hybrid membranes [J]. Carbohydrate Polymers,2009,76:268-278.
    [106]Repo E, Warcho JK, Bhatnagar A, et al. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials [J]. Journal of Colloid and Interface Science,2011,358:261-267.
    [107]Gandhi MR, Meenakshi S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu (Ⅱ) and Pb (Ⅱ) [J]. International Journal of Biological Macromolecules,2012,50:650-657.
    [108]Cestari AR, Vieira EFS, Pinto AA, et al. Multistep adsorption of anionic dyes on silica/chitosan hybrid 1. Comparative kinetic data from liquid-and solid-phase models [J]. Journal of Colloid and Interface Science,2005,292:363-372.
    [109]Copello GJ, Mebert AM, Raineri M, et al. Removal of dyes from water using chitosan hydrogel/Si02 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method [J]. Journal of Hazardous Materials,2011,186:932-939.
    [110]Ehrlich H, Janussen D, Simon P, et al. Nanostructural organization of naturally occurring composites-part II:silica-chitin-based biocomposites [J]. Journal of Nanomaterials,2008,2008:1-8.
    [111]Yan H, Li H, Yang H, et al. Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere [J]. Chemical Engineering Journal,2013,223:402-411.
    [112]Chung TW, Limpanichpakdee T, Yang MH, et al. An electrode of quartz crystal microbalance decorated with CNT/chitosan/fibronectin for investigating early adhesion and deforming morphology of rat mesenchymal stem cells [J]. Carbohydrate Polymers, 2011,85:726-732.
    [113]Li C,Yang K, Zhang Y, et al. Highly biocompatible multi-walled carbon nanotube-chitosan nanoparticle hybrids as protein carriers[J]. Acta Biomaterialia,2011, 7:3070-3077.
    [114]Liu S, Lin Q, Zhang X, et al. Electrochemical immunosensor for salbutamol detection based on CS-Fe3O4-PAMAM-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification [J]. Sensors and Actuators B,2011,156:71-78.
    [115]Tang C, Zhou T, Yang J, et al. Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution [J]. Colloids and Surfaces B:Biointerfaces,2011,86:189-197.
    [116]Zhou M, Liu XF, Zhang BQ, et al. Assembly of oriented zeolite monolayers and thin films on polymeric surfaces via hydrogen bonding [J]. Langmuir,2008,24: 11942-11946.
    [117]Zhukov AA, Ghanem MA, Gonchar AV, et al. Magnetic nano-scale dot arrays from double-templated electrodeposition [J]. Journal of Magnetism and Magnetic Materials, 2004:272-276,1369-1371.
    [118]Yang Q, Shuai L, Pan XJ. Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes[J]. Biomacromolecules,2008,9: 3422-3426.
    [119]Liu YY, Tang J, Chen XQ, et al. Decoration of carbon nanotubes with chitosan [J]. Carbon,2005,43 (15):3178-3180.
    [120]刘爱红,孙康宁,王菲等.壳聚糖对碳纳米管的表面修饰[J].硅酸盐学报,2008,36(2):163-165
    [121]Wu ZG, Feng W, Feng Y Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties [J]. Carbon,2007,45:1212-1218.
    [122]Fan J, Shi Z, Ge Y, et al. Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides [J]. Polymer,2012,53:657-664.
    [123]Sun F, Cha HR, Bae K, et al. Mechanical properties of multilayered chitosan/CNT nanocomposite films [J]. Materials science and engineering A,2011,528:6636-6641.
    [124]Kim W, Javey A, Vermesh O, et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors [J]. Nano Letters,2003,3:193-198.
    [125]Jia XE, Tan L, Xie QJ. Zhang YY, Yao SZ. Quartz crystal microbalance and electrochemical cytosensing on a chitosan/multiwalled carbon nanotubes/Au electrode [J]. Sensors and Actuators B,2008,134:273-280.
    [126]Atkinson KR, Hawkins SC, Huynh C, et al. Multifunctional carbon nanotube yarns and transparent sheets:Fabrication, properties, and applications. Physica B:Condensed Matter 2007,394 (2):339-343.
    [127]Ke G, Guan WC, Tang CY, et al. Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan [J]. Biomacromolecules,2007,8: 322-326.
    [128]Cao X, Dong H, Li C, et al. The enhanced mechanical properties of a covalently bound chitosan-multiwatled carbon nanotube nanocomposite [J]. Journal of Applied Polymer sScience,2009,113:466-472.
    [129]周虹,孙长青.基于多壁碳纳米管/二茂铁接枝壳聚糖的核/壳结构组合物多层 膜电极的组装及其电催化[J].高等学校化学学报,2008,29(11):2159-2163.
    [130]Baek SH, Kim B, Suh KD. Chitosan particlelmultiwall carbon nanotube composites by electrostatic interactions [J]. Colloids and Surfaces A:Physicochemical Engineering Aspects,2008,316:292-296.
    [131]Yu JG, Huang KL, Tang JC, et al. Rapid microwave synthesis of chitosan modified carbon nanotube composites [J]. International Journal of Biological Macromolecules, 2009,44:316-319.
    [132]Solanki PR, Kaushik A, Ansari AA, et al. Multi-walled carbon nanotubes/sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors and Actuators B:Chemical,2009,137 (2):727-735.
    [133]Salehi E, Madaeni SS, Rajabi L, et al. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes:Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes [J]. Chemical Engineering Journal,2013,215-216:791-801.
    [134]Liu YL, Chen WH, Chang YH. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly (styrene sulfonic acid)-modified CNTs [J]. Carbohydrate Polymers,2009,76:232-238.
    [135]Li C, Yang K, Zhang Y, et al. Highly biocompatible multi-walled carbon nanotube-chitosan nanoparticle hybrids as protein carriers [J]. Acta Biomaterialia,2011, 7:3070-3077.
    [136]胡晓蓝,曾海涛,周花等.壳聚糖衍生物处理碳纳米管改性聚丙烯腈基碳纤维[J].高分子学报,2011,(10):1166-1172.
    [137]Yang Q, Shuai L, Pan XJ. Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes [J]. Biomacromolecules,2008,9: 3422-3426.
