自由基加成—偶合反应及其在聚合物合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由基的加成反应,如自由基加成聚合,广泛用于聚合物的合成。自由基的偶合反应是最快的有机反应之一,但是由于自由基的歧化和链转移等副反应的存在,且自由基反应没有选择性,使得自由基偶合反应很少被用于有机和聚合反应。我们报道了一种基于自由基与双键的连续加成-偶合反应,用于制备不同结构的聚合物。
     α,ω-二溴化合物在铜粉/多元胺作用下,生成碳自由基,与C-亚硝基化合物发生加成反应,原位生成稳定的氮氧自由基与另一碳自由基发生偶合反应。重复以上加成-偶合反应,得到高分子量的聚合物。这一新的聚合方法称为自由基加成-偶合聚合(RACP)。通过凝胶渗透色谱(GPC)研究2,13-二溴代十四烷二酸二甲酯与2-甲基-2-亚硝基丙烷反应产物的分子量随时间的变化。产物的聚合度与反应程度的关系符合Carothers方程,说明该反应的聚合机理为逐步聚合。研究了投料比、副反应、浓度、温度以及单体种类等因素对RACP反应的影响。
     设计与合成含有不同官能团的二溴化合物,与2-甲基-2-亚硝基丙烷进行RACP反应,制备了具有[AAB]、[ABAC]以及[ABCDCBAD]等重复结构的周期性聚合物,聚合物的主链可含有酯基、酰胺基以及醚键等官能团。由于得到的聚合物中含有C-ON键,因此产物可以进行热降解。另外,RACP反应的中间体齐聚物两端仍然含有溴官能团,可以作为大分子引发剂引发乙烯基单体进行原子转移自由基聚合(ATRP),制备具有新型结构的三嵌段共聚物。
     α-溴代聚苯乙烯与2-甲基-2-亚硝基丙烷进行RAC反应,得到对称的两段聚苯乙烯,偶合效率接近100%。a,ω-二溴代聚合物与2-甲基-2-亚硝基丙烷进行RAC反应,可制备可降解的多(嵌)段聚合物。通过比较降解前后产物的数均分子量的大小,表明RAC合成的多段聚合物(聚丙烯酸叔丁酯)的嵌段数最高可以达到37。α,ω-二溴代(聚丙烯酸叔丁酯-b-聚苯乙烯-b-聚丙烯酸叔丁酯)(Br-PtBA-b-PS-b-PtBA-Br)与2-甲基-2-亚硝基丙烷反应,可制备多嵌段共聚物(PtBA-b-PS)m。
     通过2-溴丙酸乙酯、(1-澳十二烷基)苯与1,1-二苯基乙烯反应,研究了自由基加成-交叉偶合(RACC)反应。利用小分子溴化物与α-溴代聚苯乙烯进行RACC反应,实现了聚合物端基官能团的高效转化。两种不同种类的单溴代聚合物(P1-Br和P2-Br)在铜粉/配体的作用下,与双键化合物(X,二硫代苯甲酸乙酯或1,1-二苯基乙烯)发生RACC反应,得到嵌段共聚物Pi-X-P2。RACC反应的交叉偶合效率可以接近95%。
Radical addition reaction, such as radical addition polymerization, was widely used in polymer synthesis. Although radical-radical coupling reaction is a kind of rapid reaction with high efficiency, it is scarcely used in organic and polymer synthesis. The reason is that radicals can still undergo disproportionation and transfer reactions besides coupling reaction, which leads to the termination of coupling reactions. We reported a consecutive radical addition-coupling (RAC) reaction to double bonds compounds for preparation of polymers with different structure.
     The carbon-centered radical generated from a,ω-dibromo dibasic ester promoted by Cu(O)/ligand can be efficiently captured by C-nitroso compound, which results in nitroxide radical. The in-situ formed nitroxide radical immediately undergoes cross-coupling reaction with carbon-centered radical. The alternating copolymers with high molecular weight and unimodal molecular weight distribution can be synthesized by consecutive RAC. This polymerization method was named radical addition-coupling polymerization (RACP). The RACP of dimethyl2,13-dibromotetradecanedioate and2-methyl-2-nitrosopropane was monitored with gel permeation chromatograph (GPC) at various polymerization times. The evolution of molecular weight distribution clearly demonstrated that the polymerization follows the step-growth mechanism. The feed ratio, side-reactions, reaction temperature and monomer concentration, as well as monomer types, affect the results of RACP.
     The monomer can be well designed, and the polymerization is tolerated to various functional groups. A variety of symmetrical and asymmetrical a,ω-dibromo compounds containing ester, amide, ether or ethylene function groups were subjected to RACP, in order to prepare periodic copolymers possessing [AAB],[ABAC], and [ABCDCBAD] repeating structure. Since alkoxyamine groups are present along the backbone of the RACP product, it can be themodegraded to the precursor. The intermediate polymer prepared by RACP can also be applied as macroinitiator for atom transfer radical polymerization (ATRP) to synthesize triblock copolymer.
     Monobromo polystyrene was reacted with2-methyl-2-nitrosopropane by RAC reaction to produce the symmetrical polymer with doubled molecular weight (MW) and similar polydispersity index (PDI), which demonstrated that the coupling efficiency is close to100%.
     The reaction of a,ω-dibromo polymer with a stoichiometric amount of nitroso compounds paved the way to the synthesis of multisegmented polymers. Up to37poly(tery-butyl acrylate)(PtBA) segments constitutes the final product of the reaction of a,ω-dibromo PtBA with2-methyl-2-nitrosopropane, which is the highest block number for a multisegmented polymer prepared by radical coupling. A multiblock copolymer (PtBA-b-PS)m was successfully prepared when the same strategy was applied to a,ω-dibromo poly(tert-butyl acrylate)-b-polystyrene-b-poly(tert-butyl acrylate)(Br-PtBA-b-PS-b-PtBA-Br) precursors.
     Ethyl2-bromopropionate and (1-bromododecyl)benzene were reacted with1,1-diphenylethylene by radical addition cross-coupling (RACC) reaction. The bromined chain ends of well-defined polystyrene prepared using ATRP were successfully transformed into various functional end groups by RACC. Two different monobromo polymers (P1-Br and P2-Br) were reacted with Cu(0)/ligand in the presence of ethyl dithiobenzoate or1,1-diphenylethylene (X) and the block copolymer (P1-X-P2) can be obtained with high efficiency (up to95%), which cannot be prepared by normal atom transfer radical coupling (ATRC) of mixture of P1-Br and P2-Br.
