用户名: 密码: 验证码:
基于自组装胶体晶体构筑有序微结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Fabricating Ordered Microstructures on the Basis of Self-assembled Colloidal Crystals
  • 作者:孙志强
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2009
  • 导师:杨柏
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-06-01
  • 答辩委员会主席:唐涛
摘要
具有特殊功能的有序微结构日渐引起人们浓厚的研究兴趣,并被广泛应用于微反应器、生物传感器、微电子器件以及光学器件等领域。目前,在微结构的制备方面,自组装胶体晶体备受人们关注。本论文中,我们利用双基片垂直沉积方法制备了稳定的、高质量的胶体晶体。基于这种胶体晶体的稳定性,通过热压聚合物胶体晶体,制备了由多面体形构筑基元组成的非球形对称胶体晶体。以非球形对称的胶体晶体为模板,我们制备了两种特殊结构的大孔材料:其中一种由纳米棒构建而成,具有超大的孔隙率;另一种则具有封闭的、多面体形有序空腔结构,其孔隙率远远低于普通模板法制得的大孔材料。我们还建立了胶体晶体辅助印刷(CCAL)方法,以三维胶体晶体为模板构筑二维的图案化微结构阵列。一方面,以三维二氧化硅胶体晶体为模板压印聚合物膜层,我们制备了多种形貌的聚合物微结构阵列,并通过改变实验条件实现了对微结构形貌的调控;另一方面,以三维聚合物胶体晶体为模板,在镀金基底上化学沉积了银的微结构阵列。该方法得到的银纳米结构表现出优异的表面拉曼增强(SERS)效应,可以作为SERS基底。最后,将CCAL方法与物理、化学刻蚀技术结合,我们又制备了多种功能性的纳米环阵列以及自支持的功能性复合纳米环结构。
In the past two decades, ordered microstructures with special functions have attracted more and more interests. And they have been widely used in fields of micro-reactor, biosensors, microelectronics, optical devices and micromechanics. So far, many approaches for surface patterning have been established, including traditional photolithography, e-beam lithography, X-ray lithography, scanning probe lithography, micro-contact printing and soft lithography, etc. Each of these techniques shows their own advantages and shortages in surface patterning according to the precision, repetition, productivity and cost. As a kind of mesoscopic ordered microstructures, self-assembly colloidal crystals show special optical properties, which are important for their potential applications in photonic crystals, high-density storage, and bio- & chemical sensors. Meanwhile, colloidal crystals have provided low-cost templates for preparing various microstructures in nano- and micro-meter scale. Combining with selective deposition, etching, polymerization and photolithography techniques, colloidal crystals have been used as templates for constructing two and three dimensional microstructures. These patterned microstructures will promote the micromachining techniques, physics, chemistry, biology, medicine and hasten the crosslink of different subjects. In this paper, we prepared colloidal crystals of different structures. Using these special colloidal crystals as templates, many different ordered microstructures have been prepared, widening the applications of colloidal-crystal-template strategy.
     In chapter 2, high quality stable colloidal crystal chips have been prepared by two-substrate vertical deposition method. The microstructure and optical property of colloidal crystals in these chips have been studied, as well as the influence of experimental conditions on the lattice of colloidal crystals. It is well known that colloidal crystals are not stable under the infiltration of solvents (water or other solvents). However, the confinement in between two close substrates would make colloidal crystal chips more stable against the filling medium and help to control and protect them better in the ensuing procedures. Due to their excellent stability, these colloidal crystal chips can be used as elements in some optical devices directly, and their optical properties can be adjusted by simply filling solutions containing functional materials and some available precursors into them. Moreover, based on the rheology of polymer microspheres, we prepared nonspherical colloidal crystals constructed from polyhedrons by thermal-pressing the polymer colloidal crystal chips. Our strategy provided a new routine for preparation of nonspherical colloidal crystals. At the temperature slightly lower than Tg of polymer colloids, high pressure were applied to make the colloidal spheres transform into polyhedrons. As the working temperature lower than Tg effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals had been transformed greatly. Characterized by SEM and AFM, it has proved that the nonspherical colloidal crystals we prepared were constructed from particles of dodecahedron. By controlling the thermal-pressing conditions, we can adjust the deformation of the colloidal spheres. And colloidal crystals of different lattice orientations will lead to nonspherical colloidal crystals of different symmetry. Constructing spherical and nonspherical colloidal crystals from microspheres of different sizes, we studied the optical property change during the thermal-pressing process. It has been proved that the diffraction peak of the colloidal crystals would blue-shift in the thermal-pressing process. And the extent of blue-shift depends on the size of the microspheres, which can be explained by Bragg equation.
     In chapter 3, we prepared two kinds of TiO_2 macroporous materials based on the nonspherical colloidal crystals. One kind of macroporous materials were prepared by using polymer nonspherical colloidal crystals as templates. Infiltrating titanium precursor into colloidal crystals by sol-gel process and removing the template by calcining, macroporous TiO_2 structures with super-high porosity have been prepared. This kind of microstructures is constructed from nanosticks, and their porosity is not less then 90%. The skeleton-like structures can be destroyed by ultrasonication, leaving two dimensional TiO_2 nano-networks on the substrates. The other kind of macroporous materials was prepared based on PS@TiO_2 core-shell colloidal crystals. Firstly, we prepared well ordered PS@TiO_2 core-shell colloidal crystals. Then thermal-pressing process was applied to transform them into nonspherical ones. Using this kind of special colloidal crystals as templates, macroporous materials with ordered close polyhedron cavities have been prepared, which possess lower porosity than macroporous material prepared by other colloidal-crystal-template methods.
     In chapter 4, we developed colloidal crystal-assisted lithography (CCAL), utilizing 3D colloidal crystals to produce surfaces with 2D patterned arrays. On one hand, imprinting the polymer films with 3D silica colloidal crystals, polymer microstructure arrays of different morphology have been achieved. By varying the polymer film thickness and other experimental conditions in the imprinting process, we can intentionally control the morphology of the resulting polymer microstructures. On the other, Ag microstructures have been chemically deposited on Au substrates covered by 3D polymer colloidal crystals. The morphologies of the Ag structures formed on Au substrates can be controlled by adjusting the chemical deposition time and template nanosphere size. The resultant Ag-coated Au substrates thus prepared can be used as surface-enhanced Raman scattering (SERS) substrates, and can provide ideal models for researching the mechanism of SERS effect. Compared with other methods, CCAL method has at least three advantages in preparing 2D patterned arrays: (1) as 3D colloidal crystals are accessible in a large area, CCAL is an efficient and facile way of preparing patterned arrays in a large area; (2) both the periodicity and morphology of the patterns can be intentionally adjusted by varying the template nanosphere size and other parameters; (3) a mass of functional materials from molecules to polymers, oxides and metals can be applied in CCAL.