    [138]Pandey JK, Kumar AP, Misra M, et al. Recent advances in biodegradable nanocomposites [J]. Journal of Nanoscience and Nanotechnology,2005,5:497-526.
    [139]杨潇,张朝晖,张华斌等.基于壳聚糖修饰碳纳米管表面铅离子印迹材料的制备及其性能研究[J].分析化学,2011,39(1):34-38.
    [140]Tiwari A, Dhakate SR. Chitosan-SiO2-multiwall carbon nanotubes nanocomposite: A novel matrix for the immobilization of creatine amidinohydrolase [J]. International Journal of Biological Macromolecules,2009,44:408-412.
    [141]Yang Y, Fang G. Liu G.,et al. Electrochemical sensor based on molecularly imprinted polymer film via sol-gel technologyand multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylicacid [J]. Biosensors and Bioelectronics,2013,47:475-481.
    [142]李俊华,邝代治,冯泳蓝等.基于二氧化钛/碳纳米管/壳聚糖纳米复合薄膜制备葡萄糖生物传感器[J].无机化学学报,2011,27(11):2172-2178.
    [143]Chawla S, Rawal R, Pundir CS. Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode [J]. Journal of Biotechnology,2011,156: 39-45.
    [1]车小琼,孙庆申,赵凯.甲壳素和壳聚糖作为天然生物高分子材料的研究进展[J].高分子通报,2008,(2):46-49.
    [2]Alves NM, Mano JF.Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J]. International Journal of Biological Macromolecules,2008,43(5):401-414.
    [3]Pearsson FG, Marchessault RH, Liang CY. Infrared spectra of crystalline polysaccharides. V. Chitin [J]. Journal of Polymer Science,1960,43(141):101-116.
    [4]Tao YG, Ye LB, Pan J, et al. Removal of Pb (Ⅱ) from aqueous solution on chitosan/TiO2 hybrid film [J]. Journal of Hazardous Materials,2009,161(2-3):718-722.
    [5]Wu H, Zheng B, Zheng XH, et al. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell [J]. Journal of Power Sources,2007,173:842-852.
    [6]Enescu D, Hamciuc V, Ardeleanu R, et al. Polydimethylsiloxane modified chitosan. Part III: Preparation and characterization of hybrid membranes [J]. Carbohydrate Polymers,2009, 76:268-278.
    [7]Sunarso J, Chen CY, Wang LZ, et al. Characterization of hybrid organic and inorganic functionalised membranes for proton conduction [J]. Solid State Ionics,2008,179: 477-482.
    [8]Hayes M, Carney B, Slater J, Briick W. Mining marine shellfish wastes for bioactive molecules:Chitin and chitosan-Part B:Applications[J]. Biotechnology Journal,2008,3: 878-889.
    [9]Yeh JT, Chen CL, Huang KS. Synthesis and properties of chitosan/SiO2 hybrid materials [J]. Materials Letters,2007,61:1292-1295.
    [10]Zhang F, Srinivasan M P. Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities [J]. Langmuir,2004,20:2309-2314.
    [11]Jia J B, Wang B Q, Wu A Q et al. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Analytical Chemistry,2002,74:2217-2223.
    [12]Abdelmouleh M, Boufi S, Salah AB. Interaction of silane coupling agents with cellulose [J]. Langmuir,2002,18:3203-3208.
    [13]Li XC, King TA. Spectroscopic studies of sol-gel-derived organically modified silicates [J]. Journal of Non-crystalline Solids,1996,204:235-242.
    [14]Mori H, Lanzendolorfer MG, MulUller AHE. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups [J]. Macromolecules,2004,37:5228-5238.
    [15]Innocenzi P, Brusatin G. Competitive polymerization between organic and inorganic networks in hybrid materials [J]. Chemistry of Materials,2000,12:3726-3732.
    [16]Davis SR, Brough AR, Atkinson A. Formation of silica/epoxy hybrid network polymers [J]. Journal of Non-crystalline Solids,2003,315:197-205.
    [17]Baxter A, Dillon M, Taylor KDA, et al. Improved method for i.r. determination of the degree of N-acetylation of chitosan [J]. International Journal of Biological Macromolecules, 1992,14(6):166-169.
    [18]Muzzarelli RAA, Rocchetti R. Determination of the degree of acetylation of chitosan by first derivative ultraviolet spectrophotometry [J]. Carbohydrate Polymer,1985,5:461-472.
    [19]Domard A. Some physico-chemical and structural basis for applicability of chitin and chitosan. In:Stevens, W.F., Rao, M.S., Chandrkrachang, S. (Eds.), Chitin and Chitosan, Proceedings of the 2nd Asia Pacific Symposium. Asian Institute of Technology, Bangkok, Thailand,1996:1-12.
    [20]Wan Y, Wu H, Yu A, et al. Biodegradable Polylactide/Chitosan Blend Membranes [J]. Biomacromolecules,2006,7 (4):1362-1372.
    [21]Zubieta CE, Messina PV, Luengo C, et al. Reactive dyes remotion by porous TiO2-chitosan materials [J]. Journal of Hazardous Materials,2008,152:765-777.
    [22]Knorr D, Functional properties of chitin and chitosan [J]. Journal of Food Science,1982, 47:593-595.
    [23]Trung TS, Ng CH, Stevens WF. Characterization of decrystallized chitosan and its application in biosorption of textile dyes [J]. Biotechnology Letters,2003,25:1185-1190.
    [24]Yen MT, Mau JL. Physico-chemical characterization of fungal chitosan from shiitake stipes. LWT [J]. Food Science and Technology,2007a,40:472-479.
    [25]Yen MT, Mau JL. Selected physical properties of chitin prepared from shiitake stipes [J]. Food Science and Technology,2007b,40:558-563.
    [26]Prashanth KVH, Kittur FS, Tharanathan RN. Solid state structure of chitosan prepared under different N-deacetylating conditions [J]. Carbohydrate Polymers,2002,50:27-33.
    [27]杨洪,邬旭然,孔景临.壳聚糖-Si02杂化材料膜制备的研究[J].功能高分子学报2000,13(9):229-331.
    [28]Qu RJ, Sun CM, Wang MH, et al. Adsorption of Au (Ⅲ) from aqueous solution using cotton fiber/chitosan composite adsorbents [J]. Hydrometallurgy,2009,100:65-71.