引文
[1]Szwarc, M.; Levy, M.; Milkovich, R., Polymerization by electron transfer to monomer-A new method of formation of block polymers. Journal of the American Chemical Society 1956,78 (11), 2656-2657.
    [2]Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization:Features, developments, and perspectives. Progress in Polymer Science 2007,32 (1),93-146.
    [3]Kamigaito, M.; Ando, T.; Sawamoto, M., Metal-catalyzed living radical polymerization. Chemical Reviews 2001,101 (12),3689-3745.
    [4]Matyjaszewski, K.; Xia, J. H., Atom transfer radical polymerization. Chemical Reviews 2001, 101 (9),2921-2990.
    [5]Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews 2001,101 (12),3661-3688.
    [6]Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process. Macromolecules 1998,31 (16), 5559-5562.
    [7]Coulembier, O.; Degee, P.; Hedrick, J. L.; Dubois, P., From controlled ring-opening polymerization to biodegradable aliphatic polyester:Especially poly(beta-malic acid) derivatives. Progress in Polymer Science 2006,31 (8),723-747.
    [8]Bielawski, C. W.; Grubbs, R. H., Living ring-opening metathesis polymerization. Progress in Polymer Science 2007,32 (1),1-29.
    [9]Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L., Organocatalytic ring-opening polymerization. Chemical Reviews 2007,107 (12),5813-5840.
    [10]Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry:Diverse chemical function from a few good reactions. Angewandte Chemie-International Edition 2001,40(11),2004-2021.
    [11]Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process:Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angewandte Chemie-International Edition 2002,41 (14),2596-2599.
    [12]Binder, W. H.; Sachsenhofer, R., "Click" chemistry in polymer and material science:An update. Macromolecular Rapid Communications 2008,29 (12-13),952-981.
    [13]Fournier, D.; Hoogenboom, R.; Schubert, U. S., Clicking polymers:A straightforward approach to novel macromolecular architectures. Chemical Society Reviews 2007,36 (8),1369-1380.
    [14]Kempe, K.; Krieg, A.; Becer, C. R.; Schubert, U. S., "Clicking" on/with polymers:A rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chemical Society Reviews 2012,41 (1),176-191.
    [15]Lowe, A. B., Thiol-ene "click" reactions and recent applications in polymer and materials synthesis. Polymer Chemistry 2010,1(1),17-36.
    [16]Hoogenboom, R., Thiol-yne chemistry:A powerful tool for creating highly functional materials. Angewandte Chemie-International Edition 2010,49 (20),3415-3417.
    [17]Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V, Synthesis of dendrimers through divergent iterative thio-bromo "click" chemistry. Journal of Polymer Science Part A:Polymer Chemistry 2009, 47 (15),3931-3939.
    [18]Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V., Synthesis of dendritic macromolecules through divergent iterative thio-bromo "click" chemistry and SET-LRP. Journal of Polymer Science Part A:Polymer Chemistry 2009,47 (15),3940-3948.
    [19]Tasdelen, M. A., Diels-Alder "click" reactions:recent applications in polymer and material science. Polymer Chemistry 2011,2 (10),2133-2145.
    [20]Debuigne, A.; Hurtgen, M.; Jeromea, C.; Barner-Kowollik, C.; Junkers, T., Interpolymer radical coupling:A toolbox complementary to controlled radical polymerization. Progress in Polymer Science 2012,37 (7),1004-1030.
    [21]Yoshikawa, C.; Goto, A.; Fukuda, T., Reactions of polystyrene radicals in a monomer-free atom transfer radical polymerization system. e-Polymers 2002,13.
    [22]Zammit, M. D.; Davis, T. P.; Haddleton, D. M.; Suddaby, K. G., Evaluation of the mode of termination for a thermally initiated free-radical polymerization via matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Macromolecules 1997,30 (7),1915-1920.
    [23]Sarbu, T.; Lin, K. Y.; Ell, J.; Siegwart, D. J.; Spanswick, J.; Matyjaszewski, K., Polystyrene with designed molecular weight distribution by atom transfer radical coupling. Macromolecules 2004, 37(9),3120-3127.
    [24]Lutz, J. F.; Matyjaszewski, K., Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. Journal of Polymer Science Part A: Polymer Chemistry 2005,43 (4),897-910.
    [25]Matyjaszewski, K., Atom transfer radical polymerization (ATRP):Current status and future perspectives. Macromolecules 2012,45 (10),4015-4039.
    [26]Domingues, K. M.; Tillman, E. S., Radical-radical coupling of polystyrene chains using AGET ATRC. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (24),5737-5745.
    [27]Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., Understanding atom transfer radical polymerization:Effect of ligand and initiator structures on the equilibrium constants. Journal of the American Chemical Society 2008,130 (32),10702-10713.
    [28]Otazaghine, B.; Boyer, C.; Robin, J. J.; Boutevin, B., Synthesis of telechelic oligomers by atom transfer radical polymerization:A study of acrylate monomers. Journal of Polymer Science Part A:Polymer Chemistry 2005,43 (11),2377-2394.
    [29]Sarbu, T.; Lin, K. Y; Spanswick, J.; Gil, R. R.; Siegwart, D. J.; Matyjaszewski, K., Synthesis of hydroxy-telechelic poly(methyl acrylate) and polystyrene by atom transfer radical coupling. Macromolecules 2004,37 (26),9694-9700.
    [30]Barth, J.; Buback, M., SP-PLP-EPR investigations into the chain-length-dependent termination of methyl methacrylate bulk polymerization. Macromolecular Rapid Communications 2009,30(21),1805-1811.
    [31]Huang, C. F.; Ohta, Y.; Yokoyama, A.; Yokozawa, T., Efficient low-temperature atom transfer radical coupling and its application to synthesis of well-defined symmetrical polybenzamides. Macromolecules 2011,44 (11),4140-4148.
    [32]Otazaghine, B.; David, G.; Boutevin, B.; Robin, J. J.; Matyjaszewski, K., Synthesis of telechelic oligomers via atom transfer radical polymerization,1-Study of styrene. Macromolecular Chemistry and Physics 2004,205 (2),154-164.
    [33]Yurteri, S.; Cianga, I.; Yagci, Y, Synthesis and characterization of a, ω-telechelic polymers by atom transfer radical polymerization and coupling processes. Macromolecular Chemistry and Physics 2003,204 (14),1771-1783.
    [34]Kopping, J. T.; Tolstyka, Z. P.; Maynard, H. D., Telechelic aminooxy polystyrene synthesized by ATRP and ATR coupling. Macromolecules 2007,40 (24),8593-8599.
    [35]Nagelsdiek, R.; Keul, H.; Hocker, H., A new approach to multiblock copolymers using atom transfer radical coupling. e-Polymers 2005,49.