     In chapter 5, we put up a convenient and universal strategy for preparing nanoring arrays of different compositions, based on combining CCAL method with physical and chemical etching techniques. Large area arrays of PS, magnetite, Au, Si, magnetite nanoparticle/PS and Au/PS double-layer composite nanorings have been prepared. The specific dimensions of the nanoring arrays could be controlled by intentionally altering the experimental conditions, which is important for adjusting the properties and applications of nanoring structures. Many kinds of the nanoring structures, including Fe_3O_4 nanoparticle/PS and Au/PS double-layer nanorings, can be released from the substrates, resulting in free-standing composite nanorings, which might be used as self-assembly building blocks and ultra-sensitive bio- and chemical sensors.
引文
[1] Madou, M. Fundamentals of microfabrication: the science of miniaturization [M],2~(nd) ed., CRC Press, Boca Raton, FL 2001.
    
    [2] Barrett C R. Mater. Res. Soc. Bull. [J]. 1993:3-10.
    
    [3] Service R F. Meeting briefs-crystallographers pinpoint what goes where [J]. Science, 1996,273: 1174-1175.
    [4] Schaller R R. Moore's law: past, present, and future [J]. IEEE Spectrum, 1997, 53-59.
    [5] Sze S M. Semiconductor devices: physics and technology [M], John Wiley, New York 1985.
    [6] Moreau, W M. Semiconductor lithography: principles and materials [M], Plenum:New York, 1988.
    [7] Handbook of microlithography, micromachining, and microfabrication [R] (Ed: P.Rai-Choudhury), SPIE Optical Engineering Press, Bellingham, WA 1997.
    [8] Microlithography-science and technology [R] (Eds: Sheats, J. R.; Smith, B. W.),Marcel Dekker, New York 1998.
    [9] Menz W, Mohr J, Paul O. Microsystem technology [M], 2nd ed., Wiley-VCH,Weinheim, Germany 2001.
    
    [10] Bell L D, Kaiser W J. Observation of interface band structure by ballistic-electron-emission microscopy [J]. Phys. Rev. Lett., 1988, 61: 2368-2371.
    [11] Hutley M C. Diffraction gratings [M], Academic Press: New York. 1982.
    [12] Heinze J. Ultramicroelectrodes in electrochemistry [J]. Angew. Chem. Int.Ed.,1993,32: 1268-1288.
    
    [13] Bube RH. Electrons in solids [M]. Academic: New York, 1981.
    [14] Kastner M A. Artificial atoms [J]. Phys. Today, 1993,46(1): 24.
    [15] Reed M A. Quantum dots [J]. Sci. Am., 1993,268: 118.
    
    [16] Likharev K K, Claeson T. Single electronics [J]. Sci. Am., 1992, 266:80.
    [17] LiKharev K K. Correlated discrete transfer of single electrons in ultrasmall tunnel junctions [J]. IBM J. Res. Dev., 1988, 32: 144-158.
    [18] Vijayakrishnan V, Chainani A, Sarma D D, Rao C N R. Metal-insulator transitions in metal clusters: a high-energy spectroscopy study of palladium and silver clusters [J]. J. Phys. Chem., 1992, 96(22): 8679-8682.
    [19] Rohrer, H. Nanoworld: chances and challenges [J]. Microelectron. Eng., 1996, 32:5-14.
    [20] Tolles W M. Nanoscience and nanotechnology in Europe [J]. Nanotechnol., 1996,7: 59-105.
    [21] Buot F A. Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology [J]. Phys. Rep., 1993, 243: 73-174.
    [22] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry a chemical strategy for the synthesis of nanostructures [J]. Science,1991,254: 1312-1319.
    [23] Levenson M D. Extending optical lithography to the gigabit era [J]. Solid State Technol., 1995, 38(2): 57-66.
    [24] Khang D, Yoon H, Lee H H. Room-temperature imprint lithography [J]. Adv. Mater., 2001, 13:749-752.
    [25] Xia Y N, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures [J]. Chem. Rev., 1999, 99: 1823-1848.
    [26] Wallraff G M, Hinsberg W D. Lithographic imaging techniques for the formation of nanoscopic features [J]. Chem. Rev., 1999, 99(7): 1801-1821.
    [27] Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [28] Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties [J]. Chem. Mater., 1999, 11(3): 806-813.
    [29] Zhang J H, Bai L, Zhang K, et al. A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres [J]. J. Mater. Chem.,2003, 13:514-517.
    [30] Dhas N A, Gedanken A. A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica [J]. Appl. Phys. Lett. 1998, 72 (20): 2514-2516.
    [31] Ramesh S, Minti H, Reisfeld R, et al. Synthesis and optical properties of europium oxide nanoparticles immobilized on amorphous silica microspheres [J].Opt. Mater., 1999,13(1): 67-70.
    [32] Charlier J C. Defects in carbon nanotubes [J]. Acc. Chem. Res., 2002, 35(12):1063-1069.
    [33] Dresselhaus MS, Dresselhaus, G, Jorio A, et al. Single Nanotube Raman Spectroscopy [J]. Acc. Chem. Res., 2002, 35(12): 1070-1078.
    [34] Fischer J E. Chemical doping of single-wall carbon nanotubes [J]. Acc. Chem.Res., 2002, 35(12): 1079-1086.
    [35] Mayoral R, Requena J, Moya J S, et al. 3D long-range ordering in an SiO_2 submicrometer-sphere sintered superstructure [J]. Adv. Mater., 1997,9:257-260.
    [36] Donselaar L N, Philipse A P, Suurmond J. Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions [J]. Langmuir, 1997, 13:6018-6025.
    [37] Miguez H, Meseguer F, Lopez C, et al. Evidence of fcc crystallization of SiO_2 nanospheres [J]. Langmuir, 1997, 13: 6009-6011.
    [38] Ise N. Ordering of ionic solutes in dilute solutions through attraction of similarly charged solutes a change of paradigm in colloid and polymer chemistry [J]. Angew. Chem. Int. Ed. Engl.,1986, 25: 323-334.
    [39] Sunkara H B, Jethmalani J M, Ford W T. Composite of colloidal crystals of silica in poly(methyl methacrylate) [J]. Chem. Mater., 1994, 6: 362-364.