    [29]刘维锦,林志浩.纤维素/壳聚糖可生物降解膜的制备及力学性能[J].塑料工业,2003,31(12):44-46.
    [30]Nova CJM, Paolucci-Jeanjean D, Barboiu M, et al. Affinity membrane chromatography with a hybrid chitosan/ceramic membrane[J]. Desalination,2006,200 (1-3):470-471.
    [31]Clasen C, Wilhelms T, Kulicke WM. Formation and Characterization of Chitosan Membranes [J]. Biomacromolecules,2006,7(11):3210-3222.
    [32]Sakiyama T, Takata H, Kikuchi M, et al. Polyelectrolyte complex gel with high pH-sensitivity prepared from dextran sulfate and chitosan [J]. Journal of Applied Polymer Science,1999,73:2227-2233.
    [33]Cestari AR, Vieira EFS, Pinto AA, Lopes ECN. Multistep adsorption of anionic dyes on silica/chitosan hybrid:1. Comparative kinetic data from liquid-and solid-phase models [J]. Journal of Colloid and Interface Science,2005,292 (2):363-372.
    [34]Jesionowski T. Synthesis of organic-inorganic hybrids via adsorption of dye on aminosilane-functionalised silica surface [J]. Dyes and Pigments,2002,55:133-141.
    [1]Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies:A review of recent literature [J]. Progress in Polymer Science,2008,33:399-447.
    [2]Daraei P, Madaeni SS, Salehi E, et al. Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support:Preparation, characterization and performance in dye removal [J]. Journal of Membrane Science,2013, 436:97-108.
    [3]Wu J, Liu C, Chu K, et al. Removal of cationic dye methyl violet 2B from water by cation exchange membranes [J]. Journal of Membrane Science,2008,309:239-245.
    [4]Yang Z, Shang Y, Lu Y, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants [J]. Chemical Engineering Journal,2011,172:287-295.
    [5]Gomes AM, Goncalves IC, Pinho MN. The role of adsorption on nanofiltration of azo dyes [J]. Journal of Membrane Science,2005,255:157-165.
    [6]Chiu H, Liu C, Chen S, et al. Adsorptive removal of anionic dye by inorganic-organic hybrid an ion-exchange membranes [J]. Journal of Membrane Science,2009,337: 282-290.
    [7]Che A, Liu Z, Huang XJ, et al. Chitosan-Modified Poly(acrylonitrile-co-acrylic acid) Nanofibrous Membranes for the Immobilization of Concanavalin A [J]. Biomacromolecules,2008,12:3397-3403.
    [8]Angadi SC, Manjeshwar LS, Aminabhavi TM. Stearic Acid-Coated Chitosan-Based Interpenetrating Polymer Network Microspheres:Controlled Release Characteristics [J]. Industrial & Engineering Chemistry Research,2002,50 (8):4504-4514.
    [9]Shimizu Y, Kono K, Kim IS, et al. Effects of added metal ions on the interaction of chitin and partially deacetylated chitin with an azo dye carrying hydroxyl groups [J]. Journal of Applied Polymer Science,1995,55:255-261.
    [10]Zhao Q, Qian JW, Ana QF, et al. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes [J]. Journal of Membrane Science,2009,333:68-78.
    [11]Stefancich S, Delben F, Muzzarelli RAA. Interactions of soluble chitosans with dyes in water. I. Optical evidence [J]. Carbohydrate Polymers,1994,24:17-23.
    [12]Salehi E, Madaeni SS, Rajabi L, et al. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes:Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes [J]. Chemical Engineering Journal, 2013,215-216:791-801.
    [13]Labanda J, Sabate J, Llorens J. Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane absorber [J]. Journal of Membrane Science,2009,340: 234-240.
    [14]Xi F, Wu J, Lin X, Novel nylon-supported organic-inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent [J]. Journal of Chromatography A,2006,1125:38-51.
    [15]Mondal D, Bhowmick B, Mollick MMR, et al. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films [J]. Carbohydrate Polymers,2013,96:57-63.
    [16]Repo E, Warcho JK, Bhatnagar A, Sillanpa M. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials [J]. Journal of Colloid and Interface Science,2011,358:261-267.
    [17]Gandhi MR, Meenakshi S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu (Ⅱ) and Pb (Ⅱ) [J]. International Journal of Biological Macromolecules,2012,50:650-657.
    [18]Cestari AR, Vieira EFS, Pinto AA, et al. Multistep adsorption of anionic dyes on silica/chitosan hybrid I. Comparative kinetic data from liquid-and solid-phase models [J]. Journal of Colloid and Interface Science,2005,292:363-372.
    [19]Jiang L, Li Y, Wang XJ, et al. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold [J]. Carbohydrate Polymers,2008,74:680-684.
    [20]Copello GJ, Mebert AM, Raineri M, et al. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method [J]. Journal of Hazardous Materials,2011,186:932-939.
    [21]Liu C, Bai R. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blends hollow fiber membranes [J]. Journal of Membrane Science,2006,284: 313-322.
    [22]Martinez Y, Retuert J, Yazdani-Pedram M, et al. Hybrid ternary organic-inorganic films based on interpolymer complexes and silica [J]. Polymer,2004,45:3257-3265.
    [23]Tamaki R, Chujo Y. Synthesis of chitosan/silica gel polymer hybrids [J]. Composite Interfaces,1999,3:259-272.
    [24]Shirosaki Y, Tsuru K, Hayakawa S, et al. Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration [J]. Acta Biomaterialia,2009,5:346-355.
    [25]Enescu D, Hamciuc V, Harabagiu V, et al. Copper (Ⅱ), nickel (Ⅱ), cobalt (Ⅱ)/chitosan-polydimethylsiloxane complexes [J]. Journal of Optoelectronics and Advanced Materials,2008,10:1473-1477.
    [26]Enescu D, Hamciuc V, Ardeleanu R, et al. Polydimethyisiloxane modified chitosan. Part III:preparation and characterization of hybrid membranes [J]. Carbohydrate Polymers, 2009,76:268-278.
    [27]Wang Y, Jiang Z, Li H, et al. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC [J]. Chemical Engineering and Processing:Process Intensification,2010,49:278-285.
