掺杂聚苯胺与纳米碳复合材料的制备及热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料可实现热能和电能的直接转换,在温差发电和制冷技术领域有着潜在的应用前景具有非定域π电子共轭体系的导电聚合物因其具有较低的热导率和丰富的电子能带结构,同时还具有资源丰富价格低廉合成工艺简便重量轻柔韧性好等突出优点,其作为潜在的低成本热电材料备受关注目前导电聚合物的热电性能偏低,距离实用化还有相当距离因此,探索提高导电聚合物电传输性能的途径,是导电聚合物热电性能研究需要解决的关键问题本论文通过酸掺杂及纳米碳(石墨烯微片和碳纳米管)复合调控优化聚苯胺的微观结构,研究不同酸掺杂和纳米碳复合对聚苯胺热电性能的影响并探讨聚苯胺与纳米碳间的相互作用及其电热传输机制,为研究和开发新型低成本高性能热电体系提供新的思路和途径
     对化学聚合法合成的单一酸掺杂和有机-无机混合酸掺杂聚苯胺进行了结构表征和热电性能评价XRD分析表明,掺杂态聚苯胺比本征态聚苯胺结晶度高,适当配比的混合酸有利于提高聚苯胺分子链的有序性和结晶性SEM结果也表明,适当配比的混合酸有利于提高聚苯胺的规整性磺基水杨酸-盐酸(SSA-HCl)和磺基水杨酸-硫酸(SSA-H2SO4)混合酸掺杂聚苯胺的ZT值随温度的升高而增加,适当配比的混合酸掺杂比单一酸掺杂具有更好的热电性能,且在较高的温度时混合酸掺杂比单一酸掺杂更稳定
     采用原位聚合法制备了聚苯胺与石墨烯微片(PANi/GNs)复合材料,并对其进行了结构表征和热电性能评价PANi/GNs的电导率随温度的升高而降低,而Seebeck系数却随温度的升高而增加PANi/GNs的电导率和Seebeck系数均随GNs含量的增加呈先增大后降低的趋势,而其ZT值却随GNs含量的增加而增加由于聚苯胺和GNs之间存在π-π相互作用,可诱导聚苯胺沿GNs表面生长,使表面形成的聚苯胺分子链构象更为伸展,同时GNs也起到连接聚苯胺链间的载流子跃迁的传导作用,降低了载流子在聚苯胺链间和链内的跃迁激活能,使PANi/GNs复合材料的载流子迁移率显著增加因此,该复合材料的电导率和Seebeck系数得到同时提高由于聚苯胺与GNs之间存在大量界面所导致的声子散射,也有效降低了复合材料的热导率,从而提高了聚苯胺的热电性能
     通过机械球磨法制备了高GNs含量的PANi/GNs复合材料,研究了制备方式和复合量对微观结构及热电性能的影响相对于原位聚合法制备的PANi/GNs复合材料,机械球磨法所制备PANi/GNs复合材料的电导率随温度的升高几乎没有变化,且随GNs含量的增多显著增加,但当GNs含量为50wt%时,其电导率出现了突增;Seebeck系数随温度的升高而增加,GNs的含量对PANi/GNs的Seebeck系数没有显著的影响;热导率随温度的增加而降低当在PANi/GNs中加入少量的La(NO3)3时,由于显著提高电导率的同时降低了热导率,从而使PANi/GNs的热电性能得到进一步提高
     将具有较高电导率的碳纳米管(CNTs)加入PANi/GNs复合材料中,利用共同效应CNTs形成的网络结构可增强GNs连接聚苯胺链间的载流子跃迁的传导作用,同时利用散射效应可进一步降低热导率采用原位聚合法制备了PANi/GNs/CNTs复合材料,研究了不同含量的GNs和CNTs对其热电性能的影响由于聚苯胺CNTs和GNs之间均存在π-π相互作用,一方面可诱导聚苯胺沿GNs表面生长,使表面形成的聚苯胺分子链构象更为伸展;另一方面聚苯胺还可沿碳纳米管表面生长,这将降低由于链卷曲在分子链内和链间形成的π-π共轭缺陷,增加了聚苯胺分子链排列的有序度当相对复合量为10wt%时,适当比例的CNTs和GNs试样的ZT值高于仅复合CNTs试样的ZT值将相对复合量提高至30wt%,并在此基础上调节CNTs和GNs的比例,发现加入CNTs可有效提高Seebeck系数并降低热导率当采用机械球磨法制备PANi/GNs/CNTs复合材料时,热电性能也得到进一步的提高但与原位聚合法制备PANi/GNs/CNTs复合材料不同,CNTs的加入会降低Seebeck系数,但通过调节CNTs的加入量可显著提高材料的电导率因此,利用GNs和CNTs的协同作用可进一步提高PANi/GNs复合材料的热电性能
Thermoelectric (TE) materials can achieve directly heat conversion intoelectricity, which has potential applications in the field of thermoelectric powergeneration and refrigeration technology. Compared with inorganic semiconductormaterials, conducting polymers with delocalized π-electron conjugated possessunique features for application as TE materials because of their wealth structure ofelectronic band, low density, low cost, easy synthesis, and facile processing intoversatile form. Furthermore, polymers inherently possess a low thermal conductivity,which offers them a significant advantage over conventional inorganicthermoelectric materials. However, poor electrical transport properties of polymers,including low electrical conductivity and low Seebeck coefficient, which haveexcluded them as feasible candidates for thermoelectric materials in the past. So it isurgent to find an effective way to improve the electrical transport properties ofconducting polymers.This thesis focused on the preparation and thermoelectricproperties of doped polyaniline and nanocarbon-polyaniline nanocomposites. Theirmechanisms of electrical and thermal transport were also discussed.