    [40] Larsen A E, Grier D G. Like-charge attractions in metastable colloidal crystallites [J]. Nature,1997, 385: 230-233.
    [41] Denkov N D, Velev O D, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates [J]. Langmuir, 1992, 8: 3183-3190.
    [42] Dushkin C D, Nagayama K, Miwa T, et al. Colored multilayers from transparent submicrometer spheres [J]. Langmuir, 1993, 9: 3695-3701.
    [43] Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J]. Langmuir, 1996, 12: 1303-1311.
    [44] Rakers S. Chi L F, Fuchs H. Influence of the evaporation rate on the packing order of polydisperse latex monofilms [J]. Langmuir, 1997, 13: 7121-7124.
    [45] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58: 2059-2062.
    [46] John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58: 2486-2489.
    [47] Park S H, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters [J]. Langmuir, 1999, 15: 266-273.
    [48] Chang S Y, Liu L, Asher S A. Preparation and properties of tailored morphology,monodisperse colloidal silica-cadmium sulfide nanocomposites [J]. J. Am. Chem. Soc., 1994, 116:6739-6744.
    [49] Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature, 1997, 389: 829-832.
    [50] Holtz JH, Holtz JSW, Munro CH, et al. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials [J]. Anal. Chem., 1998, 70:780-791.
    [51] Velev O D, Kaler E W. In situ assembly of colloidal particles into miniaturized biosensors [J]. Langmuir, 1999, 15: 3693-3698.
    [52] van Blaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization [J]. Nature, 1997,385: 321-324.
    [53] Sun S, Murray B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000,287: 1989-1992.
    [54] Gasser U, Reeks E, Schofield A, et al. Real-space imaging of nucleation and growth in colloidal crystallization [J]. Science, 2001,292: 258-262.
    [55] Pusey P N, Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres [J]. Nature, 1986, 320: 340-342.
    [56] Skjeltorp A T, Meakin P. Fracture in microsphere monolayers studied by experiment and computer simulation [J]. Nature, 1988, 335: 424-426.
    [57] Hulteen J C, Treichel D A, Smith M T, et al. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays [J]. J. Phys. Chem. B., 1999, 103:3854-3863.
    [58] Hulteen J C, Van Duyne R P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces [J]. J. Vac. Sci. Technol. A,1995, 13:1553-1558.
    [59] Deckman H W, Dunsmuir J H. Natural lithography [J]. Appl. Phys. Lett., 1982, 41:377-379.
    [60] Fischer U Ch, Zingsheim H P. Submicroscopic pattern replication with visible light [J]. J. Vac. Sci. Technol., 1981,19: 881-885.
    [61] Kulak A, Lee Y, Park Y S, et al. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups [J]. Angew. Chem. Int. Ed., 2000, 39(5): 950-953.
    [62] Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness [J]. Chem. Mater., 1999,11: 2132-2140.
    [63] Yi G R, Moon J H, Yang S M. Macrocrystalline colloidal assemblies in an electric field[J]. Adv. Mater., 2001, 13: 1185-1188.
    [64] Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature, 2000,404: 56-59.
    [65] Vickreva O, Kalinina O, Kumacheva E. Colloid crystal growth under oscillatory shear [J]. Adv. Mater., 2000, 12(2): 110-112.
    [66] Lin K, Crocker J C, Prasad V, et al. Entropically driven colloidal crystallization on patterned surfaces [J]. Phys. Rev. Lett., 2000, 85: 1770-1773.
    [67] Xu X, Friedman G, Humfeld K D, et al. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals [J]. Chem. Mater., 2002, 14: 1249-1256.
    [68] Grzybowski B A, Stone H A, Whitesides G M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface [J]. Nature,2000,405: 1033-1036.
    [69] Bwoden N B, Weck M, Choi I S, et al. Molecule-mimetic chemistry and mesoscale self-assembly [J]. Acc. Chem. Res., 2001, 34: 231-238.
    [70] Zhang K Q, Liu X Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field [J]. Nature, 2004,429: 739-743.
    [71] Xie R G, Liu X Y. Epitaxial assembly and ordering of two-dimensional colloidal crystals [J]. Appl. Phys. Lett., 2008; 92: 083106.
    [72] Xia Y, Gates B, Yin Y, et al. Monodispersed colloidal spheres: old materials with new applications [J]. Adv. Mater., 2000, 12: 693-713.
    [73] Yin Y, Xia Y. Growth of large colloidal crystals with their (100) planes orientated parallel to the surfaces of supporting substrates [J]. Adv. Mater., 2002, 14:605-608.
    [74] Velev O D, Lenhoff A M, Kaler E W. A class of microstructured particles through colloidal crystallization [J]. Science, 2000, 287: 2240-243.
    [75] Moon J H, Yi G R, Yang S M, et al. Electrospray-assisted fabrication of uniform photonic balls [J]. Adv. Mater., 2004, 16: 605-09.
    [76] Kim S H, Lee S Y, Yi G R, et al. Microwave-assisted self-organization of colloidal particles in confining aqueous droplets [J]. J. Am. Chem. Soc., 2006, 128:10897-10904.
    [77] Zhao X W, Cao Y, Ito F, et al. Colloidal crystal beads as supports for biomolecular screening [J]. Angew. Chem. Int. Ed., 2006,45: 6835-6838.
    [78] Takeda S, Wiltzius P. Growth of highly ordered colloidal crystals using selfassembly at liquid-liquid interfaces [J]. Chem. Mater., 2006, 18: 5643-5645.
    [79] Gu Z Z, Wang D, Mohwald H. Self-assembly of microspheres at the air/water/air interface into free-standing colloidal crystal films [J]. Soft Matter, 2007, 3: 68-70.
    [80] Jiang P, Ostojic G N, Narat R, et al. The fabrication and bandgap engineering of photonic multilayers [J]. Adv. Mater., 2001, 13: 389-393.
    [81] Wong S, Kitaev V, Ozin GA. Colloidal crystal films: advances in universality and perfection [J]. J. Am. Chem. Soc., 2003,125: 15589-15598.
    [82] Zheng Z Y, Liu X Z, Luo Y H, et al. Pressure controlled self-assembly of high quality three-dimensional colloidal photonic crystals [J]. Appl. Phys. Lett. 2007, 90:051910.
    [83] Zhang J H, Liu H Y, Wang Z L, et al. Assembly of high-quality colloidal crystals under negative pressure [J]. J Appl Phys 2008, 103: 013517.
    [84] Li HL, Marlow F. Solvent effects in colloidal crystal deposition [J]. Chem. Mater.,2006, 18: 1803-1810.