    [36]Luo, X. L.; Wang, G. W.; Huang, J. L., Preparation of H-shaped ABCAB terpolymers by atom transfer radical coupling. Journal of Polymer Science Part A:Polymer Chemistry 2009,47 (1), 59-68.
    [37]Jiang, X. Z.; Vamvakaki, M.; Narain, R., Copper-catalyzed bimolecular coupling of α,ω-dibromide-functionalized poly(y-caprolactone). Macromolecules 2010,43 (7),3228-3232.
    [38]Sasaki, D.; Suzuki, Y.; Hagiwara, T.; Yano, S.; Sawaguchi, T., Synthesis and applications of triblock and multiblock copolymers using telechelic oligopropylene. Polymer 2008,49 (19), 4094-4100.
    [39]Riquelurbet, L.; Schappacher, M.; Deffieux, A., A new strategy for the synthesis of cyclic polystyrenes:Principle and application. Macromolecules 1994,27 (22),6318-6324.
    [40]Jia, Z. F.; Monteiro, M. J., Cyclic polymers:Methods and strategies. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (11),2085-2097.
    [41]Voter, A. F.; Tillman, E. S., An easy and efficient route to macrocyclic polymers via intramolecular radical-radical coupling of chain ends. Macromolecules 2010,43 (24),10304-10310.
    [42]Chatgilialoglu, C., Organosilans as radical-based reducing agents in synthesis. Accounts of Chemical Research 1992,25 (4),188-194.
    [43]Chatgilialoglu, C., Structural and chemical-Properties of silyl radicals. Chemical Reviews 1995,95(5),1229-1251.
    [44]Braslau, R.; Tsimelzon, A.; Gewandter, J., Novel methodology for the synthesis of N-alkoxyamines. Organic Letters 2004,6 (13),2233-2235.
    [45]Thakur, S.; Tillman, E. S., Efficient metal-free coupling of polystyrene chains using silane radical atom abstraction. Journal of Polymer Science Part A:Polymer Chemistry 2007,45 (15), 3488-3493.
    [46]Thakur, S.; Cohen, N. A.; Tillman, E. S., Chain extension and block copolymer synthesis using silane radical atom abstraction coupled with nitroxide mediated polymerization. Polymer 2008, 49 (6),1483-1489.
    [47]Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S., Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C. Journal of the American Chemical Society 2006,128 (43),14156-14165.
    [48]Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Monteiro, M.; Barboiu, B.; Weichold, O.; Asandei, A. D.; Mitchell, C. M., Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride. Journal of the American Chemical Society 2002,124 (18), 4940-4941.
    [49]Rosen, B. M.; Percec, V., Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chemical Reviews 2009,109 (11),5069-5119.
    [50]Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Weichold, O., Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu-0/Tris(2-aminoethyl)amine or polyethyleneimine in water at 25 degrees C proceeds by a new competing pathways mechanism. Journal of Polymer Science Part A:Polymer Chemistry 2003,41 (21),3283-3299.
    [51]Otsuka, H.; Aotani, K.; Higaki, Y; Takahara, A., A dynamic (reversible) covalent polymer: radical crossover behaviour of TEMPO-containing poly(alkoxyamine ester)s. Chemical Communications 2002, (23),2838-2839.
    [52]Higaki, Y.; Otsuka, H.; Takahara, A., Dynamic formation of graft polymers via radical crossover reaction of alkoxyamines. Macromolecules 2004,37 (5),1696-1701.
    [53]Otsuka, H.; Aotani, K.; Higaki, Y.; Takahara, A., Polymer scrambling:Macromolecular radical crossover reaction between the main chains of alkoxyamine-based dynamic covalent polymers. Journal of the American Chemical Society 2003,125 (14),4064-4065.
    [54]Busfield, W. K.; Jenkins, I. D.; Monteiro, M. J., Initiation in free radical copolymerization studied by the nitroxide trapping method:Styrene and acrylonitrile. Polymer 1997,38(1),165-171.
    [55]Rizzardo, E.; Serelis, A. K.; Solomon, D. H., Initiation mechanisms in radical polymerizations-reaction of cumyloxy radicals with methyl-methacrylate and styrene. Australian Journal of Chemistry 1982,35 (10),2013-2024.
    [56]Tsarevsky, N. V.; Braunecker, W. A.; Matyjaszewski, K., Electron transfer reactions relevant to atom transfer radical polymerization. Journal of Organometallic Chemistry 2007,692 (15), 3212-3222.
    [57]Matyjaszewski, K.; Woodworth, B. E.; Zhang, X.; Gaynor, S. G.; Metzner, Z., Simple and efficient synthesis of various alkoxyamines for stable free radical polymerization. Macromolecules 1998,31 (17),5955-5957.
    [58]Kulis, J.; Bell, C. A.; Micallef, A. S.; Monteiro, M. J., Kinetic analysis of nitroxide radical coupling reactions mediated by CuBr. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (10),2214-2223.
    [59]Lin, W. C.; Huang, B.; Fu, Q. A.; Wang, G. W; Huang, J. L., Investigation of nitroxide radical coupling reaction in wide temperature range and different catalyst system. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (14),2991-2999.
    [60]Jia, Z. F.; Bell, C. A.; Monteiro, M. J., Rapid and highly efficient functionalization of polymer bromide end-groups by SET-NRC. Macromolecules 2011,44 (7),1747-1751.
    [61]Kulis, J.; Bell, C. A.; Micallef, A. S.; Jia, Z. F.; Monteiro, M. J., Rapid, selective, and reversible nitroxide radical coupling (NRC) reactions at amibient temperature. Macromolecules 2009, 42(21),8218-8227.
    [62]Fu, Q.; Zhang, Z. N.; Lin, W. C.; Huang, J. L., Single-electron-transfer nitroxide-radical-coupling reaction at ambient temperature:Application in the synthesis of block copolymers. Macromolecules 2009,42 (13),4381-4383.
    [63]Lin, W. C.; Jing, R. K.; Wang, G. W.; Huang, J. L., Synthesis of amphiphilic ABC triblock copolymers by single electron transfer nitroxide radical coupling reaction in tetrahydrofuran. Journal of Polymer Science Part A:Polymer Chemistry 2011,49 (13),2802-2810.
    [64]Jing, R. K.; Lin, W. C.; Wang, G. W.; Huang, J. L., Copper(0)-catalyzed one-pot synthesis of ABC triblock copolymers via the combination of single electron transfer nitroxide radical coupling reaction and "click" chemistry. Journal of Polymer Science Part A:Polymer Chemistry 2011,49 (12), 2594-2600.