     The structures of polyaniline doped with organic-inorganic hybrid acid werecharacterized and their thermoelectric properties were investigated. XRD analysisshowed that polyaniline doped with appropriate ratio of mixed acid had highercrystallinity than eigenstates polyaniline. SEM also showed that the mixed acid withappropriate ratio could improve the regularity of the molecular chain. The ZT valueof polyaniline doped with SSA-HCl and SSA-H2SO4increases with increasingtemperature and more stable than that of doped with a single acid at highertemperature.
     The PANi/GNs composites prepared through an in situ polymerization werecharacterized and their thermoelectric performances were evaluated. Theconductivity of PANi/GNs composites decreased but the Seebeck coefficientincreased with increasing temperature. The conductivity and Seebeck coefficient ofPANi/GNs first increased and then decreased with the increasing the percentage ofGNs, while the ZT value increased with the increasing the percentage of GNs. Thepolyaniline grew along the surface of GNs due to π-π interactions between PANi andGNs forming a more extended chain structure during the polymerization process.The electrical conductivity and Seebeck coefficient of PANi/GNs nanocompositeswere higher than that of pure PANi, which could be attributed to the enhancedcarrier mobility in the ordered chain structures of the PANi. The thermal conductivities of the composites, even with high CNTs content, do not change muchand still keep very low values, which is attributed to the phonon scattering effect ofnanointerfaces produced by the PANi/GNs nanostructure.
     The PANi/GNs composites prepared through mechanical milling werecharacterized and their thermoelectric performances were evaluated. Theconductivity of PANi/GNs composites were almost no change with temperature, butsignificantly increased with the increasing content GNs. Seebeck coefficientincreases with increasing temperature, and no significant effect of GNs content onthe Seebeck coefficient PANi/GNs. Thermal conductivity decreases with increasingtemperature. When adding a small amount of La(NO3)3in PANi/GNs composite, thethermoelectric properties of the PANi/GNs can be further improved.
     Being network structure CNTs can also be connected to polyaniline chains andenhanced electrical transport.The PANi/GNs/CNTs composites prepared by in situpolymerization were characterized and their thermoelectric performances wereevaluated. The polyaniline grew along the surface of GNs due to π-π interactionsamong PANi, CNTs and GNs forming a more extended chain structure during thepolymerization process. The electrical conductivity and Seebeck coefficient ofPANi/GNs/CNTs nanocomposites were higher than those of pure PANi, which couldbe attributed to the enhanced carrier mobility in the ordered chain structures of thePANi. With the same mass10wt%, ZT value of the composite with the appropriateproportion of CNTs and GNs is larger than that of adding single CNTs. This isbecause GNs can significantly improve electrical conductivity, and more conductivenetwork structures are formed by the addition of CNTs in the composite. Thethermal conductivity of the composites can be further reduced by the scatteringeffect. The incorporation of CNTs can effectively increase the Seebeck coefficientand decrease thermal conductivity by adjusting the ratio of CNTs and GNs when theadded mass up to30wt%. The PANi/GNs/CNTs composites prepared throughmechanical milling were characterized and their thermoelectric performances wereevaluated. The thermoelectric performance of PANi/GNs composites can beimproved by adding an appropriate amount of CNTs. The conductivities of thecomposites can be improved, while their thermal conductivities can be reduced byadjusting the amount of CNTs, which is attributed to the increased phonon scatteringproduced by adding an appropriate amount of CNTs. Therefore, the thermoelectricproperties of iPANi/GNs composite materials can be further improved by exploitingsynergies effect of CNTs and GNs.
引文
[1] Bell L E. Cooling, Heating, Generating Power, and Recovering Waste Heatwith Thermoelectric Systems[J]. Science,2008,321(5895):1457-1461.
    [2] Tritt T M, Subramanian M. Thermoelectric Materials, Phenomena, andApplications: A Bird's Eye View[J]. MRS Bulletin,2006,31(03):188-198.
    [3] Karni J. Solar energy: The Thermoelectric Alternative[J]. Nature Materials,2011,10(7):481-482.
    [4] Disalvo F J. Thermoelectric Cooling and Power Generation[J]. Science,1999,285(5428):703-706.
    [5] Mahan G, Sales B, Sharp J. Thermoelectric Materials: New Approaches to anOld Problem[J]. Physics Today,1997,50(3):42-47.
    [6] Yang J, Caillat T. Thermoelectric Materials for Space and Automotive PowerGeneration[J]. MRS Bulletin,2006,31(03):224-229.