    [85] Chung Y W, Leu I C, Lee J H, et al. Influence of humidity on the fabrication of highqualitycolloidal crystals via a capillary-enhanced process [J]. Langmuir, 2006,22: 6454-6460.
    [86] Kim M H, Im S H, Park O O. Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly [J]. Adv. Funct. Mater.,2005,15: 1329-1335.
    [87] Ko Y G, Shin D H. Effects of liquid bridge between colloidal spheres and evaporation temperature on fabrication of colloidalmultilayers [J]. J. Phys. Chem. B, 2007,111: 1545-1551.
    [88] Yin Y D, Lu Y, Gates B, et al. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes,and structures [J]. J. Am. Chem. Soc., 2001, 123(36): 8718-8729.
    [89] Garcia-Santamaria F, Miyazaki H T, Urquia A, et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures [J]. Adv. Mater., 2002, 14(16):1144-1147.
    
    [90] Wang D Y, Mohwald H. Template-directed colloidal self-assembly-the route to 'top-down' nanochemical engineering [J]. J. Mater. Chem., 2004,14: 459-468.
    [91] Chen K M, Jiang X, Kimerling L C, et al. Selective self-organization of colloids on patterned polyelectrolyte templates [J]. Langmuir, 2000,16(20): 7825-7834.
    [92] Aizenberg J, Braun PV, Wiltzius P. Patterned colloidal deposition controlled by electrostatic and capillary forces [J]. Phys. Rev. Lett., 2000, 84: 2997-3000.
    [93] Yeh S R, Seul M, Shraiman B I. Assembly of ordered colloidal aggregates by electric-field-induced fluid flow [J]. Nature, 1997, 386: 57-59.
    [94] Gu Z Z, Fujishima A, Sato O. Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface [J]. Angew. Chem. Int. Ed., 2002,41(12): 2067-2670.
    [95] Lee I, Zheng H, Rubner M F, et al. Particle arrays via directed adsorption on confined surfaces [J]. Adv. Mater., 2002,14: 572-577.
    [96] Zheng H, Lee I, Rubner M F, et al. Two component particle arrays on patterned polyelectrolyte multilayer templates [J]. Adv. Mater., 2002, 14: 569-572.
    [97] Fustin C A, Glasser G, Spiess H, et al. Site-selective growth of colloidal crystals with photonic properties on chemically patterned surfaces [J]. Adv. Mater., 2003,15: 1025-1028.
    [98] Yao J M, Yan X, Lu G, et al. Patterning colloidal crystals by lift-up soft lithography [J]. Adv. Mater., 2004, 16: 81-84.
    [99] Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography [J]. Adv.Mater., 2007, 19: 2213-2217.
    [100]Ruchhoeft P, Colburn M, Choi B, et al. Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography [J]. J. Vac. Sci. Technol. B, 1999, 17: 2965-2969.
    [101] Paul K E, Prentiss M, Whitesides G M. Patterning spherical surfaces at the two-hundred- nanometer scale using soft lithography [J]. Adv. Funct. Mater., 2003,13: 259-263.
    
    [102] Yan X, Yao J M, Lu G, et al. Microcontact printing of colloidal crystals [J]. J. Am.Chem. Soc., 2004, 126: 10510-10511.
    [103] Zhang G, Wang D, Gu Z, et al. Two-dimensional non-close-packing arrays derived from self-assembly of biomineralized hydrogel spheres and their patterning applications [J]. Chem. Mater., 2005,17: 5268-5274.
    [104] Yan L, Wang K, Wu J, et al. Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching [J]. J. Phys. Chem. B, 2006, 110:11241-11246.
    [105] Cho Y, Yi G, Moon J, et al. Connected open structures from close-packed colloidal crystals by hyperthermal neutral beam etching[J]. Langmuir, 2005, 21:10770-10775.
    [106] Yan X, Yao J M, Lu G, et al. Fabrication of non-close-packed arrays of colloidal spheres by soft lithography [J]. J. Am. Chem. Soc., 2005, 127: 7688-7689.
    [107] Xie R, Sekiguchi T, Li D, et al. Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals [J]. J. Phys. Chem. B,2006, 10: 1107-1110.
    [108] Fleischhaker F, Arsenault C, Kitaev V, et al. Photochemically and thermally tunable planar defects in colloidal photonic crystals [J]. J. Am. Chem. Soc., 2005,127:9318-9319.
    [109] Yan Q, Zhou Z, Zhao X S. Introduction of three-dimensional extrinsic defects into colloidal photonic crystals [J]. Chem. Mater., 2005, 17: 3069-3071.
    [110]Vekris E, Kitaev V, Freymann G von, et al. Buried linear extrinsic defects in colloidal photonic crystals [J]. Adv. Mater., 2005, 17: 1269-1272.
    [111]Tétreault N, Arsenault A C, Mihi A, et al. Building tunable planar defects into photonic crystals using polyelectrolyte multilayers [J]. Adv. Mater., 2005,17:1912-1916.
    [112] Fleischhaker F, Arsenault A C, Wang Z, et al. Redox-tunable defects in colloidal photonic crystals [J]. Adv. Mater., 2005, 17: 2455-2458.
    [113] Leung K M, Liu Y F. Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media [J]. Phys. Rev. Lett., 1990, 65: 2646-2649.
    [114] Sozuer H S, Haus J W, Inguva R. Photonic bands: convergence problems with the plane-wave method [J]. Phys. Rev. B, 1992, 45: 13962-13965.
    [115] Haus J W, Sozuer H S, Inguva R. Photonic bands ellipsoidal dielectric atoms in an fcc lattice [J]. J. Mod. Opt., 1992, 39: 1991-2005.
    [116] Li Z Y, Wang J, Gu B Y. Creation of partial band gap in anisotropic photonic crystals [J]. Phys. Rev. B, 1998, 58: 3721-3729.
    [117] Matjevic E. Preparation and properties of uniform size colloids [J]. Chem. Mater.,1993, 5: 412-426.
    [118] Matjevic E. Uniform inorganic colloid dispersions: achievements and challenges [J]. Langmuir, 1994, 10:8-16.
    [119] Sugimoto T, Khan M M, Muramatsu A. Preparation of monodisperse peanut-type α-Fe_2O_3 particles from condensed ferric hydroxide gel [J]. Colloids Surf. A, 1993,70: 167-169.
    [120] Sugimoto T, Itoh H, Mochida T. Shape control of monodisperse hematite particles by organic additives in the gel-sol system [J]. J. Coll. Inter. Sci., 1998, 205:42-52.