    [65]Durmaz, H.; Hizal, G.; Tunca, U., Linear tetrablock quaterpolymers via triple click reactions, azide-alkyne, Diels-Alder, and nitroxide radical coupling in a one-pot fashion. Journal of Polymer Science Part A:Polymer Chemistry 2011,49 (9),1962-1968.
    [66]Kulis, J.; Bell, C. A.; Micallef, A. S.; Monteiro, M. J., Ultrafast and reversible multiblock formation by the SET-nitroxide radical coupling reaction. Australian Journal of Chemistry 2010,63 (8), 1227-1236.
    [67]Nicolay, R.; Marx, L.; Hemery, P.; Matyjaszewski, K., Synthesis of multisegmented degradable polymers by atom transfer radical cross-coupling. Macromolecules 2007,40 (26), 9217-9223.
    [68]Nicolay, R.; Matyjaszewski, K., Synthesis of cyclic (co)polymers by atom transfer radical cross-coupling and ring expansion by nitroxide-mediated polymerization. Macromolecules 2011,44 (2), 240-247.
    [69]Huang, K.; Huang, J.; Pan, M. G.; Wang, G. W.; Huang, J. L., Synthesis of amphiphilic A(2)B star-shaped copolymers of polystyrene-b-poly(ethylene oxide) (2) via atom transfer nitroxide radical coupling. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (13),2635-2640.
    [70]Liu, C.; Pan, M. G.; Zhang, Y.; Huang, J. L., Preparation of star block copolymers with polystyrene-block-poly(ethylene oxide) as side chains on hyperbranched polyglycerol core by combination of ATRP with atom transfer nitroxide radical coupling reaction. Journal of Polymer Science Part A:Polymer Chemistry 2008,46 (20),6754-6761.
    [71]Fu, Q.; Wang, G. W.; Lin, W. C.; Huang, J. L., One-pot preparation of 3-miktoarm star terpolymers via "click chemistry" and atom transfer nitroxide radical coupling reaction. Journal of Polymer Science Part A:Polymer Chemistry 2009,47(3),986-990.
    [72]Gunay, U. S.; Durmaz, H.; Gungor, E.; Dag, A.; Hizal, G.; Tunca, U.,3-miktoarm star terpolymers using triple click reactions:Diels-Alder, copper-catalyzed azide-alkyne cycloaddition, and nitroxide radical coupling reactions. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (4),729-735.
    [73]Yang, D.; Feng, C.; Hu, J., Nitroxide radical coupling reaction:a powerful tool in polymer and material synthesis. Polymer Chemistry 2013,4 (8),2384-2394.
    [74]Fu, Q.; Liu, C.; Lin, W. C.; Huang, J. L., One-pot synthesis of heterograft copolymers via "graft onto" by atom transfer nitroxide radical coupling chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2008,46 (20),6770-6779.
    [75]Cerit, N.; Cakir, N.; Dag, A.; Sirkecioglu, O.; Durmaz, H.; Hizal, G.; Tunca, U, Various brush polymers through ring opening metathesis polymerization and nitroxide radical coupling reaction. Journal of Polymer Science Part A:Polymer Chemistry 2011,49 (13),2850-2858.
    [76]Jing, R. K.; Wang, G. W.; Huang, J. L., One-pot preparation of ABA-type block-graft copolymers via a combination of "click" chemistry with atom transfer nitroxide radical coupling reaction. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (23),5430-5438.
    [77]Wang, G. W.; Zhang, Y. N.; Huang, J. L., Effects of Br connected groups on atom transfer nitroxide radical coupling reaction and its application in the synthesis of comb-like block copolymers. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (7),1633-1640.
    [78]Fu, Q.; Lin, W. C.; Huang, J. L., A new strategy for preparation of graft copolymers via "Graft onto" by atom transfer nitroxide radical coupling chemistry:Preparation of poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-l-oxyl-co-ethyIene oxide)-graft-polystyrene and poly(tert-butyl acrylate). Macromolecules 2008,41 (7),2381-2387.
    [79]Dedeoglu, T.; Durmaz, H.; Hizal, G.; Tunca, U., Synthesis of tadpole polymers via triple click reactions:Copper-catalyzed azide-alkyne cycloaddition, diels-alder, and nitroxide radical coupling reactions. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (10),1917-1925.
    [80]Jia, Z. R; Bell, C. A.; Monteiro, M. J., Directing the pathway of orthogonal 'click' reactions by modulating copper-catalytic activity. Chemical Communications 2011,47 (14),4165-4167.
    [81]Janzen, E. G., Spin trapping. Accounts of Chemical Research 1971,4 (1),31-40.
    [82]Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J., Development of a universal alkoxyamine for "living" free radical polymerizations. Journal of the American Chemical Society 1999, 121 (16),3904-3920.
    [83]Zink, M. O.; Kramer, A.; Nesvadba, P., New alkoxyamines from the addition of free radicals to nitrones or nitroso compounds as initiators for living free radical polymerization. Macromolecules 2000,33(21),8106-8108.
    [84]Sciannamea, V.; Jerome, R.; Detrembleur, C., In-situ nitroxide-mediated radical polymerization (NMP) processes:Their understanding and optimization. Chemical Reviews 2008,108 (3),1104-1126.
    [85]Dommanget, C.; Boisson, C.; Charleux, B.; D'Agosto, E.; Monteil, V.; Boisson, E.; Junkers, T.; Barner-Kowollik, G.; Guillaneuf, Y; Gigmes, D., Enhanced spin capturing polymerization of ethylene. Macromolecules 2013,46 (1),29-36.
    [86]Junkers, T.; Wong, E. H. H.; Stenzel, M. H.; Barner-Kowollik, C., Formation efficiency of ABA blockcopolymers via enhanced spin capturing polymerization (ESCP):Locating the alkoxyamine function. Macromolecules 2009,42 (14),5027-5035.
    [87]Wong, E. H. H.; Junkers, T.; Barner-Kowollik, C., Enhanced spin capturing polymerization: An efficient and versatile protocol for controlling molecular weight distributions. Journal of Polymer Science Part A:Polymer Chemistry 2008,46 (21),7273-7279.
    [88]Wong, E. H. H.; Stenzel, M. H.; Junkers, T.; Barner-Kowollik, C., The kinetics of enhanced spin capturing polymerization:Influence of the nitrone structure. Journal of Polymer Science Part A: Polymer Chemistry 2009,47 (4),1098-1107.