    [7] Sootsman J R, Chung D Y, Kanatzidis M G. New and Old Concepts inThermoelectric Materials[J]. Angewandte Chemie International Edition,2009,48(46):8616-8639.
    [8] Hicks L, Harman T, Sun X, et al. Experimental Study of the Effect ofQuantum-Well Structures on the Thermoelectric Figure of Merit[J]. PhysicalReview B,1996,53(16):10493-10496.
    [9] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin FilmThermoelectric Devices with High Room Temperature Figures of Merit[J].Nature,2001,413(6856):597-602.
    [10]陈立东,熊震,柏胜强.纳米复合热电材料研究进展[J].无机材料学报,2010,25(6):561-567.
    [11] Kim W, Zide J, Gossard A, et al. Thermal Conductivity Reduction andThermoelectric Figure of Merit Increase by Embedding Nanoparticles inCrystalline Semiconductors[J]. Physical Review Letters,2006,96(4):045901.
    [12] Minnich A J, Dresselhaus M S, Ren Z F, et al. Bulk NanostructuredThermoelectric Materials: Current Research and Future Prospects[J]. Energy&Environmental Science,2009,2(5):466-479.
    [13] Cao Y, Zhao X, Zhu T, et al. Syntheses and Thermoelectric Properties ofBiTe∕SbTe Bulk Nanocomposites withLaminated Nanostructure[J]. AppliedPhysics Letters,2008,92:143106-143109.
    [14] Dresselhaus M S. Thermoelectric Materials and Properties[J]. Modules,Systems and Applications,2012,2:2129-2138.
    [15] Dresselhaus M S, Chen G, Tang M Y, et al. New Directions for LowDimensional Thermoelectric Materials[J]. Advanced Materials,2007,19(8):1043-1053.
    [16] Rao A M, Ji X and Tritt T M. Properties of Nanostructured One-Dimensionaland Composite Thermoelectric Materials[J]. Mrs Bulletin,2006,31(03):218-223.
    [17] Harman T P, Walsh M, et al. Quantum Dot Superlattice ThermoelectricMaterials and Devices[J]. Science,2002,297(5590):2229-2232.
    [18] Hicks L, Dresselhaus M. Use of Quantum well Superlattices to Obtain aHigh Figure of Merit from Nonconventional Thermoelectric Materials. inMRS Proceedings[C]. Cambridge University Press,1993:326-413.
    [19] Nolas G S, Poon J, Kanatzidis M. Recent Developments in BulkThermoelectric Materials[J]. MRS Bulletin,2006,31(03):199-205.
    [20]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应[J].武汉大学学报,1993,6:65-73.
    [21] Szczech J R, Higgins J M, Jin S. Enhancement of the ThermoelectricProperties in Nanoscale and Nanostructured Materials[J]. Journal ofMaterials Chemistry,2011,21(12):4037-4055.
    [22] Poudel B, Hao Q, Ma Y, et al. High Thermoelectric Performance ofNanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science,2008,320(5876):634-638.
    [23] Sánchez D, López R. Scattering Theory of Nonlinear ThermoelectricTransport[J]. Physical Review Letters,2013,110(2):026804.
    [24] Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of ThermoelectricEfficiency in PbTe by Distortion of The Electronic Density of States[J].Science,2008,321(5888):554-557.
    [25] Joshi G, Lee H, Lan Y, et al. Enhanced Thermoelectric Figure-of-Merit inNanostructured p-Type Silicon Germanium Bulk Alloys[J]. Nano Letters,2008,8(12):4670-4674.
    [26] Ma Y, Hao Q, Poudel B, et al. Enhanced Thermoelectric Figure of Merit inp-Type Nanostructured Bismuth Antimony Tellurium Alloys Made fromElemental Chunks[J]. Nano Letters,2008,8(8):2580-2584.
    [27] Snyder G J, Toberer E S. Complex Thermoelectric Materials[J]. NatureMaterials,2008,7(2):105-114.
    [28] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk ThermoelectricMaterials with High Figure of Merit[J]. Science,2004,303(5659):818-821.
    [29] Boukai A I, Bunimovich Y, Tahir K J, et al. Silicon Nanowires as EfficientThermoelectric Materials[J]. Nature,2008,451(7175):168-171.
    [30] Du Y, Shen S Z, Cai K F, et al. Research Progress on Polymer-InorganicThermoelectric Nanocomposite Materials[J]. Progress in Polymer Science,2012,37(0):820-841.
    [31] Bubnova O, Crispin X. Towards Polymer-Based Organic ThermoelectricGenerators[J]. Energy&Environmental Science,2012,5:9345-9362.
    [32] Yao Q, Chen L, Zhang W, et al. Enhanced Thermoelectric Performance ofSingle Walled Carbon Nanotubes/Polyaniline Hybrid Nanocomposites[J].ACS Nano,2010,4(4):2445-2451.
    [33] Wang Q, Yao Q, Chang J, et al. Enhanced Thermoelectric Properties ofCNT/PANI Composite Nanofibers by Highly Orienting the Arrangement ofPolymer Chains[J]. Journal of Materials Chemistry,2012,22:17612-17618.