    [121] Ocana M. Morales M P, Serna C J. The growth mechanism of α-Fe_2O_3 ellipsoidal particles in solution [J]. J. Coll. Inter. Sci, 1995, 171: 85-91.
    [122]Snoeks E, van Blaaderen A, van Dillen T, et al. Colloidal ellipsoids with continuously variable shape [J]. Adv. Mater., 2000, 12: 1511-1514.
    [123] Jiang P, Bertone J F, Colvin V L. A lost-wax approach to monodisperse colloids and their crystals [J]. Science, 2001,291: 453-457.
    [124] Velikov K P, Dillen T, Albert P, et al. Photonic crystals of shape-anisotropic colloidal particles [J]. Appl. Phys. Lett., 2002, 81: 838-840.
    [125] Lu Y, Yin Y, Li Z Y, et al. Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization [J]. Langmuir, 2002, 18:7722-7727.
    [126] Rong J, Yang Z. Opal gel templated synthesis of oblate titania opal materials [J].Chem. Commun., 2003, 1080-1081.
    [127] Kulinowski K M, Jiang P, Vaswani H, et al. Porous metals from colloidal templates[J]. Adv. Mater., 2000, 12: 833-838.
    [128] Stein A. Advances in microporous and mesoporous solids-highlights of recent progress [J]. Adv. Mater., 2003, 15: 763-775.
    [129] Tessier P M, Velev O D, Kalambur A T, et al. Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy [J]. J. Am Chem. Soc., 2000, 122(39): 9554-9555.
    [130] Bertone J F, Jiang P, Hwang K S, et al. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals [J]. Phys. Rev.Lett., 1999, 83: 300-303.
    [131] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures [J]. Phys. Rev. Lett., 1990, 65: 3152-3155.
    [132] Joannopoulos J D, Villeneuve P R, et al. Photonic crystals: putting a new twist on light [J]. Nature, 1997, 386:143-147.
    [133]Noda S, Chutinan A, Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure [J]. Nature, 2000, 407: 608-610.
    [134] Noda S, Tomoda K, Yamamoto N, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths [J]. Science, 2000,289: 604-606.
    [135] Lu, Y. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic [J]. Angew. Chem. Int. Ed., 2006,45: 7664-7667.
    [136] Henzie J, Kwak ES, Odom T W. Mesoscale metallic pyramids with nanoscale tips [J]. Nano Lett., 2005, 5: 1199-1202.
    [137] Shumaker-Parry JS, Rochholz H, Kreiter M. Fabrication of crescent-shaped optical antennas [J]. Adv. Mater., 2005, 17: 2131-2134.
    [138] Lu Y, Liu G L, Kim J, et al. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect [J]. Nano Lett., 2005, 5: 119-124.
    [139] Fasol G, Runge K. Selective electrodeposition of nanometer scale magnetic wires [J]. Appl. Phys. Lett., 1997, 70: 2467-2468.
    [140]Deckman HW, Dunsmuir JH. Applications of surface textures producedwith natural lithography [J]. J. Vac. Sci. Technol., 1983, B1:1109-1112.
    [141] Haynes C L, Duyne R P V. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. J. Phys. Chem. B, 2001,105:5599-5611.
    [142] Yang S M, Jang S G, Choi D G, et al. Nanomachining by colloidal lithography [J].Small, 2006, 2: 458-475.
    
    [143]Okuyama S, Matsushita SI, Fujishima A. Periodic Submicrocylinder diamond surfaces using two-dimensional fine particle arrays [J]. Langmuir, 2002, 18: 8282-8287.
    [144] Wang B, Zhao W, Chen A, et al. Formation of nanoimprinting mould through use of nanosphere lithography [J].J. Cryst. Growth, 2006,288: 200-204.
    [145] Finkel N H, Prevo B G, Velev O D, et al. Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry [J]. Anal. Chem., 2005,77: 1088-1095.
    [146] Haynes C L, McFarland A D, Smith M T, et al. Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing [J].J. Phys. Chem. B, 2002, 106: 1898-1902.
    [147] Moon J H, Jang S G, Lim J M, et al. Multiscale Nanopatterns Templated from Two- Dimensional Assemblies of Photoresist Particles [J]. Adv. Mater., 2005, 17: 2559-2562.
    [148] Yi D K, Kim D Y. Polymer nanosphere lithography: fabrication of an ordered trigonal polymeric nanostructure [J]. Chem. Comm., 2003, 982-983.
    [149] Zhang G, Wang D, Mohwald H. Ordered binary arrays of Au nanoparticles derived from colloidal lithography [J]. Nano Lett., 2007, 7: 127-132.
    [150] Zhang G, Wang D, Mohwald H. Fabrication of multiplex quasi-three-dimensional grids of one-dimensional nanostructures via stepwise colloidal lithography [J].Nano Lett., 2007, 7: 3410-3413.
    [151] Wang X D, Graugnard E, King J S, et al. Large-scale fabrication of ordered nanobowl arrays [J]. Nano Lett., 2004,4: 2223-2226.
    [152] Wang X D, Lao C, Graugnard E, et al. Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography [J]. Nano Lett. 2005, 5(9):1784-1788.
    [153] Tan B J Y, Sow C H, Koh T S, et al. Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J.Phys. Chem. B, 2005, 109: 11100-11109.
    [154] Whitney A V, Myers B D, Duyne R P V. Sub-100 run triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography [J]. Nano Lett., 2004,4: 1507-1511.
    [155] Choi D G, Kim S, Jang S G, et al. Nanopatterned magnetic metal via colloidal lithography with reactive ion etching [J].Chem. Mater., 2004, 16: 4208-4211.
    [156] Aizpurua J, Hanarp P, Sutherland D S, et al. Optical properties of gold nanorings [J]. Phys. Rev. Lett., 2003, 90: 057401.
    [157] Jang S G,Yu H K, Choi D G, et al. Controlled fabrication of hollow metal pillar arrays using colloidal masks [J]. Chem. Mater., 2006,18: 6103-6105.
    [158]Geissler M, McLellan J M, Chen J, et al. Side-by-side patterning of multiple alkanethiolate monolayers on gold by edge-spreading lithography [J]. Angew.Chem. Int. Ed., 2005, 44: 3596-3600.
    [159] Yan F, Goedel W A. The Preparation of mesoscopic rings in colloidal crystal templates [J]. Angew. Chem. Int. Ed., 2005,44: 2084-2088.