    [89]Zang, L.; Wong, E. H. H.; Barner-Kowollik, C.; Junkers, T., Control of methyl methacrylate radical polymerization via Enhanced Spin Capturing Polymerization (ESCP). Polymer 2010,51 (17), 3821-3825.
    [90]Wong, E. H. H.; Boyer, C.; Stenzel, M. H.; Barner-Kowollik, C.; Junkers, T., Spin capturing with nitrones:radical coupling reactions with concurrent introduction of mid-chain functionality. Chemical Communications 2010,46 (11),1959-1961.
    [91]Raclzinski, S. C.; Tillman, E. S., Trapping polystyrene radicals using nitrones:Synthesis of polymers with mid-chain alkoxyamine functionality. Polymer 2011,52 (26),6003-6010.
    [92]Ranieri, K.; Conradi, M.; Chavant, P. Y.; Blandin, V.; Barner-Kowollik, C.; Junkers, T., Enhanced spin-capturing polymerization and radical coupling mediated by cyclic nitrones. Australian Journal of Chemistry 2012,65 (8),1110-1116.
    [93]Detrembleur, C.; Debuigne, A.; Altintas, O.; Conradi, M.; Wong, E. H. H.; Jerome, C.; Barner-Kowollik, C.; Junkers, T., Synthesis of star and H-shape polymers via a combination of cobalt-mediated radical polymerization and nitrone-mediated radical coupling reactions. Polymer Chemistry 2012,3 (1),135-147.
    [94]Wong, E. H. H.; Stenzel, M. H.; Junkers, T.; Barner-Kowollik, C., Spin capturing with "clickable" nitrones:Generation of miktoarmed star polymers. Macromolecules 2010,43 (8), 3785-3793.
    [95]Wong, E. H. H.; Stenzel, M. H.; Junkers, T.; Barner-Kowollik, C., Embedding multiple site-specific functionalities into polymer chains via nitrone-mediated radical coupling reactions. Journal of Polymer Science Part A:Polymer Chemistry 2011,49 (10),2118-2126.
    [96]Hurtgen, M.; Detrembleur, C.; Jerome, C.; Debuigne, A., Insight into organometallic-mediated radical polymerization. Polymer Reviews 2011,51(2),188-213.
    [97]Allan, L. E. N.; Perry, M. R.; Shaver, M. P., Organometallic mediated radical polymerization. Progress in Polymer Science 2012,37 (1),127-156.
    [98]Debuigne, A.; Poll, R.; Jerome, C.; Jerome, R.; Detrembleur, C., Overview of cobalt-mediated radical polymerization:Roots, state of the art and future prospects. Progress in Polymer Science 2009,34 (3),211-239.
    [99]Hurtgen, M.; Debuigne, A.; Jerome, C.; Detrembleur, C., Solving the problem of bis(acetylacetoiiato)cobalt(II)-mediated radical polymerization (CMRP) of acrylic esters. Macromolecules 2010,43 (2),886-894.
    [100]Sherwood, R. K.; Kent, C. L.; Patrick, B. O.; McNeil, W. S., Controlled radical polymerisation of methyl acrylate initiated by a well-defined cobalt alkyl complex. Chemical Communications 2010,46(14),2456-2458.
    [101]Zhao, Y. G.; Dong, H. L.; Li, Y. Y.; Fu, X. F., Living radical polymerization of acrylates and acrylamides mediated by a versatile cobalt porphyrin complex. Chemical Communications 2012,48 (29),3506-3508.
    [102]Langlotz, B. K.; Fillol, J. L.; Gross, J. H.; Wadepohl, H.; Gade, L. H., Living radical polymerization of acrylates mediated by 1,3-bis(2-pyridylimino)isoindolatocobalt(II) complexes: monitoring the chain growth at the metal. Chemistry-a European Journal 2008,14 (33),10267-10279.
    [103]Debuigne, A.; Michaux, G.; Jerome, C.; Jerome, R.; Poli, R.; Detrembleur, C., Cobalt-mediated radical polymerization of acrylonitrile:Kinetics investigations and DFT calculations. Chemistry-a European Journal 2008,14 (25),7623-7637.
    [104]Debuigne, A.; Warnant, J.; Jerome, R.; Voets, I.; de Keizer, A.; Stuart, M. A.; Detrembleur, C., Synthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerization. Macromolecules 2008,41 (7),2353-2360.
    [105]Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Organo-cobalt mediated living radical polymerization of vinyl acetate. Macromolecules 2008,41 (7),2368-2373.
    [106]Debuigne, A.; Champouret, Y.; Jerome, R.; Poli, R.; Detrembleur, C., Mechanistic insights into the cobalt-mediated radical polymerization (CMRP) of vinyl acetate with cobalt(III) adducts as initiators. Chemistry-a European Journal 2008,14 (13),4046-4059.
    [107]Santhosh, K. K. S.; Li, Y. G.; Gnanou, Y.; Baisch, U.; Champouret, Y.; Poli, R.; Robson, K. C. D.; McNeil, W. S., Electronic and steric ligand effects in the radical polymerization of vinyl acetate mediated by p-ketoiminate complexes of cobalt(II). Chemistry-an Asian Journal 2009,4 (8), 1257-1265.
    [108]Debuigne, A.; Schoumacher, M.; Willet, N.; Riva, R.; Zhu, X. M.; Rutten, S.; Jerome, C.; Detrembleur, C., New functional poly(N-vinylpyrrolidone) based (co)polymers via photoinitiated cobalt-mediated radical polymerization. Chemical Communications 2011,47 (47),12703-12705.
    [109]Debuigne, A.; Poli, R.; De Winter, J.; Laurent, P.; Gerbaux, P.; Wathelet, J. P.; Jerome, C.; Detrembleur, C., Effective cobalt-mediated radical coupling (CMRC) of poly(vinyl acetate) and poly(N-vinylpyrrolidone) (co)polymer precursors. Macromolecules 2010,43 (6),2801-2813.
    [110]Debuigne, A.; Willet, N.; Jerome, R.; Detrembleur, C., Amphiphilic poly(vinyl acetate)-b-poly(N-vinylpyrrolidone) and novel double hydrophilic poly(vinyl alcohol)-b-poly(N-vinylpyrrolidone) block copolymers prepared by cobalt-mediated radical polymerization. Macromolecules 2007,40 (20),7111-7118.
    [111]Debuigne, A.; Jerome, C.; Detrembleur, C., Isoprene-assisted radical coupling of (co)polymers prepared by cobalt-mediated radical polymerization. Angewandte Chemie-International Edition 2009,48 (8),1422-1424.