    [34] Yan H, Ohta T, Toshima N. Stretched Polyaniline Films Doped by(+/-)-10-Camphorsulfonic Acid: Anisotropy and Improvement ofThermoelectric Properties[J]. Macromolecular Materials and Engineering,2001,286(3):139-142.
    [35] Xiang J, Drzal L T. Templated Growth of Polyaniline on ExfoliatedGraphene Nanoplatelets (GNP) and Its Thermoelectric Properties[J].Polymer,2012,53(18):4202-4210
    [36] Li J, Tang X, Li H, et al. Synthesis and Thermoelectric Properties ofHydrochloric Acid-Doped Polyaniline[J]. Synthetic Metals,2010,160(11):1153-1158.
    [37] Mateeva N, Niculescu H, Schlenoff J, et al. Correlation of SeebeckCoefficient and Electric Conductivity in Polyaniline and Polypyrrole[J].Journal of Applied Physics,1998,83(6):3111-3117.
    [38] Ioffe A F, Semiconductor Thermoelements and Thermoelectric Cooling[M]:Infosearch London,1957.
    [39] Mahan G. Good Thermoelectrics[J]. Solid State Physics,1997,51:81-157.
    [40] Rowe D M, CRC Handbook of Thermoelectrics[M]: Boca Raton: CRC Press,1995:354-356.
    [41] Graf M J, Yip S, Sauls J, et al. Electronic Thermal Conductivity and theWiedemann-Franz Law for Unconventional Superconductors[J]. PhysicalReview B,1996,53(22):15147-15161.
    [42] MacDiarmid A, Chiang J, Richter A, et al. Polyaniline: a New Concept inConducting Polymers[J]. Synthetic Metals,1987,18(1):285-290.
    [43]帅志刚,曹镛.半导性与金属性聚合物[M].北京:科学出版社,2010:25-26
    [44] Chiang J C, MacDiarmid A G. Polyaniline: Protonic Acid Doping of theEmeraldine form to the Metallic Regime[J]. Synthetic Metals,1986,13(1):193-205.
    [45]景遐斌,唐劲松,王佛松.掺杂聚苯胺链结构的研究[J].中国科学(B),1990,1:15-20.
    [46] Bhadra S, Khastgir D, Singha N K, et al. Progress in Preparation, Processingand Applications of Polyaniline[J]. Progress in Polymer Science,2009,34(8):783-810.
    [47] Zuo F, Angelopoulos M, MacDiarmid A G, et al. Transport Studies ofProtonated Emeraldine Polymer: a Granular Polymeric Metal System[J].Physical Review B,1987,36(6):3475.
    [48]王学智,王秀峰,伍媛婷,等.模板法合成聚苯胺的研究进展[J].材料导报,2010,24(7):67-70.
    [49]李轩,李朝玲,王娟,等.超声辐照条件下HCl掺杂聚苯胺纳米棒的结构和性能[J].纳米技术与精密工程,2012,10(3):237-242.
    [50] Cao Y, Smith P, Heeger A J. Counterion Induced Processibility ofConducting Polyaniline and of Conducting Polyblends of Polyaniline inBulk Polymers[J]. Synthetic Metals,1992,48(1):91-97.
    [51] Kulkarni M V, Viswanath A K, Marimuthu R, et al. Spectroscopic, Transport,and Morphological Studies of Polyaniline Doped with Inorganic Acids[J].Polymer Engineering&Science,2004,44(9):1676-1681.
    [52] Olinga T E, Fraysse J, Travers J P, et al. Highly Conducting andSolution-Processable Polyaniline Obtained Via Protonation with a NewSulfonic Acid Containing Plasticizing Functional Groups[J].Macromolecules,2000,33(6):2107-2113.
    [53] Zhang L, Wan M. Synthesis and Characterization of Self-AssembledPolyaniline Nanotubes Doped with D-10-Camphorsulfonic Acid[J].Nanotechnology,2002,13(6):750-755.
    [54] Palaniappan S, John A. Polyaniline Materials by Emulsion PolymerizationPathway[J]. Progress in Polymer Science,2008,33(7):732-758.
    [55] sterholm J E, Cao Y, Klavetter F, et al. Emulsion Polymerization ofAniline[J]. Polymer,1994,35(13):2902-2906.
    [56] Kim J, Kwon S, Ihm D. Synthesis and Characterization of Organic SolublePolyaniline Prepared by One-Step Emulsion Polymerization[J]. CurrentApplied Physics,2007,7(2):205-210.
    [57] Rao P S, Subrahmanya S and Sathyanarayana D. Inverse EmulsionPolymerization: a New Route for the Synthesis of Conducting Polyaniline[J].Synthetic Metals,2002,128(3):311-316.
    [58] Gospodinova N, Mokreva P, Tsanov T, et al. A New Route to PolyanilineComposites[J]. Polymer,1997,38(3):743-746.
    [59] Huang J, Virji S, Weiller B H, et al. Polyaniline Nanofibers: Facile Synthesisand Chemical Sensors[J]. Journal of the American Chemical Society,2003,125(2):314-315.