    [160] Liao W, Chen X, Chen J, et al. Templating water stains for nanolithography [J].Nano Lett., 2007, 7: 2452-2458.
    [161] Choi D G, Jang S G, Kim S, et al. Multifaceted and nanobored particle arrays sculpted using colloidal lithography [J]. Adv. Funct. Mater., 2006, 16: 33-40.
    [162] Choi D G, Kim S, Lee E, et al. Particle arrays with patterned pores by nanomachining with colloidal masks [J]. J. Am. Chem. Soc., 2005, 127:1636-1637.
    [163] Snoeks E, Blaaderen A van, Dillen T van, et al. Colloidal assemblies modified by ion irradiation [J]. Nucl. Instr. and Meth. Phys. Res. B, 2001,178: 62-68.
    [164] Tan B J Y, Sow C H, Lim K Y, et al. Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles [J]. J. Phys. Chem. B, 2004, 108:18575-18579.
    
    [165] Zhang G, Wang D, Mohwald H. Decoration of Microspheres with Gold Nanodots - Giving Colloidal Spheres Valences [J]. Angew. Chem. Int. Ed., 2005, 44:7767-7770.
    [166] Ozin G A, Yang S M. The race for the photonic chip: Colloidal crystal assembly in silicon wafers [J]. Adv. Funct. Mater., 2001, 11: 95-104.
    [167]Kosiorek A, Kandulski W, Glaczynska H, et al. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks [J].Small, 2005, 1: 439-444.
    [168] Hayashi S, Kumamoto Y, Suzuki T, et al. Imaging by polystyrene latex particles [J]. J. Coll. Inter. Sci., 1991, 144: 538-547.
    [169]Kanai T, Sawada T, Toyotama A, et al. Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality [J]. Adv. Funct. Mater., 2005,15: 25-29.
    [170]Burkert K, Neumann T, Wang J J, et al. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pin tool plotter [J]. Langmuir, 2007,23: 3478-3484.
    [171] Ko H Y, Park J, Shin H, et al. Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet [J]. Chem. Mater., 2004, 16: 4212-4215.
    [172] Park J, Moon J, Shin H, et al. Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing [J]. J. Coll. Inter. Sci., 2006,298: 713-719.
    [173] Wang D Y, Mohwald H. Template-directed colloidal self-assembly-the route to'top-down' nanochemical engineering [J]. J. Mater. Chem., 2004, 14: 459-468.
    [174] Koh S J. Strategies for controlled placement of nanoscale building blocks [J].Nanoscale Res. Lett., 2007, 2: 519-545.
    [175] Hynninen A P, Thijssen J H J, Vermolen E C M, et al. Selfassembly route for photonic crystals with a bandgap in the visible region [J]. Nat. Mater., 2007, 6:202-205.
    [176] Kitaev V, Ozin G A. Self-assembled surface patterns of binary colloidal crystals [J]. Adv. Mater., 2003, 15: 75-78.
    [177] Wang D Y, Mohwald H. Rapid fabrication of binary colloidal crystals by stepwise spin-coating [J]. Adv. Mater., 2004, 16: 244-247.
    [178] Kim M H, Im S H, Park O O. Fabrication and structural analysis of binary colloidal crystals with two-dimensional superlattices [J]. Adv. Mater., 2005, 17:2501-2505.
    [179]Leunissen M E, Christova C G, Hynninen A P, et al. Ionic colloidal crystals of oppositely charged particles [J]. Nature, 2005, 437: 235-240.
    [180] Zhou Z C, Yan Q F, Li Q, et al. Fabrication of binary colloidal crystals and non-closepacked structures by a sequential self-assembly method [J]. Langmuir,2007, 23: 1473-1477.
    [181] Wang J J, Li Q, Knoll W, et al. Preparation of multilayered trimodal colloid crystals and binary inverse opals [J]. J. Am. Chem. Soc., 2006, 128:15606-15607.
    [182]Mukhopadhyay R, Al-Hanbali O, Pillai S, et al. Ordering of binary polymeric nanoparticles on hydrophobic surfaces assembled from low volume fraction dispersions [J]. J. Am. Chem. Soc., 2007, 129: 13390-13391.
    [183] Jin C J, McLachlan M A, McComb D W, et al. Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals. Nano Lett., 2005, 5: 2646-50.
    [184] Jin C J, Li Z Y, McLachlan M A, et al. Optical properties of tetragonal photonic crystal synthesized via template-assisted selfassembly [J]. J. Appl. Phys., 2006, 99:116109.
    [l85]Dziomkina N V, Hempenius M A, Vancso G J. Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition onto patterned surfaces [J]. Adv. Mater., 2005, 17: 237-240.
    [186] Li J L, Zhang S A, Chen H H, et al. Three-dimensional non-close-packed arrays formed by soft PMMA spheres [J]. Colloids. Surf. A 2007,299: 54-57.
    [187] Liu Y, Xie R G, Liu X Y. Fine tuning of equilibriumdistance of two-dimensional colloidal assembly under an alternating electric field [J]. Appl. Phys. Lett., 2007,91:063105.
    [188] Maury P A, Reinhoudt D N, Huskens J. Assembly of nanoparticles on patterned surfaces by noncovalent interactions [J]. Curr. Opin. Coll. Inter. Sci., 2008, 13:74-80.
    [189]Denkov N D, Velev O D, Kralchevsky P A, et al. Mechanism of formation of 2-dimensional crystals from latex-particles on substrates [J] Langmuir, 1992, 8:3183-3190.
    [190] Blanford C F, Schroden R C, Al-Daous M, et al. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications [J]. Adv. Mater., 2001, 13: 26-29.
    [191] Yang S M, Ozin G A. Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers [J]. Chem. Comm., 2000,2507-2058.
    [192] Yang P, Deng T, Zhao D, et al. Hierarchically ordered oxides [J]. Science, 1998, 282: 2244-2246.
    [193]Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrication inside capillaries using multiphase laminar flow patterning [J]. Science, 1999, 286: 83-85.
    [194] Chen V Z, Hoffman J, Lee V Y, et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors [J]. Sciene, 1999,286: 1716-1719.
    [195] Li Z Y, Wang J, Gu B Y. Full band gap in fcc and bcc photonic band gaps structure: non-spherical atom [J]. J. Phys. Soc. Jpn., 1998, 67: 3288-3291.
    [196] Zhang T, Tuo X L, Yuan J. Large-scale self-organized growth of (001) surface-oriented colloidal crystals by edge meniscus effect [J]. Langmuir, 2009, 25: 820-824.