    [28]Zha F, Li SG, Chang Y, et al. Preparation and adsorption kinetics of porous Y-glycidoxypropyltrimethoxysilane crosslinked chitosan-β-cyclodextrin membranes [J]. Journal of Membrane Science,2008,321:316-323.
    [29]Lagergren S. The theory of so-called adsorption of soluble substance [M]. Kung Sven. Veten. Hand 1898,24:1-39.
    [30]Boricha AG, Murthy ZVP. Preparation of N, O-carboxymethyl chitosan/cellulose acetate blends nanofiltration membrane and testing its performance in treating industrial wastewater [J]. Chemical Engineering Journal,2010,157 (2-3):393-400.
    [31]Labanda J, Sabate J, Llorens J. Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane absorber [J]. Journal of Membrane Science,2009,340: 234-240.
    [32]Chen JH, Ni JC, Liu QL, Li SX. Adsorption behavior of Cd(Ⅱ) ions on humic acid-immobilized sodium alginate and hydroxyl ethyl cellulose blending porous composite membrane adsorbent [J]. Desalination,2012,285:54-61.
    [33]Hsiao MH, Tung TH, Hsiao CS, et al. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl) triethoxysilane for camptothecin delivery [J]. Carbohydrate Polymers,2012,89:632-639.
    [34]Tran CD, Duri S, Delneri A, et al. Chitosan-cellulose composite materials:Preparation, Characterization and application for removal of microcystin [J]. Journal of Hazardous Materials,2013,252-253:355-366.
    [35]Ramesh S, Shanti R, Morris E. Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture [J]. Carbohydrate Polymers 2013, 91:14-21.
    [36]Li W, Li X,Li W, et al. Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture [J]. European Polymer Journal,2012,48:1846-1853.
    [37]Beppu MM, Vieira RS, Aimoli CG, et al. Crosslinking of chitosan membranes using glutaraldehyde:Effect on ion permeability and water absorption [J]. Journal of Membrane Science,2007,301:126-130.
    [38]Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J]. Biopharmaceutics,2004, 57:19-34.
    [39]Faria EA, Prado AGS. Kinetic studies of the thermal degradation of cellulose acetate/niobium and chitosan/niobium composites [J]. Reactive and Functional Polymers, 2007,67:655-661.
    [40]许彩霞,陈日耀,郑曦,黄振霞,黄雪红,陈震CS-CMC聚合物电解质膜的制备及在电生成Fe042-中的应用[J].化学学报,2006,64(8):784-788.
    [41]Fatehi P, Kititerakun R, Ni Y, et al. Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network [J]. Carbohydrate Polymers,2010,80 (1):208-214.
    [42]蒋柳云,李玉,张宝利等.壳聚糖/羧甲基纤维素复合膜的制备及性能研究[J].高分子材料科学与工程,2007,23(6):232-235.
    [43]张锐,方桂珍,马英梅等.羧甲基纤维素-壳聚糖共混膜的性能表征[J].林产化学与 工业,2010,30(1):43-48.
    [44]刘维锦,林志浩.纤维素/壳聚糖可生物降解膜的制备及力学性能[J].塑料工业2003,31(12):44-46.
    [45]Tripathi BP, Kumar M, Saxena A, Shahi, V. K., et al. Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol [J]. Journal of Colloid and Interface Science,2010,346 (1):54-60.
    [46]Sakiyama T, Takata H, Kikuchi M, et al. Polyelectrolyte complex gel with high pH-sensitivity prepared from dextran sulfate and chitosan [J]. Journal of Applied Polymer Science,1999,73:2227-2233.
    [47]Lin W, Yu D, and Yang M. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate:swelling kinetics and drug delivery properties [J]. Colloids and Surfaces. B, Biointerfaces,2005,44 (2-3): 143-151.
    [48]Martinez Y, Retuert J, Yazdani-Pedram M, Colfen H. Hybrid ternary organic-inorganic films based on interpolymer complexes and silica [J]. Polymer,2004,45 (10): 3257-3265.
    [49]Bayramoglu G, Celik G, Yilmaz M, Arica MY. Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods:evaluation of their Cr6+ removal efficiencies from aqueous medium [J]. Journal of Hazardous Materials,2005, 119:219-229.
    [50]Seo T, Hagura S, Kanbara T, lijima T. Interaction of dyes with chitosan derivatives [J]. Journal of Applied Polymer Science,1989,37:3011-3027.
    [51]Enescu D. Polydimethylsiloxane Modified Chitosan IV. Preparation and Characterization of Porous Hybrid Membranes [J]. Journal of Macromolecular Science Part A:Pure and Applied Chemistry,2009,46:438-446.
    [52]Cestari AR, Vieira EFS, Santos AGP, et al. Adsorption on of anionic dyes on chitosan beads.1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics [J]. Journal of Colloid and Interface Science,2004,280:380-386.
    [53]Cestari AR, Vieira EFS, Pinto AA, Lopes ECN., Multiple adsorptions of anionic dyes on silica/chitosan hybrid 1.Comparative kinetic data from liquid-and solid-phase models [J]. Journal of Colloid and Interface Science,2005,292:363-372.
    [54]Maghami GG, Roberts GA. Studies on the interaction of anionic dyes on chitosan [J]. Die Makromolekulare Chemie,1988,189:2239-2243.
    [55]Han B, Zhang D, Shao Z, et al. Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes [J]. Desalination 2013,311:80-89.
    [56]Li N, Bai R. Copper adsorption on chitosan-cellulose hydrogel beads:behaviors and mechanisms [J]. Separation and Purification Technology,2005,42:237-247.
    [57]Bayramoglu G, Arica MY. Adsorption of Cr (VI) onto PEI immobilized acrylate-based magnetic beads:Isotherms, kinetics and thermodynamics study [J]. Chemical Engineering Journal,2008,139:20-28.
    [58]Wu J, Zhang H, He PJ, Yao, Q, et al. Cr (VI) removal from aqueous solution by dried activated sludge biomass [J]. Journal of Hazardous Materials,2010,176 (1-3):697-703.
    [59]Delben F, Gabrielli P, Muzzarelli RAA, Stefancich S., Interactions of soluble chitosans with dyes in water. Ⅱ. Thermodynamic data [J]. Carbohydrate Polymers,1994,24: 25-30.