    [60] Huang J, Kaner R B. A General Chemical Route to Polyaniline Nanofibers[J].Journal of the American Chemical Society,2004,126(3):851-855.
    [61] Su B, Tong Y, Bai J, et al. Acid Doped Polyaniline Nanofibers Synthesizedby Interfacial Polymerization[J]. Indian Journal of Chemistry Section A,2007,46(4):595-599.
    [62] Gao H, Jiang T, Han B, et al. Aqueous/Ionic Liquid InterfacialPolymerization for Preparing Polyaniline Nanoparticles[J]. Polymer,2004,45(9):3017-3019.
    [63] Guan H, Fan L-Z, Zhang H, et al. Polyaniline Nanofibers Obtained byInterfacial Polymerization for High-Rate Supercapacitors[J]. ElectrochimicaActa,2010,56(2):964-968.
    [64] Martin C R. Membrane-Based Synthesis of Nanomaterials[J]. Chemistry ofMaterials,1996,8(8):1739-1746.
    [65] Parthasarathy R V, Martin C R. Template-Synthesized PolyanilineMicrotubules[J]. Chemistry of Materials,1994,6(10):1627-1632.
    [66] Dong H, Prasad S, Nyame V, et al. Submicrometer Conducting PolyanilineTubes Prepared from Polymer Fiber Templates[J]. Chemistry of Materials,2004,16(3):371-373.
    [67] Epstein A, Ginder J, Zuo F, et al. Insulator to Metal Transition inPolyaniline[J]. Synthetic Metals,1987,18(1):303-309.
    [68]王文军,黄惠,郭忠诚,等.导电聚苯胺/无机复合材料的研究进展[J].化学与黏合,2012,35(3):61-65.
    [69] Wu T M, Lin Y W, Liao C S. Preparation and Characterization ofPolyaniline/Multi-Walled Carbon Nanotube Composites[J]. Carbon,2005,43(4):734-740.
    [70] Wei Z, Wan M, Lin T, et al. Polyaniline Nanotubes Doped With SulfonatedCarbon Nanotubes Made Via a Self-Assembly Process[J]. AdvancedMaterials,2003,15(2):136-139.
    [71] Deng J, Ding X, Zhang W, et al. Magnetic and Conducting Fe3O4Cross-Linked Polyaniline Nanoparticles with Core-Shell Structure[J].Polymer,2002,43(8):2179-2184.
    [72] KumaráSarma T. Synthesis of Au Nanoparticle Conductive PolyanilineComposite Using H2O2as Oxidising as well as Reducing Agent[J]. ChemicalCommunications,2002,(10):1048-1049.
    [73] Xu J, Wang K, Zu S Z, et al. Hierarchical Nanocomposites of PolyanilineNanowire Arrays on Graphene Oxide Sheets with Synergistic Effect forEnergy Storage[J]. ACS Nano,2010,4(9):5019-5026.
    [74] Yan J, Wei T, Shao B, et al. Preparation of A GrapheneNanosheet/Polyaniline Composite with High Specific Capacitance[J].Carbon,2010,48(2):487-493.
    [75] Oliveira M M, Castro E G, Canestraro C D, et al. A Simple Two-Phase Routeto Silver Nanoparticles/Polyaniline Structures[J]. The Journal of PhysicalChemistry B,2006,110(34):17063-17069.
    [76] Lin Y W, Wu T M. Synthesis and Characterization of Externally DopedSulfonated Polyaniline/Multi-walled Carbon Nanotube Composites[J].Composites Science and Technology,2009,69(15):2559-2565.
    [77] He Y. Preparation of Polyaniline/Nano-ZnO Composites Via a NovelPickering Emulsion Route[J]. Powder Technology,2004,147(1):59-63.
    [78] Hu S H, Pei H D and Zhao X B. Thermoelectric Properties ofBi0.5Sb1.5Te3/Polyaniline Composites Prepared by Mechanical Blending andin-situ Polymerization[J]. Transactions of Nonferrous Metals Society ofChina,2001,11(6):876-878.
    [79] Wang L, Wang D, Zhu G, et al. Thermoelectric Properties of ConductingPolyaniline/Graphite Composites[J]. Materials Letters,2011,65(7):1086-1088.
    [80] Kim B, Jung J, Kim J, et al. Physical Characterization of PolyanilineNa+/Montmorillonite Nanocomposite Intercalated by EmulsionPolymerization[J]. Synthetic Metals,2001,117(1):115-118.
    [81] Wu Q, Xue Z, Qi Z, et al. Synthesis and Characterization of PAn/ClayNanocomposite with Extended Chain Conformation of Polyaniline[J].Polymer,2000,41(6):2029-2032.
    [82] Du X, Xiao M, Meng Y. Facile Synthesis of Highly ConductivePolyaniline/Graphite Nanocomposites[J]. European Polymer Journal,2004,40(7):1489-1493.
    [83] Chatterjee K, Suresh A, Ganguly S, et al. Synthesis and Characterization ofan Electro-Deposited Polyaniline-Bismuth Telluride Nanocomposite-ANovel Thermoelectric Material[J]. Materials Characterization,2009,60(12):1597-1601.