    [197] Deng Y , Liu C, Liu J, et al. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles [J]. J. Mater. Chem., 2008, 18:408-415.
    [198] Hu X L, Yu J C, Li Q. Synthesis of surface-functionalized t-Se microspheres via a green wet-chemical route [J]. J. Mater. Chem., 2006, 16: 748-751.
    [199] Chen X, Chen Z, Yang B, et al. Regular patterns generated by self-organization of ammonium-modified polymer nanospheres [J]. J. Colloid. Inter. Sci., 2004, 269: 79-83.
    [200] Chen X, Cui Z C, Chen Z, et al. The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface [J]. Polymer, 2002,43: 4147-4152.
    [201] St(?)ber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Coll. Inter. Sci., 1968,26: 62-69.
    [202] Nozar P, Didomenico D, Dionigi C, et al. Observation of multiple stop bands in photonic bandgap structures doped with organic dyes [J]. Adv. Mater., 2002, 14: 1023-1027.
    [203] Bates B, Xia Y. Fabrication and characterization of chirped 3d photonic crystals [J]. Adv. Mater., 2000, 12: 1329-1332.
    [204] Velev O D, JedeTA, LoboRF, etal. Porous silica via colloidal crystallization [J]. Nature, 1997, 389: 447-448.
    [205] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science, 1998, 281: 538-539.
    [206]Mercier L, Pinnavaia T. Acess in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J]. Adv. Mater, 1997, 9: 500-503.
    [207] Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports [J]. Science, 1997, 276: 923-926.
    [208]邬泉刷,李玉光.胶晶模板法制备二维有序大孔利料[J].化学通报,2004,67(9): 69-72.
    [209]Zhu G, Qiu S, Gao F, et al. Template-assisted self-assembly of macro-micro bifunctional porous materials [J]. Mater. Chem., 2001, 11: 1687-1693.
    [210]Sadakane M, Asanuma T, Kubo J, et al. Facile procedure to prepare three-dimensionaHy ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method [J]. Chem. Mater., 2005, 17:3546-3551.
    [211] Sorensen E M, Barry S J, Jung H, et al. Three-dimensionally ordered macroporous Li_4Ti_5O_I: effect of wall structure on electrochemical properties [J]. Chem. Mater., 2006, 18: 482-489.
    [212] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon crystal with a complete three-dimensional bandgap near 1.5 micrometers [J]. Nature,2000, 405: 437-440.
    [213] Lanata M, Cherehi M, Zappettini A, et al. Titania inverse opals for infrared optical applications [J]. Optical Mater, 2001, 17: 11-14.
    [214]Rodriguez I, Atienzar P, Ramiro-Manzano F, et al. Photonic crystals for applications in photoelectrochemical processes - Photoelectrochemical solar cells with inverse opal topology [J], Photo. Nanostru. Fund. Appl., 2005, 3: 148-154.
    [215] Veinot J G, Yan C H, Smith S M, et al. Fabrication and properties of organic light-emitting "nanodiode" arrays [J] Nano Lett., 2002, 2(4): 333-335.
    [216]Behl M, Seekamp J, Zankovych S, et al. Towards plastic electronics: patterning semiconducting polymers by nanoimprint lithography [J]. Adv. Mater., 2002, 14:588-591.
    [217] McAlpine M C, Friedman R S, Lieber C M. Nanoimprint lithography for hybrid plastic electronics [J]. Nano Lett., 2003, 3(4): 443-445.
    [218] Shi H Q, Tsai W B, Garrison M D, et al. Template-imprinted nanostructured surfaces for protein recognition [J]. Nature, 1999, 398: 593-597.
    [219] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293:1289-1292.
    [220] Aizenberg J, Black A J, Whitesides G M. Control of crystal nucleation by patterned self-assembled monolayers [J]. Nature, 1999, 398: 495-498.
    [221]Zhong Z Y, Gates B, Xia Y N. Soft lithographic approach to the fabrication of highly ordered 2D arrays of magnetic nanoparticles on the surfaces of silicon substrates [J]. Langmuir, 2000, 16: 10369-10375.
    [222] Xia Y N, Whitesides G M. Soft lithography [J]. Angew. Chem. Int. Ed., 1998, 37:550-575.
    [223] Rosa C D, Park C, Thomas, E L, et al. Microdomain patterns from directional eutectic solidification and epitaxy [J]. Nature, 2000, 405: 433-437.
    [224] Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295: 2418-2421.
    [225] Chou S Y, Keimel C, Gu J. Ultrafast and direct imprint of nanostructures in silicon.Nature, 2002, 417: 835-837.
    [226] Loo Y L, Willett R L, Baldwin K W, et al. Interfacial chemistries for nanoscale transfer printing [J]. J. Am. Chem. Soc., 2002, 124: 7654-7655.
    [227] Black A J, Paul E, Aizenberg, K J, et al. Patterning disorder in monolayer resists for the fabrication of sub-100 nm structures in silver, gold, silicon and aluminium [J]. J. Am. Chem. Soc., 1999,121: 8356-8365.
    [228] Kuo C, Shiu J, Cho Y, et al. Nanopillar arrays for nanoimprint lithography using polymer colloid masks [J]. Adv. Mater., 2003, 15: 1065-1068.
    [229] Sch(a|¨)ffer E, Harkema S, Roerdink M, et al. Thermomechanical lithography:Pattern replication using a temperature gradient driven instability [J]. Adv. Mater.,2003,15:514-517.
    [230] Hamann H F, Woods S I, Sun S H. Direct thermal patterning of self-assembled nanoparticles [J]. Nano Lett., 2003, 3: 1643-1645.
    [231] Wallraff G M, Hinsberg W D. Lithographic imaging techniques for the formation of nanoscopic features. Chem. Rev., 1999, 99: 1801-1822.
    [232] Vlasov Y A, Bo X, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals [J]. Nature, 2001,414: 289-293.
    [233] Xia Y N. Photonic crystals [J]. Adv. Mater., 2001, 13: 369.
    [234] Fischer U C, Zingsheim H P. Submicroscopic pattern replication with visible light [J]. J. Vac. Sci. Technol., 1981, 19: 881-885.
    [235] Sun F Q, Cai W P, Li Y, et al. Morphology control and transferability of ordered through-pore arrays based on electrodeposition and colloidal monolayers [J]. Adv.Mater., 2004, 16: 1116-1121.
    [236] Sun F Q, Cai WP, LiY, et al. Morphology-controlled growth of large-area two-dimensional ordered pore arrays [J]. Adv. Funct. Mater., 2004,14: 283-288.