    [1]Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies:A review of recent literature [J]. Progress in Polymer Science,2008,33:399-447.
    [2]Liu F, Wang J, Li L,et al. Adsorption of Direct Yellow 12 onto Ordered Mesoporous Carbon and Activated Carbon [J]. Journal of Chemical & Engineering Data,2009,54 (11):3043-3050.
    [3]Freedman ML. Precipitation of Molybdenum (Ⅵ) in Strongly Acid Solutions [J]. Journal of Chemical & Engineering Data,1963,8(1):113-116.
    [4]Labanda J, Sabate J, Llorens J. Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane absorber [J]. Journal of Membrane Science,2009, 340:234-240.
    [5]Stefancich S, Delben F, Muzzarelli RAA. Interaction of soluble chitosans with dyes in water. I. Optical evidence [J]. Carbohydrate Polymers,1994,24(1):17-23.
    [6]Chatterjee S. Lee MW, Woo SH. Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes [J]. Bioresource Technology,2010,101: 1800-1806.
    [7]Chatterjee S, Lee DS, Lee MW, et al. Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads [J]. Bioresource Technology,2010,101:4315-4321.
    [8]Wu Y, Zhang L, Gao C,Ma, et al. Adsorption of copper ions and methylene blue in a single and binary system on wheat straw [J]. Journal of Chemical & Engineering Data, 2009,54 (12):3229-3234.
    [9]Srivastava VC, Mall ID, Mishra IM. Equilibrium modeling of ternary adsorption of metal ions onto rice husk ash [J]. Journal of Chemical & Engineering Data,2009,54 (3):705-711.
    [10]Kushwaha S, Sreedhar B, Padmaja P. Sorption of phenyl mercury, methyl mercury, and inorganic mercury onto chitosan and barbital immobilized chitosan:spectroscopic, potentiometric, kinetic, equilibrium, and selective desorption studies [J]. Journal of Chemical & Engineering Data,2010,55 (11):4691-4698.
    [11]Zhang J, Wang A. Adsorption of Pb(Ⅱ) from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite/sodium humate composite hydrogels[J]. Journal of Chemical & Engineering Data,2010,55 (7):2379-2384.
    [12]Kyzas GZ, Kostoglou M, Lazaridis NK. Relating interactions of dye molecules with chitosan to adsorption kinetic data [J]. Langmuir,2010,26:9617-9626.
    [13]Singh A, Narvi SS, Dutta PK,et al. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde [J]. Bulletin of Materials Science,2006,29: 233-238.
    [14]Hirano S, Nagamura K, Zhang M, et al. Chitosan staple fibers and their chemical modification with some aldehydes [J]. Carbohydrate Polymers,1999,38:293-298.
    [15]Hoffmann B, Seitz D, Mencke A, et al. Glutaraldehyde and oxidized dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering [J]. Journal of Materials Science:Materials in Medicine,2009,20:1495-1503.
    [16]Knaul JZ, Hudson SM, Creber KAM. Crosslinking of chitosan fibers with dialdehydes: proposal of a new reaction mechanism [J]. Journal of Polymer Science Part B:Polymer Physics,1999; 37:1079-1094.
    [17]Jackson EL, Hudson CS. Application of the cleavage type of oxidation by periodic acid to starch and cellulose [J]. Journal of the American Chemical Society,1937,59: 2049-2053.
    [18]Cai Q, Gu Z, Chen Y, et al. Degradation of chitosan by an electrochemical process [J]. Carbohydrate Polymers,2010,79:783-785.
    [19]Knaul JZ, Hudson SM, Creber KAM. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism [J]. Journal of Polymer Science Part B:Polymer Physics 1999,37(11):1079-1094.
    [20]Bouhadir KH, Lee KY, Alsberg E. et al. Degradation of partially oxidised alginate and its potential application for tissue engineering [J]. Biotechnology Progress,2001,17: 945-950.
    [21]Terada N, Morimoto M, Saimoto H, et al. Regioselective synthesis and biological activity of oxidized chitosan derivatives [J]. Polymers for Advanced Technologies, 2003,14:40-51.
    [22]Terada N, Morimoto M, Saimoto H, et al. Synthesis of water-soluble oxidized chitosan derivatives and their biological activity [J]. Chemistry Letters,1999,28:1285-1286.
    [23]Zhang L, Gong X, Wang Y, et al. Solubilities of Protocatechuic Aldehyde, Caffeic Acid, d-Galactose, and d-Raffinose Pentahydrate in Ethanol-Water Solutions [J]. Journal of Chemical & Engineering Data,2012,57 (7):2018-2022.
    [24]Pourjavadi A, Aghajani V, Ghasemzadeh H. Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel [J]. Journal of Applied Polymer Science,2008,109:2648-2655.
    [25]Cortesi R, Nastruzzi C, Davis SS. Sugar cross-linked gelatin for controlled release: microspheres and disks [J]. Biomaterials,1998,19:1641-1649.
    [26]Wang J W, Hon MH. Effects of sugar cross-linking agents and thermal treatment on the culture of fibroblasts in vitro on a (PEG/chitosan) membrane [J]. Journal of Biomaterials Science, Polymer Edition,2003,14:119-137.
    [27]Lee HS, Tsai S, Kuo CC, et al. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion [J]. Journal of Colloid and Interface Science,2012,385: 235-243.
    [28]Kato Y, Kaminaga J, Matsuo R, et al., TEMPO-mediated oxidation of chitin, regeneratd chitin and N-acetylated chitosan [J]. Carbohydrate Polymers,2004,58:421-426.
    [29]Baier G, Musyanovych A, Dass M, et al. Cross-Linked Starch Capsules Containing dsDNA Prepared in Inverse Miniemulsion as "Nanoreactors" for Polymerase Chain Reaction[J].Biomacromolecules,2010,11 (4):960-968.
    [30]Bonilla J, Atares L, Vargas M, et al. Properties of wheat starch film forming dispersions and films as affected by chitosan addition [J]. Journal of Food Engineering,2013,114 (3): 303-312.
    [31]Elsabee MZ, Abdou ES. Chitosan based edible films and coatings:A review [J]. Materials Science and Engineering C,2013,33:1819-1841.