    [84] Chatterjee K, Mitra M, Kargupta K, et al. Synthesis, Characterization andEnhanced Thermoelectric Performance of Structurally Ordered Cable-LikeNovel Polyaniline-Bismuth Telluride Nanocomposite[J]. Nanotechnology,2013,24(21):215703-215713.
    [85] Wang Y Y, Cai K F, Yin J L, et al. In Situ Fabrication and ThermoelectricProperties of PbTe-Polyaniline Composite Nanostructures[J]. Journal ofNanoparticle Research,2011,13(2):533-539.
    [86] Wang Y Y, Cai K F, Yin J L, et al. One-Pot Fabrication and ThermoelectricProperties of Ag2Te-Polyaniline Core-Shell Nanostructures[J]. MaterialsChemistry and Physics,2012,133(2):808-812.
    [87] Kanatzidis M G, Wu C G, Marcy H O, et al. Conductive-Polymer Bronzes.Intercalated Polyaniline in Vanadium Oxide Xerogels[J]. Journal of theAmerican Chemical Society,1989,111(11):4139-4141.
    [88] Bissessur R, Degroot D C, Schindler J L, et al. Inclusion of Polyaniline intoMoO3[J]. Journal of the Chemical Society, Chemical Communication,1993,(8):687-689.
    [89] Anilkumar K R, Parveen A, Badiger G R, et al. Thermoelectric Power Factorfor Polyaniline/Molybdenum Trioxide Composites[J]. Ferroelectrics,2009,386:88-93.
    [90] Anno H, Yamaguchi K, Nakabayashi T, et al. Thermoelectric Properties ofConducting Polyaniline/BaTiO3Nanoparticle Composite Films. in IOPConference Series: Materials Science and Engineering[C]. IOP Publishing,2011:142003-142006.
    [91] Wu C G, Degroot D, Marcy H, et al. Reaction of Aniline with FeOCl.Formation and Ordering of Conducting Polyaniline in a Crystalline LayeredHost[J]. Journal of the American Chemical Society,1995,117(36):9229-9242.
    [92] Liu H, Wang J Y, Hu X B, et al., Preparation and Thermoelectric Propertiesof Polyaniline/NaFe4P12Composite[C]. Beijing:2001. Proceedings ICT,2001:352-355.
    [93] Chatterjee K, Ganguly S, Kargupta K, et al. Bismuth Nitrate DopedPolyaniline-Characterization and Properties for ThermoelectricApplication[J]. Synthetic Metals,2011,161(3-4):275-279.
    [94] Toshima N, Imai M, Ichikawa S. Organic Inorganic Nanohybrids as NovelThermoelectric Materials: Hybrids of Polyaniline and Bismuth(III) TellurideNanoparticles[J]. Journal of Electronic Materials,2011,40(5):898-902.
    [95] Toshima N, Jiravanichanun N, Marutani H. Organic ThermoelectricMaterials Composed of Conducting Polymers and Metal Nanoparticles[J].Journal of Electronic Materials,2012,41:1735-1742.
    [96] Yoon C O, Reghu M, Moses D, et al. Thermoelectric Power of DopedPolyaniline Near the Metal-Insulator Transition[J]. Synthetic Metals,1995,69(1-3):273-274.
    [97] Yakuphanoglu F, Senkal B F. Electrical Transport Properties of an OrganicSemiconductor on Polyaniline Doped by Boric Acid[J]. Polymers forAdvanced Technologies,2008,19(12):1876-1881.
    [98] Yoon C, Reghu M, Moses D, et al. Hopping Transport in Doped ConductingPolymers in the Insulating Regime Near the Metal-Insulator Boundary:Polypyrrole, Polyaniline and Polyalkylthiophenes[J]. Synthetic Metals,1995,75(3):229-239.
    [99] Liu J, Zhang L M, He L, et al. Synthesis and Thermoelectric Properties ofPolyaniline[J]. Journal of Wuhan University of Technology-MaterialsScience Edition,2003,18(3):53-55.
    [100] Toshima N. Conductive Polymers as a New Type of ThermoelectricMaterial[J]. Macromolecular Symposia,2002,186:81-86.
    [101] Jin J Z, Wang Q, Haque M A. Doping Dependence of Electrical and ThermalConductivity of Nanoscale Polyaniline Thin Films[J]. Journal of PhysicsD-Applied Physics,2010,43(20):205302-235306.
    [102] Toshima N. Conductive Polymers as a New Yype of ThermoelectricMaterial[J]. Macromolecular Symposia,2002,186(1):81-86.
    [103] Yan H, Toshima N. Thermoelectric Properties of Alternatively Layered Filmsof Polyaniline and (+/-)-10-Camphorsulfonic Acid-Doped Polyaniline[J].Chemistry Letters,1999,(11):1217-1218.
    [104] Yao Q, Chen L D, Xu X C, et al. The High Thermoelectric Properties ofConducting pPolyaniline with Special Submicron Fibre Structure[J].Chemistry Letters,2005,34(4):522-523.