    [112]Debuigne, A.; Poli, R.; De Winter, J.; Laurent, P.; Gerbaux, P.; Dubois, P.; Wathelet, J. P.; Jerome, C.; Detrembleur, C., Cobalt-mediated radical coupling (CMRC):An unusual route to midchain-functionalized symmetrical macromolecules. Chemistry-α European Journal 2010,16 (6), 1799-1811.
    [113]Detrembleur, C.; Debuigne, A.; Jerome, C; Phan, T. N. T.; Bertin, D.; Gigmes, D., Joining efforts of nitroxide-mediated polymerization (NMP) and cobalt-mediated radical polymerization (CMRP) for the preparation of novel ABC triblock copolymers. Macromolecules 2009,42 (22), 8604-8607.
    [114]Detrembleur, C.; Stoilova, O.; Bryaskova, R.; Debuigne, A; Mouithys-Mickalad, A.; Jerome, R., Preparation of well-defined PVOH/C60 nanohybrids by cobalt-mediated radical polymerization of vinyl acetate. Macromolecular Rapid Communications 2006,27(7),498-504.
    [115]Hurtgen, M.; Debuigne, A.; Gigmes, D.; Jerome, C.; Detrembleur, C., Mechanistic investigation and selectivity of the grafting onto C-60 of macroradicals prepared by cobalt-mediated radical polymerization. Polymer 2012,53 (20),4353-4358.
    [116]Detrembleur, C.; Debuigne, A.; Hurtgen, M.; Jerome, C.; Pinaud, J.; Fevre, M.; Coupillaud, P.; Vignolle, J.; Taton, D., Synthesis of 1-vinyl-3-ethylimidazolium-based ionic liquid (co)polymers by cobalt-mediated radical polymerization. Macromolecules 2011,44 (16),6397-6404.
    [117]Hurtgen, M.; Liu, J.; Debuigne, A.; Jerome, C.; Detrembleur, C., Synthesis of thermo-responsive poly(N-vinylcaprolactam)-containing block copolymers by cobalt-mediated radical polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (2),400-408.
    [118]Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D., Periodic area-minimizing surfaces in block copolymers. Nature 1988,334 (6183),598-601.
    [119]Gohy, J. F., Block copolymer micelles, In Advances in Polymer Science, Springer: Heidelberg,2005; Vol.190, pp 65-136.
    [120]Li, M.; De, P.; Gondi, S. R.; Sumerlin, B. S., End group transformations of RAFT-generated polymers with bismaleimides:Functional telechelics and modular block copolymers. Journal of Polymer Science Part A:Polymer Chemistry 2008,46 (15),5093-5100.
    [121]Opsteen, J. A.; van Hest, J. C. M., Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chemical Communications 2005, (1),57-59.
    [122]Quemener, D.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H., RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chemical Communications 2006, (48), 5051-5053.
    [123]Kwart, H.; King, K., The reverse Diels-Alder or retrodiene reaction. Chemical Reviews 1968, 68 (4),415-447.
    [124]Durmaz, H.; Colakoclu, B.; Tunca, U.; Hizal, G., Preparation of block copolymers via Diels Alder reaction of maleimide- and anthracene-end functionalized polymers. Journal of Polymer Science Part A:Polymer Chemistry 2006,44 (5),1667-1675.
    [125]Sinnwell, S.; Inglis, A. J.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C., An atom-efficient conjugation approach to well-defined block copolymers using RAFT chemistry and hetero Diels-Alder cycloaddition. Chemical Communications 2008, (17),2052-2054.
    [126]Inglis, A. J.; Sinnwell, S.; Stenzel, M. H.; Barner-Kowollik, C., Ultrafast click conjugation of macromolecular building blocks at ambient temperature. Angewandte Chemie-International Edition 2009,48 (13),2411-2414.
    [127]He, Y. N.; He, W.; Wei, R B.; Chen, Z.; Wang, X. G., Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction. Chemical Communications 2012,48 (7), 1036-1038.
    [128]Carlson, J. S.; Hill, M. R; Young, T.; Costanzo, P. J., Novel polymer coupling chemistry based upon latent cysteine-like residues and thiazolidine chemistry. Polymer Chemistry 2010,1 (9), 1423-1426.
    [129]Hirao, A.; Murano, K.; Oie, T.; Uematsu, M.; Goseki, R; Matsuo, Y, Chain-end-and in-chain-functionalized AB diblock copolymers as key building blocks in the synthesis of well-defined architectural polymers. Polymer Chemistry 2011,2 (6),1219-1233.
    [130]Soeriyadi, A. H.; Boyer, C.; Nystroem, F.; Zetterlund, P. B.; Whittaker, M. R., High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP):Toward biological precision. Journal of the American Chemical Society 2011,133 (29),11128-11131.
    [131]Boyer, C.; Soeriyadi, A. H.; Zetterlund, P. B.; Whittaker, M. R., Synthesis of complex multiblock copolymers via a simple iterative Cu(0)-mediated radical polymerization approach. Macromolecules 2011,44 (20),8028-8033.
    [132]Davis,  A.; Matyjaszewski, K., ABC triblock copolymers prepared using atom transfer radical polymerization techniques. Macromolecules 2001,34 (7),2101-2107.
    [133]Touris, A.; Hadjichristidis, N., Cyclic and multiblock polystyrene-block-polyisoprene copolymers by combining anionic polymerization and azide/alkyne "click" chemistry. Macromolecules 2011,44(1),1969-1976.
    [134]Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K., Step-growth "click" coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 2005,38 (9), 3558-3561.
    [135]Xu, J. T.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P., Combining Thio-Bromo "Click" Chemistry and RAFT Polymerization:A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules 2010,43 (1),20-24.
    [136]You, Y.-Z.; Hong, C.-Y; Pan, C.-Y., A novel strategy for synthesis of multiblock copolymers. Chemical Communications 2002, (23),2800-2801.
    [137]Zhang, L. S.; Wang, Q.; Lei, P.; Wang, X.; Wang, C. Y.; Cai, L., Multiblock poly(4-vinylpyridine) and its copolymer prepared with cyclic trithiocarbonate as a reversible addition-fragmentation transfer agent. Journal of Polymer Science Part A:Polymer Chemistry 2007,45 (13),2617-2623.
    [138]Hong, J.; Wang, Q.; Lin, Y. Z.; Fan, Z. Q., Styrene polymerization in the presence of cyclic trithiocarbonate. Macromolecules 2005,38 (7),2691-2695.
    [139]Hong, J.; Wang, Q.; Fan, Z. Q., Synthesis of multiblock polymer containing narrow polydispersity blocks. Macromolecular Rapid Communications 2006,27 (1),57-62.