    [32]Arockianathan PM, Sekar S. Kumaran B, et al. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles [J]. International Journal of Biological Macromolecules,2012,50: 939-946.
    [33]Li N, Bai R. Copper adsorption on chitosan-cellulose hydrogel beads:behaviors and mechanisms [J]. Separation and Purification Technology,2005,42:237-247.
    [34]Zhang J, Zhou Q, Ou L. Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite [J]. Journal of Chemical & Engineering Data,2011,57 (2):412-419.
    [35]Labanda J, Sabate J. Modeling of the dynamic adsorption of an anionic dye through ion-exchange membrane absorber [J]. Journal of Membrane Science,2009,340: 234-240.
    [36]Wang J, Fu W, Zhang D,et al. Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering[J]. Carbohydrate Polymers,2010,79:705-710.
    [37]Shen XL, Wu JM, Chen Y, et al. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan [J]. Food Hydrocolloids 2010,24:285-290.
    [38]Xu YX, Kim KM, Hanna MA, et al. Chitosan-starch composite film:preparation and characterization [J]. Industrial Crops and Products,2005,21(2):185-192.
    [39]Baran ET, Mano JF, Reis RL. Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch-chitosan films [J]. Journal of Materials Science:Materials in Medicine,2004,15:759-765.
    [40]Lin B, Du Y, Li Y, et al. The effect of moist heat treatment on the characteristic of starch-based composite materials coating with chitosan [J].Carbohydrate Polymers 2010,81:554-559.
    [41]Kimura S, Isobe N, Wada M, et al. Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels [J]. Carbohydrate Polymers,2011,83:1850-1853.
    [42]Tuhin MO, Rahman N, Haque ME, et al. Modification of mechanical and thermal property of chitosan-starch blend films [J]. Radiation Physics and Chemistry,2012,81: 1659-1668.
    [43]Kim UJ, Kuga S. Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives [J]. Thermochimica Acta,2001b,369:79-85.
    [44]Kim UJ, Kuga S. Polyallylamine-grafted cellulose gel as high-capacity anion-exchanger [J]. Journal of Chromatography A,2002b,946:283-289.
    [45]Xu YX, Kim KM, Hanna MA, et al. Chitosan-starch composite film:preparation and characterization [J]. Industrial Crops and Products,2005,21(2):185-192.
    [46]Chang PR, Jian R, Yu J, et al. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites [J]. Food Chemistry,2010,120:736-740.
    [47]Li H, Gao X, WangY, et al. Comparison of chitosan/starch composite film properties before and after cross-linking [J]. International Journal of Biological Macromolecules, 2013,52:275-279.
    [48]Safa Y, Bhatti HN. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk [J]. Desalination,2011,272:313-322.
    [49]Ahmad AA, Hameed BH, Aziz N. Adsorption of direct dye on palm ash:Kinetic and equilibrium modeling [J]. Journal of Hazardous Materials,2007,141:70-76.
    [50]Saleem M, Pirzada T, Qadeer R. Sorption of Acid Violet 17 and Direct Red 80 dyes on cotton fiber from aqueous solutions [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,292:246-250.
    [51]Wang H, Li C, Bao C,et al. Adsorption and determination of Pd(Ⅱ) and Pt(Ⅳ) onto 3'-nitro-4-amino azobenzene modified chitosan [J]. Carbohydrate Polymers,2011, 56(11):4203-4207.
    [52]Liang ZP, Feng YQ, Liang ZY, et al. Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease:Equilibrium and kinetic [J]. Biochemical Engineering Journal,2005,24(1):65-72.
    [53]Zhang J, Zhou Q, Ou L. Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite [J]. Carbohydrate Polymers,2011,57(2):412-419.
    [1]Jackson EL, Hudso CS. Application of the cleavage type of oxidation by periodic acid to starch and cellulose [J]. Journal of the American Chemical Society,1937,59: 2049-2050.
    [2]Yue W, He R, Yao P, Wei Y. Ultraviolet radiation-induced accelerated degradation of chitosan by ozone treatment [J]. Carbohydrate Polymers,2009,77:639-642.
    [3]Tian F, Liu Y, HU K, Zhao B. The depolymerization mechanism of chitosan by hydrogen peroxide [J]. Journal of Materials Science,2003,38:4709-4712.
    [4]Fan Y, Saito T, Isogai A. Chitin Nanocrystals Prepared by TEMPO-Mediated Oxidation of a-Chitin [J]. Biomacromolecules,2008,9:192-198.
    [5]Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution [J]. Biomaterials,2005,26: 2455-2465.
    [6]Yoo SH, Lee JS, Park SY, Kim YS, Chang PS, Lee HG. Effects of selective oxidation of chitosan on physical and biological properties [J]. International Journal of Biological Macromolecules,2005,35:27-31.
    [7]李鹏飞.天然保湿剂的合成及应用研究[D].硕士.江南大学,2005.
    [8]Vold IM, Christensen BE. Periodate oxidation of chitosans with different chemical compositions [J]. Carbohydrate Research,2005,340:679-684.
    [9]Czajkowski W, Paluszkiewicz J, Stolarski R, Kazmierska M, Grzesiak E. Synthesis of reactive UV absorbers, derivatives of monochlorotriazine, for improvement in protecting properties of cellulose fabrics [J]. Dyes and Pigments,2006,71:224-230.
    [10]万荣欣,顾汉卿.水溶性壳聚糖的研究进展[J].透析与人工器官,2005,16:26-32.
    [11]王浩.纳米氧化锌和壳聚糖有机硅对棉织物多功能整理研究[D].硕士.安徽农业大学,2005.
    [12]Liang ZP, Feng YQ, Liang ZY, Meng SX. Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease:Equilibrium and kinetic [J]. Biochemical Engineering Journal,2005,24:65-72.
    [13]Tragoonwichian S, O'Rear EA, Yanumet N. Double coating via repeat admicellar polymerization for preparation of bifunctional cotton fabric:Ultraviolet protection and water repellence [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,349:170-175.
    [14]Xiao J, Zhang S, Yang J, Huang Q. Study on chemical bonding of Polycarboxylic acid Black on cotton and its dyeing and finishing properties [J]. Dyes and Pigments,2007, 73:111-117.