    [105] Sun Y N, Wei Z M, Xu W, et al. A Three in One Improvement inThermoelectric Properties of Polyaniline Brought by Nanostructures[J].Synthetic Metals,2010,160(21-22):2371-2376.
    [106] Yan H, Sada N, Toshima N. Thermal Transporting Properties of ElectricallyConductive Polyaniline Films as Organic Thermoelectric Materials[J].Journal of Thermal Analysis and Calorimetry,2002,69(3):881-887.
    [107] Chen J K, Gui X C, Wang Z W, et al. Superlow Thermal Conductivity3DCarbon Nanotube Network for Thermoelectric Applications[J]. Acs AppliedMaterials&Interfaces,2011,4(1):81-86.
    [108] Meng C, Liu C, Fan S. A Promising Approach to Enhanced ThermoelectricProperties Using Carbon Nanotube Networks[J]. Advanced Materials,2010,22(4):535-539.
    [109] Liu J L, Sun J, Gao L. Flexible Single-Walled Carbon Nanotubes/PolyanilineComposite Films and Their Enhanced Thermoelectric Properties[J].Nanoscale,2011,3(9):3616-3619.
    [110] Yakuphanoglu F, Senkal B F. Thermoelectrical and Optical Properties ofDouble Wall Carbon Nanotubes: Polyaniline Containing Boron n-TypeOrganic Semiconductors[J]. Polymers for Advanced Technologies,2008,19(7):905-908.
    [111] Du Y, Shen S Z, Yang W, et al. Simultaneous Increase in Conductivity andSeebeck Coefficient in a Polyaniline/Graphene Nanosheets ThermoelectricNanocomposite[J]. Synthetic Metals,2011,161:2688-2692.
    [112] Lu Y, Song Y, Wang F. Thermoelectric Properties of GrapheneNanosheets-Modified Polyaniline Hybrid Nanocomposites by an In SituChemical Polymerization[J]. Materials Chemistry and Physics,2013,138(1):238-244.
    [113] Zhao Y, Tang G S, Yu Z Z, et al. The Effect of Graphite Oxide on theThermoelectric Properties of Polyaniline[J]. Carbon,2012,50:3064-3073.
    [114] Abad B, Alda I, Díaz Chao P, et al. Improved Power Factor of PolyanilineNanocomposites with Exfoliated Graphene Nanoplatelets(GNPs)[J]. JournalMaterials Chemistry A,2013,1:10450-10457.
    [115] Suryanarayana C. Mechanical Alloying and Milling[J]. Progress in materialsscience,2001,46(1):1-184.
    [116]顾秀娟,王齐华,宁莉萍,等.有机/无机纳米复合材料的制备及其摩擦学性能研究展望[J].材料科学与工程学报,2002,20(4):602-604.
    [117] Zhang Z M, Wei Z X, Wan M X. Nanostructures of Polyaniline Doped withInorganic Acids[J]. Macromolecules,2002,35(15):5937-5942.
    [118] Abdiryim T, Xiao G Z, Jamal R. Comparative Studies of Solid StateSynthesized Polyaniline Doped with Inorganic Acids[J]. Materials Chemistryand Physics,2005,90(2):367-372.
    [119] Neoh K, Pun M, Kang E, et al. Polyaniline Treated with Organic Acids:Doping Characteristics and Stability[J]. Synthetic Metals,1995,73(3):209-215.
    [120] Lee K, Cho S, Park S H, et al. Metallic Transport in Polyaniline[J]. Nature,2006,441(7089):65-68.
    [121]黄惠,郭忠诚.导电聚苯胺的制备及应用[M].北京:科学出版社,2010:74-75.
    [122]王凤春,吕莹,徐敏,等.杂多酸掺杂聚苯胺微米棒微米球的合成表征及气敏性能研究[J].无机化学学报,2009,25(3):465-468.
    [123] Kang E T, Neoh K G, Tan K L. Polyaniline: A Polymer with ManyInteresting Intrinsic Redox States[J]. Progress in Polymer Science,1998,23(2):277-324.
    [124] Athawale A A, Kulkarni M V, Chabukswar V V. Studies on ChemicallySynthesized Soluble Acrylic Acid Doped Polyaniline[J]. MaterialsChemistry and Physics,2002,73(1):106-110.
    [125] Kulkarni M V, Viswanath A K, Marimuthu R, et al. Synthesis andCharacterization of Polyaniline Doped with Organic Acids[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2004,42(8):2043-2049.
    [126] Joo J, Long S M, Pouget J P, et al. Charge Transport of the MesoscopicMetallic State in Partially Crystalline Polyanilines[J]. Physical Review B,1998,57(16):9567-9580.
    [127]姚琴.聚苯胺及其纳米复合材料的制备和热电性能研究[D].上海:中国科学院上海硅酸盐研究所,2010:67-69.
    [128] Pan L, Pu L, Shi Y, et al. Hydrothermal Synthesis of PolyanilineMesostructures[J]. Advanced Functional Materials,2006,16(10):1279-1288.
    [129]黄惠,许金泉,刘小丽,等.复合酸掺杂导电聚苯胺的性能研究[J].化学通报,2009,(8):744-748.