    [140]Lei, P.; Wang, Q.; Hong, J.; Li, Y. X., Synthesis of poly(n-butyl acrylate) containing multiblocks with a narrow molecular weight distribution using cyclic trithiocarbonates. Journal of Polymer Science Part A:Polymer Chemistry 2006,44 (22),6600-6606.
    [141]Pfeifer, S.; Lutz, J. F., Development of a library of N-substituted maleimides for the local functionalization of linear polymer chains. Chemistry-a European Journal 2008,14 (35),10949-10957.
    [142]Pfeifer, S.; Lutz, J. F., A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. Journal of the American Chemical Society 2007,129 (31),9542-9543.
    [143]Lutz, J. F.; Schmidt, B.; Pfeifer, S., Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromolecular Rapid Communications 2011,32 (2),127-135.
    [144]Zamfir, M.; Lutz, J. F., Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nature Communications 2012,3.
    [145]Satoh, K.; Matsuda, M.; Nagai, K.; Kamigaito, M., AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide:an end-to-end sequence-regulated copolymer. Journal of the American Chemical Society 2010,132 (29),10003-10005.
    [146]Denizli, B. K.; Lutz, J. F.; Okrasa, L.; Pakula, T.; Guner, A.; Matyjaszewski, K., Properties of well-defined alternating and random copolymers of methacrylates and styrene prepared by controlled/living radical polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2005, 43 (15),3440-3446.
    [147]Mizuntani, M.; Satoh, K.; Kamigaito, M., Degradable poly(N-isopropylacrylamide) with tunable thermosensitivity by simultaneous chain-and step-growth radical polymerization. Macromolecules 2011,44 (7),2382-2386.
    [148]Mizutani, M.; Palermo, E. F.; Thoma, L. M.; Satoh, K.; Kamigaito, M.; Kuroda, K., Design and synthesis of self-degradable antibacterial polymers by simultaneous chain-and step-growth radical copolymerization. Biomacromolecules 2012,13 (5),1554-1563.
    [149]Satoh, K.; Mizutani, M.; Kamigaito, M., Metal-catalyzed radical polyaddition as a novel polymer synthetic route. Chemical Communications 2007, (12),1260-1262.
    [150]Mizutani, M.; Satoh, K.; Kamigaito, M., Metal-catalyzed radical polyaddition for aliphatic polyesters via evolution of atom transfer radical addition into step-growth polymerization. Macromolecules 2009,42 (2),472-480.
    [151]Mizutani, M.; Satoh, K.; Kamigaito, M., Metal-catalyzed simultaneous chain- and step-growth radical polymerization:Marriage of vinyl polymers and polyesters. Journal of the American Chemical Society 2010,132 (21),7498-7507.
    [152]Satoh, K.; Ozawa, S.; Mizutani, M.; Nagai, K.; Kamigaito, M., Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nature Communications 2010,1.
    [153]Dong, B. T.; Dong, Y. Q.; Du, F. S.; Li, Z. C., Controlling polymer topology by atom transfer radical self-condensing vinyl polymerization of p-(2-bromoisobutyloylmethyl)styrene. Macromolecules 2010,43 (21),8790-8798.
    [154]Dong, B. T.; Li, Z. L.; Zhang, L. J.; Du, F. S.; Li, Z. C., Synthesis of linear functionalized polyesters by controlled atom transfer radical polyaddition reactions. Polymer Chemistry 2012,3 (9), 2523-2530.
    [155]Tong, X. M.; Guo, B. H.; Huang, Y. B., Toward the synthesis of sequence-controlled vinyl copolymers. Chemical Communications 2011,47 (5),1455-1457.
    [156]Fischer, H., Unusual selectivities of radical reactions by internal suppression of fast modes. Journal of the American Chemical Society 1986,108 (14),3925-3927.
    [157]Grubbs, R. B.; Wegrzyn, J. K.; Xia, Q., One-step synthesis of alkoxyamines for nitroxide-mediated radical polymerization. Chemical Communications 2005, (1),80-82.
    [158]Schmid, P.; Ingold, K. U., Kinetic applications of electron paramagnetic resonance spectroscopy.31. Rate constants for spin trapping.1.Primary alkyl radicals. Journal of the American Chemical Society 1978,100 (8),2493-2500.
    [159]Maeda, Y.; Ingold, K. U., Kinetic applications of electron-paramagnetic resonance spectroscopy.34. Rate constants for spin trapping.2. Secondary alkyl radicals. Journal of the American Chemical Society 1979,101 (17),4975-4981.
    [160]Xia, Q.; Grubbs, R. B., In situ generation of nitroxide from alkoxyamines for controlled acrylate polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2006,44 (17), 5128-5136.
    [161]Greene, A. C.; Grubbs, R. B., Nitroxide-mediated polymerization of methyl methacrylate and styrene with new alkoxyamines from 4-nitrophenyl 2-methylpropionat-2-yl radicals. Macromolecules 2010,43 (24),10320-10325.
    [162]Greene, A. C.; Grubbs, R. B., Synthesis of alkoxyamines bearing an N-phenyl moiety for use in nitroxide-mediated polymerization. Abstracts of Papers of the American Chemical Society 2009, 237.
    [163]Zhu, Q. Q.; Wang, Q., Thermodegradable multisegmented polymer synthesized by consecutive radical addition-coupling reaction of a,ω-macrobiradicals and dithioester. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (10),2029-2036.
    [164]Stowell, J. C., tert-Alkylnitroso compounds. Synthesis and dimerization equilibria. Journal of Organic Chemistry 1971,36(20),3055-3056.
    [165]Sienkowska, M. J.; Percec, V, Synthesis of α,ω-di(iodo)PVC and of four-arm star PVC with identical active chain ends by SET-DTLRP of VC initiated with bifunctional and tetrafunctional initiators. Journal of Polymer Science Part A:Polymer Chemistry 2009,47 (2),635-652.
    [166]Wenner, W., Bis(bromomethyl) compounds Journal of Organic Chemistry 1952,17 (4), 523-528.
    [167]Tyeklar, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D., Reversible reaction of dioxygen (and carbon monoxide) with a copper(I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo)dicopper(II) product. Journal of the American Chemical Society 1993,115 (7),2677-2689.
    [168]Wang, X. S.; Armes, S. P., Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature. Macromolecules 2000, 33 (18),6640-6647.
    [169]Fischer, H., The persistent radical effect:A principle for selective radical reactions and living radical polymerizations. Chemical Reviews 2001,101 (12),3581-3610.