    [237] Hicks E M, Lyandres O, Paige Hall W, et al. Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography [J]. J.Phys. Chem. C, 2007, 111: 4116-4124.
    [238] Jiang P. Surface-templated nanostructured films with two-dimensional ordered arrays of voids [J]. Angew. Chem. Int. Ed., 2004,43: 5625-5628.
    [239] Chen X, Sun Z Q, Zheng L L, et al. Colloidal-crystal-assisted imprint for mesoscopic structured arrays and hierarchical patterns [J]. Adv. Mater., 2004, 16:1632-1636.
    [240] Chen X, Chen Z M, Fu N, et al. Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals [J]. Adv. Mater., 2003, 15: 1413-1417.
    [241] Sun Z Q, Yang B. Fabricating colloidal crystals and construction of ordered nanostructures [J]. Nanoscale research letters, 2006, 1: 46-56.
    [242] Sun Z Q, Li Y F, Wang Y F, et al. Three-dimensional colloidal crystal-assisted lithography for two-dimensional patterned arrays [J]. Langmuir, 2007, 23:10725-10731.
    [243] Sun Z Q, Chen X, Zhang J H, et al. Non-spherical colloidal crystals fabricated by thermal-pressing colloidal crystal chips [J]. Langmuir, 2005, 21: 8987-8991.
    [244] Büttiker M, Imry Y, Landauer R. Josephson behavior in small normal one-dimensional rings [J]. Phys. Lett., 1983, 96A: 365-367.
    [245] Cheung H F, Gefen Y, Riedel E K, et al. Persistent currents in small one-dimensional metal rings [J].Phys. Rev., 1988, B37:6050.
    [246] Ievy L P, Dolan G, Dunsmuir J. Magnetization of mesoscopic copper rings:Evidence for persistent currents [J]. Phys. Rev. Lett., 1990, 64(17): 2074-2077.
    [247] Chandrasekhar V, Webb R A, Brady M J, et al. Magnetic response of a single isolated gold loop [J]. Phys.Rev.Lett., 1991, 67:3578-3581.
    [248] Mailly D, Chapelier C, Benoit A. Experimental observation of persistent currents in GaAs-AlGaAs single loop [J]. Phys. Rev. Lett., 1993, 70: 2020-2023.
    [249] Winzer M, Kleiber M, Dix N, et al. Fabrication of nano-dot and nano-ring-arrays by nanosphere lithography [J]. Appl. Phys. A, 1996, 63: 617-619.
    [250] Larsson E M, Alegret J M, Kall M, et al. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors [J]. Nano Lett., 2007, 7(5): 1256-1263.
    [251] Li S, Peyrade D, Natali M, et al. Flux closure structures in cobalt rings [J]. Phys.Rev. Lett., 2001, 86: 1102-1105.
    [252]Nielsch K, Hertel R, Wehrspohn R B, et al. Switching behavior of single nanowires inside dense nickel nanowire arrays [J]. IEEE Trans. Magnet., 2002, 38:2571-2573.
    [253] Zhu J, Zheng Y, Prinz G. Ultrahigh density vertical magnetoresistive random acess memory [J]. J. Appl. Phys., 2000, 87: 6668-6673.
    [254] Warburton R, Sch(a|¨)flein C, Haft D, et al. Optical emission from a charge-tunable quantum ring [J]. Nature, 2000,405: 926-929.
    [255] Jariwala E M Q, Mohanty P, Ketchen M B, et al. Diamagnetic persistent current in diffusive normal-metal rings [J]. Phys. Rev. Lett., 2001, 86: 1594-1597.
    [256] Torres-Heredia J J, López-Urías F, Munoz-Sandoval E. Micromagnetic simulations of 200-nm-diameter cobalt nanorings using a Reuleaux triangular geometry [J]. J. Magn. Magn. Mater., 2006, 305: 133-140.
    [257] Yoo Y G, Kl(a|¨)ui M, Vaz C A F, et al. Switching field phase diagram of Co nanoring magnets [J]. Appl. Phys. Lett., 2003, 82: 2470-2472.
    [258] Granados D, García J M. In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy [J]. Appl. Phys. Lett., 2003, 82: 2401-2403.
    [259] Voigtl(a|¨)nder B, Kawamura M, Paul N, et al. Fabrication of Si/Ge nanoring structures by MBE [J]. Thin Solid Films, 2004,464/465: 185-189.
    [260] Xu C Y, Liu Y Z, Zhen L, et al. Disket-nanorings of K_2Ti_6O_(13) formed by self-spiraling of a nanobelt [J]. J. Phys. Chem. C, 2008, 112: 7547-7551.
    [261] Yuan Z H, Zhou W, Duan Y Q, et al. A simple approach for large-area fabrication of Ag nanorings [J]. Nanotechnol., 2008,19: 075608.
    [262] Sun F Q, Yu J C, Wang X C. Construction of size-controllable hierarchical nanoporous TiO2 ring Arrays and their modifications [J]. Chem. Mater., 2006, 18:3774-3779.
    [263] Zhu F Q, Fan D, Zhu X, et al. Ultrahigh-density Arrays of ferromagnetic nanorings on macroscopic areas [J]. Adv. Mater., 2004, 16: 2155-2159.
    [264] Hobbs K L, Larson P R, Lian G D, et al. Fabrication of nanoring arrays by sputter redeposition using porous alumina templates [J]. Nano Lett., 2004, 4: 167-171.
    [265] Ji R, Lee W, Scholz R, et al. Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition [J]. Adv.Mater., 2006, 18:2593-2596.
    [266] Zinchenko A A, Yoshikawa K, Baigl D. DNA-templated silver nanorings [J]. Adv.Mater., 2005, 17: 2820-2823.
    [267]Kim C, Park J B, Jee H G, et al. Formation of Au nanostructures through an alumina mask by laser-assisted deposition [J]. J. Nanosci. Nanotechnol., 2005, 5:306-312.
    [268] Zhao S, Roberge H, Yelon A, et al. New application of AAO template: a mold for nanoring and nanocone arrays [J]. J. Am. Chem.Soc., 2006, 128: 12352-12353.
    [269] Wang S, Yu G J, Gong J L, et al. Large-area fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates [J]. Nanotechnology,2006, 17: 1594-1598.
    [270] McLellan J M, Geissler M, Xia Y N. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings [J]. J. Am. Chem.Soc., 2004,126: 10830-10831.
    [271] Zheng Y B, Wang S J, Huan A C H, et al, Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors [J]. J. Non-Cryst. Solids, 2006, 352:2532-2535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700