    [130]黄惠,周继禹,许金泉,等.有机/无机酸复合掺杂导电聚苯胺的合成及性能研究[J].高校化学工程学报,2009,23(6):984-989.
    [131] Jin J Z, Wang Q, Haque M A. Length Scale Effects on Electrical andThermal Transport in Polyaniline Thin Films[J]. Organic Electronics,2010,11(1):29-35.
    [132]王利祥,王佛松.导电聚合物----聚苯胺的研究进展--合成链结构和凝聚态结构化学[J].应用化学,1990,7(5):1-10.
    [133]阚锦晴,穆绍林.氧化剂对聚苯胺性质的影响[J].高分子学报,1989,4:465-471.
    [134] Kuilla T, Bhadra S, Yao D, et al. Recent Advances in Graphene BasedPolymer Composites[J]. Progress in Polymer Science,2010,35(11):1350-1375.
    [135] Pouget J P, Jozefowicz M E, Epstein A J, et al. X-Ray Structure ofPolyaniline[J]. Macromolecules,1991,24(3):779-789.
    [136] Yoon C O, Kim J H, Sung H K, et al. Transport Studies of Emeraldine SaltsProtonated by Phosphoric Acids[J]. Synthetic Metals,1996,81(1):75-80.
    [137] Kim G H, Hwang D H, Woo S I. Thermoelectric Properties ofNanocomposite Thin Films Prepared with Poly (3,4-Ethylenedioxythiophene) Poly (Styrenesulfonate) and Graphene[J].Physical Chemistry Chemical Physics,2012,14(10):3530-3536.
    [138] Souza F G, Sirelli L, Michel R C, et al. In Situ Polymerization of Aniline inthe Presence of Carbon Black[J]. Journal of Applied Polymer Science,2006,102(1):535-541.
    [139] Ferrari A, Robertson J. Interpretation of Raman Spectra of Disordered andAmorphous Carbon[J]. Physical Review B,2000,61(20):14095-14107.
    [140] Da Silva J, De Torresi S, De Faria D, et al. Raman Characterization ofPolyaniline Induced Conformational Changes[J]. Synthetic Metals,1999,101(1):834-835.
    [141] Holland E, Pomfret S, Adams P, et al. Conductivity Studies of PolyanilineDoped with CSA[J]. Journal of Physics: Condensed Matter,1996,8(17):2991-2994.
    [142] Kaiser A B, Skakalova V. Electronic Conduction in Polymers, CarbonNanotubes and Graphene[J]. Chemical Society Reviews,2011,40(7):3786-3801.
    [143] Reghu M, Cao Y, Moses D, et al. Counterion-Induced Processibility ofPolyaniline: Transport at the Metal-Insulator Boundary[J]. Physical ReviewB,1993,47(4):1758-1764.
    [144] Mott N F, Davis E A, Electronic Processes in Noncrystalline Materials[M]:Oxford University Press,2012.
    [145] Tsai T C, Chang H C, Chen C H, et al. Widely Variable Seebeck Coefficientand Enhanced Thermoelectric Power of PEDOT: PSS Films by BlendingThermal Decomposable Ammonium Formate[J]. Organic Electronics,2011,12(12):2159-2164.
    [146] Lévesque I, Bertrand P O, Blouin N, et al. Synthesis and ThermoelectricProperties of Polycarbazole, Polyindolocarbazole and Poly-diindolocarbazole Derivatives[J]. Chemistry of Materials,2007,19(8):2128-2138.
    [147] Pal S, Balasubramanian G, Puri I K. Modifying Thermal Transport inElectrically Conducting Polymers: Effects of Stretching and CombiningPolymer Chains[J]. Journal of Chemical Physics,2012,136(4):044901-044907.
    [148] Zhang X, Lü Z, Wen M, et al. Single-Walled Carbon Nanotube-BasedCoaxial Nanowires: Synthesis, Characterization, and Electrical Properties[J].The Journal of Physical Chemistry B,2005,109(3):1101-1107.
    [149] Rowe D, Shukla V. The Effect of Phonon Grain Boundary Scattering on theLattice Thermal Conductivity and Thermoelectric Conversion Efficiency ofHeavily Doped Fine Grained, Hot Pressed Silicon Germanium Alloy[J].Journal of Applied Physics,1981,52(12):7421-7426.
    [150]南策文.非均质材料物理----显微结构与性能关联[M].北京:科学出版社,2005:5-7
    [151] Sheng P. Introduction to Wave Scattering, Localization, and MesoscopicPhenomena[M]. Verlag Berlin Heidelberg in Germany: Springer,2006:217-225.
    [152] He M, Ge J, Lin Z, et al. Thermopower Enhancement in Conducting PolymerNanocomposites Via Carrier Energy Scattering at Organic/InorganicSemiconductor Interface[J]. Energy&Environmental Science,2012,5(8):8351-8358.
    [153] Berman R, Klemens P G. Thermal Conduction in Solids[J]. Physics Today,1978,31:56.
    [154]朱道本,王佛松.有机固体[M].上海:上海科学技术出版社,1999:268-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700