    [15]Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D. Preparation and characterization of nano-cellulose with new shape from different precursor [J]. Carbohydrate Polymers,2013,98:562-567.
    [16]Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P. Biologically active fibers based on chitosan-coated lyocell fibers [J]. Carbohydrate Polymers,2009,78:240-246.
    [17]Kang IS, Yang CQ, Weishu W, Lickfield GC. Mechanical strength of durable press finished cotton fabrics:part Ⅰ:effects of acid degradation and crosslinking of cellulose by polycarboxylic acids [J]. Textile Research Journal,1998,68:865-870.
    [18]Wang L, Ma W, Zhang S, Teng X, Yang J. Preparation of cationic cotton with two-bath pad-bake process and its application in salt-free dyeing [J]. Carbohydrate Polymers, 2009,78:602-608.
    [19]Hou A, Yu Y, Chen H. Uniform dispersion of silica nanoparticles on dyed cellulose surface by sol-gel method [J]. Carbohydrate Polymers,2010,79:578-583.
    [20]Totolin V, Sarmadi M, Manolache SO, Denes FS. Atmospheric pressure plasma enhanced synthesis of flame retardant cellulosic materials [J]. Journal of Applied Polymer Science,2010,117:281-289.
    [21]Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G. Thermal stability and flame resistance of cotton fabrics treated with whey proteins[J]. Carbohydrate Polymers,2013,94:372-377.
    [22]Girardi F, Maggini S, Della Volpe C, Cappelletto E, Mueller K, Siboni S, Di Maggio R. Hybrid organic-inorganic materials on paper:surface and thermo-mechanical properties[J]. Journal of Sol-Gel Science and Technology,2011,60:315-323.
    [23]Lessan F, Montazer M, Moghadam MB. A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano TiO2 and maleic acid [J]. Thermochimica Acta, 2011,520:48-54.
    [24]Colleoni C, Donelli I, Freddi G, Guido E, Migani V, Rosace G. A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor [J]. Surface and Coatings Technology 2013,235:192-203.
    [25]Ibrahim NA, Amr A, Eid BM, Almetwally AA, Mourad MM. Functional finishes of stretch cotton fabrics [J]. Carbohydrate Polymers,2013,98:1603-1609.
    [26]Wang Q, Hauser PJ. Developing a novel UV protection process for cotton based on layer-by-layer self-assembly [J]. Carbohydrate Polymers,2010,81:491-496.
    [27]Ibbett R, Phillips D, Kaenthong S. Evaluation of a dye isotherm method for characterisation of the wet-state structure and properties of lyocell fibre [J]. Dyes and Pigments,2006,71:168-177.
    [28]Chen K-M, Lin L-H, Wang CF, Hwang M-C. Interactions between new multi-anionic surfactants and direct dyes and their effects on the dyeing of cotton fabrics [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,356:46-50.
    [29]Tsatsaroni EG, Eleftheriadis IC, Kehayoglou AH. The role of polyoxyethylenated stearylamines in the dyeing of cotton with direct dyes [J]. Journal of the Society of Dyers and Colourists,1990,106:245-248.
    [30]Stefancich S, Delben F, Muzzarelli RAA. Interaction of soluble chitosans with dyes in water. I. Optical evidence [J]. Carbohydrate Polymers,1994,24:17-23.
    [1]Rinaudo M. Chitin and chitosan:Properties and applications [J]. Progress in Polymer Science,2006,31 (7):603-632.
    [2]Vakhitova NA, Safonov W. Effect of chitosan on the efficiency of dyeing textiles with active dyes [J]. Fibre Chemistry,2003,35 (1):27-28.
    [3]Jocic D, Vilchez S, Topalovic T, et al. Effect of low-temperature plasma and chitosan treatment on wool dyeing with acid red 27 [J]. Journal of Applied Polymer Science, 2005,97 (6):2204-2214.
    [4]Vilchez S, Manich AM, Jovancic P, et al. Chitosan contribution on wool treatments with enzyme [J]. Carbohydrate Polymers,2008,71 (4):515-523.
    [5]Sashiwa H, ShigemasaY. Roy R. Chemical Modification of Chitosan.10.1 Synthesis of Dendronized Chitosan-Sialic Acid Hybrid Using Convergent Grafting of Preassembled Dendrons Built on Gallic Acid and Tri (ethylene glycol) Backbone [J]. Macromolecules, 2001,34 (12):3905-3909.
    [6]Flores-Ramirez N, Luna-Barcenas G, Vasquez-Garcia SR, et al. Hybrid natural-synthetic chitosan resin:thermal and mechanical behavior [J]. Journal of Biomaterials Science, Polymer Edition,2008,19:259-273.
    [7]Mary G, Bajpai SK, Chand N. Copper (Ⅱ) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties [J]. Journal of Applied Polymer Science,2009,113 (2):757-766.
    [8]Niu M, Liu X, Dai J, et al. The structure of wool fibers grafted with chitosan coated Ag-loading nano-SiO2 antibacterial composites [J]. Fibers and Polymers,2010,11(8): 1201-1203.
    [9]Joshi M, Khanna R, Shekhar R, et al. Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique [J]. Journal of Applied Polymer Science, 2011,119 (5):2793-2799.
    [10]Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J]. International Journal of Biological Macromolecules,2008,43(5):401-414.
    [11]Hayes M, Carney B, Slater J, Briick W. Mining marine shellfish wastes for bioactive molecules:Chitin and chitosan-Part B:Applications[J]. Biotechnology Journal,2008(3): 878-889.
    [12]Mourya VK, Inamdar NN. Chitosan modifications and applications:Opportunities galore [J]. Reactive & Functional Polymers,2008,68:1013-1051.
    [13]钟婧,洪艳,陈勇.壳聚糖季铵盐的最新研究进展[J].中国组织工程研究与临床康复,2008,12(6):1115-1118.
    [14]许晨,卢灿辉.壳聚糖季铵盐的合成及结构表征[J].功能高分子学报,1997,10(1):51-55.
    [15]Kim CH, Choi KS. Synthesis and antibacterial activity of quaternized chitosan derivatives having different metlaylene spacers [J]. J Ind and Eng Chem,2002,8: 71-76.
    [16]冯晓晶,马英华,刘长波,蔡振云.2-环氧丙基十二烷基二甲基季铵盐的合成[J].化学与生物工程,2009,26(5):23-25.