    [170]Doba, T.; Ichikawa, T.; Yoshida, H., Kinetic studies of spin-trapping reactions. I. The trapping of the t-butyl radical generated by the photodissociation of 2-methyl-2-nitrosopropane by several spin-trapping agents. Bulletin of the Chemical Society of Japan 1977,50 (12),3158-3163.
    [171]Zhang, C. Y.; Ling, J.; Wang, Q., Radical addition-coupling polymerization (RACP) toward periodic copolymers. Macromolecules 2011,44 (22),8739-8743.
    [172]Voter, A. F.; Tillman, E. S.; Findeis, P. M.; Radzinski, S. C., Synthesis of macrocyclic polymers formed via intramolecular radical trap-assisted atom transfer radical coupling. Acs Macro Letters 2012,(8),1066-1070.
    [173]Askari, M. S.; Girard, B.; Murugesu, M.; Ottenwaelder, X., The two spin states of an end-on copper(II)-superoxide mimic. Chemical Communications 2011,47 (28),8055-8057.
    [174]Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B., Interactions of organic nitroso compounds with metals. Chemical Reviews 2002,102 (4),1019-1066.
    [175]Eyer, P.; Ascherl, M., Reactions of para-substituted nitrosobenzenes with human hemoglobin. Biological Chemistry Hoppe-Seyler 1987,368 (3),285-294.
    [176]Wiese, S.; Kapoor, P.; Williams, K. D.; Warren, T. H., Nitric oxide oxidatively nitrosylates Ni(I) and Cu(I) C-organonitroso adducts. Journal of the American Chemical Society 2009,131 (50), 18105-18111.
    [177]Srivastava, R. S.; Khan, M. A.; Nicholas, K. M., Nitrosoarene-Cu(Ⅰ) complexes are intermediates in copper-catalyzed allylic amination. Journal of the American Chemical Society 2005, 127 (20),7278-7279.
    [178]Srivastava, R S., Copper-catalyzed allylic amination of olefins with nitrosoarenes. Tetrahedron Letters 2003,44 (16),3271-3274.
    [179]Srivastava, R. S.; Tarver, N. R.; Nicholas, K. M., Mechanistic studies of copper(Ⅰ)-catalyzed allylic amination. Journal of the American Chemical Society 2007,129 (49),15250-15258.
    [180]Fischer, H.; Radom, L., Factors controlling the addition of carbon-centered radicals to alkenes-an experimental and theoretical perspective. Angewandte Chemie-International Edition 2001, 40(8),1340-1371.
    [181]Toy, A. A.; Chaffey-Millar, H.; Davis, T. P.; Stenzel, M. H.; Izgorodina, E.I.; Coote, M. L. Barner-Kowollik, C., Thioketone spin traps as mediating agents for free radical polymerization processes. Chemical Communications 2006, (8),835-837.
    [182]Chaffey-Millar, H.; Izgorodina, E. I.; Barner-Kowollik, C.; Coote, M. L., Radical addition to thioketones:Computer-aided design of spin traps for controlling free-radical polymerization. Journal of Chemical Theory and Computation 2006,2 (6),1632-1645.
    [183]Junkers, T.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C., Thioketone-mediated polymerization of butyl acrylate:Controlling free-radical polymerization via a dormant radical species. Macromolecular Rapid Communications 2007,28 (6),746-753.
    [184]Heuts, J. P. A.; Russell, G. T., The nature of the chain-length dependence of the propagation rate coefficient and its effect on the kinetics of free-radical polymerization.1. Small-molecule studies. European Polymer Journal 2006,42 (1),3-20.
    [185]Yasukawa, T.; Takahash.T; Murakami, K., Chain length dependence of coupling reaction of polystyryl radicals. Journal of Chemical Physics 1972,57 (6),2591-2592.
    [186]Durmaz, Y. Y; Cianga, I.; Yagci, Y, Studies on the preparation of telechelic polymers by atom transfer radical polymerization and cross coupling processes. e-Polymers 2006,50.
    [187]Radzinski, S. C.; Voter, A. F.; Tillman, E. S., Atom transfer coupling reactions in the presence of nitroso compounds:Synthesis of diblocks and cyclic polymers. Polymer Preprints 2012,53 (2),189-190.
    [188]Buback, M.; Gilbert, R. G.; Hutchinson, R. A.; Klumperman, B.; Kuchta, F.-D.; Manders, B. G.; O'Driscoll, K. F.; Russell, G. T.; Schweer, J., Critically evaluated rate coefficients for free-radical polymerization,1. Propagation rate coefficient for styrene. Macromolecular Chemistry and Physics 1995,196 (10),3267-3280.
    [189]Morrison, B. R.; Piton, M. C.; Winnik, M. A.; Gilbert, R. G.; Napper, D. H., Solvent effects on the propagation rate coefficient for free radical polymerization. Macromolecules 1993,26 (16), 4368-4372.
    [190]Zhu, Q. Q.; Wang, Q., Thermodegradable multisegmented polymer synthesized by consecutive radical addition-coupling reaction of a,ω-macrobiradicals and dithioester. Journal of Polymer Science Part A:Polymer Chemistry 2012,50 (10),2029-2036.
    [191]Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R,, Catalytic and chemoselective deprotection of S,S-and S,O-acetals and ketals in the presence of their O,O-analogs with electrophilic halogens under neutral conditions. Tetrahedron Letters 2003,44 (25),4769-4773.
    [192]Dag, A.; Durmaz, H.; Kirmizi, V.; Hizal, G.; Tunca, U., An easy way to the preparation of multi-miktoarm star block copolymers via sequential double click reactions. Polymer Chemistry 2010, 1 (5),621-623.
    [193]Lutz, J. F.; Matyjaszewski, K., Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. Macromolecular Chemistry and Physics 2002,203 (10-11),1385-1395.
    [194]Coote, M. L.; Krenske, E. H.; Izgorodina, E. I., Computational studies of RAFT polymerization-Mechanistic insights and practical applications. Macromolecular Rapid Communications 2006,27(7),473-497.
    [195]Coote, M. L., The kinetics of addition and fragmentation in reversible addition fragmentation chain transfer polymerization:An ab initio study. Journal of Physical Chemistry A 2005,109 (6), 1230-1239.
    [196]Luo, Y. D.; Chiu, W. Y., Synthesis and kinetic analysis of DPE controlled radical polymerization of MMA. Journal of Polymer Science Part A:Polymer Chemistry 2009,47 (24), 6789-6800.
    [197]Chernikova, E.; Golubev, V.; Filippov, A.; Lin, C. Y.; Coote, M. L., Use of spin traps to measure the addition and fragmentation rate coefficients of small molecule RAFT-adduct radicals. Polymer Chemistry 2010,1 (9),1437-1440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700