    [17]张灿,丁娅,平其能.新型两亲性N-烷基-N-季铵化壳聚糖衍生物的制备与表征[J].高分子材料科学与工程,2006,22(4):200-203.
    [18]杨锦宗.染料的分析与剖析[M].化学工业出出版社,1987.
    [19]朱平.功能纤维及功能纺织品[M].中国纺织出版社,2006.
    [20]唐有根,蒋刚彪,解光东.新型壳聚糖两性高分子表面活性剂的合成[J].湖南化工,2000,30(2):30-33.
    [21]王心灵,吴焱,孙培冬等.4-甲氧基肉桂酰基壳聚糖季铵盐的制备及防晒性能研究[J].日用化学工业,2011(5):347-351.
    [22]王新平,陈志方,沈之荃.高分子表面动态行为与接触角时间依赖性[J].中国科学(B辑)化学,2005(1):64-69.
    [1]Kurita K, lkeda H, Yoshida Y, Shimojoh M, Harata M. Chemoselective Protection of the Amino Groups of Chitosan by Controlled Phthaloylation:Facile Preparation of a Precursor Useful for Chemical Modifications [J]. Biomacromolecules.2002,3:1-4.
    [2]Gorochovceva N, Makuska R. Synthesis and study of water-soluble chitosan-O-polyethylene glycol) graft copolymers [J]. European Polymer Journal,2004, 40:685-691.
    [3]Huang M, Shen W, Fang YE. Synthesis of a novel chitosan derivative having poly (ethylene oxide) side chains in aqueous reaction media [J]. Reactive and Functional Polymers,2005,65:301-308.
    [4]Kurita K. Controlled functionalization of the polysaccharide chitin [J]. Progress in Polymer Science,2001,26 (9):1921-1971.
    [5]赵廷凯,李光明,刘乐浩等.多壁碳纳米管/壳聚糖复合材料的制备及电催化性能[J].中国有色金属学报,2010,20(9):1733-1736.
    [6]孙浩,戴耀东,陈刚等.小分子壳聚糖非共价修饰多壁碳纳米管及其在水中的稳定性研究[J].化工新型材料,2009,37(11):78-80.
    [7]Li S, Li B, Li Z, et al. Morphological manipulation of carbon nanotube/polycarbonate/polyethylenecomposites by dynamic injection packing molding [J]. Polymer,2006,47(13):4497-4500.
    [8]Wang S, Shen L, Zhang W, et al. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites [J]. Biomacromolecules,2005,6(6): 3067-3072.
    [9]Zhang J,Wang Q,Wang L,Wang A. Manipulated dispersion of carbon nanotubes with derivatives of chitosan [J].Carbon,2007,45(9):1911-1920.
    [10]张洁,庞雪辉,隋卫平,谭福能,侯保荣.碳纳米管/壳聚糖衍生物传感器的制备及表征[J].济南大学学报(自然科学版).2011,25(3):252-255.
    [11]胡晓蓝,曾海涛,周花等.壳聚糖衍生物处理碳纳米管改性聚丙烯腈基碳纤维[J].高分子学报,2011(10):1166-1172.
    [12]董炎明,吴玉松,王勉.邻苯二甲酰化壳聚糖的合成与溶致液晶表征[J].物理化学学报,2002,(7):636-639.
    [13]Zhang C, Ping Q, Zhang Hj, et al. Synthesis and characterization of water-soluble O-succinyl-chitosan [J]. European Polymer Journal.2003,39:1629-1634.
    [14]王周玉,蒋珍菊,李富生等.水溶性N-酰化壳聚糖的合成与表征[J].四川工业学院学报,2004,23(1):73-75.
    [15]Chen C, Tao S, QiuX, et al. Long-alkane-chain modified N-phthaloyl chitosan membranes with controlled permeability [J]. Carbohydrate Polymers,2013,91:269-276.
    [16]马如飞,李铁虎,庄强等.静电自组装碳纳米管/壳聚糖复合材料[J].碳素技术,2009,28(2):10-12.
    [17]Esawi AMK, Farag MM. Carbon nanotube reinforced composites:Potential and current challenges [J]. Materials and Design,2007,28(9):2394-2401.
    [18]Zhao YD, Zhang WD, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J]. Sense Actuators B:Chemical,2002,87(1): 168-172.
    [19]Nativ-Roth E, Shvartzman-Cohen R, Bounioux C, et al. Physical adsorption of block copolymers to SWNT and MWNT□a nonwrapping mechanism [J]. Macromolecules, 2007,40:3676-3685.
    [20]Shvartzman-Cohen R, Nativ-Roth E, Baskaran E, et al. Selective dispersion of single-walled carbon nanotubes in the presence of polymers:the role of molecular and colloidal length scales [J]. Journal of the American Chemical Society,2004,126: 14850-14857.
    [21]Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions [J]. Nano Letters,2002,2 (1):25-28.
    [22]Shi D, Feng X, Huang Y, et al. The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites [J]. Journal of Engineering Materials and Technology,2004,126 (3):250-257.
    [23]张强,黄年华,徐有才.棉纤维的热降解动力学研究[J].纺织学报,2008,(02):15-19.
    [24]李祎.生物降解高分子纳米复合材料的制备与性能研究[D].博士.吉林大学;2013
    [25]Marroquin JB, Rhee KY, Park SJ. Chitosan nanocomposite films:enhanced electrical conductivity, thermal stability, and mechanical properties [J]. Carbohydrate Polymers, 2013,92(2):1783-1791.
    [26]Dai B, Cao M, Fang G, et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS [J]. Journal of Hazardous Materials,2012,219-220:103-110.
    [27]李刚,李志刚,徐先锋.定向碳纳米管薄膜的制备及可控浸润性[J].材料热处理学报2013:12-15.
    [28]沈有斌.水性碳纳米管改性聚合物合成及性能研究[D].硕士.广州大学,2012.
    [29]朱平.功能纤维及功能纺织品[M].中国纺织出版社,2006:127-128.
    [30]张延霖,刘佩红,舒绪刚.亚甲基蓝在碳纳米管上的吸附及其热力学[J].华东师范大学学报,20]1,1:70-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700