用户名: 密码: 验证码:
几种不同基质硼酸亲和整体柱的制备及其在糖蛋白分离富集中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作的主要内容是几种有机聚合物基质及有机-无机杂化基质硼酸亲和整体柱的制备,及其在糖蛋白的分离和富集中的应用。论文内容包括如下五部分:
     第一部分:绪论。综述了硼酸亲和技术以及整体柱技术的发展情况及其面临的挑战;对结合两者优势的硼酸亲和整体柱的发展现状和制备技术进行了综述。此外,还对本论文的研究意义、研究内容以及课题的创新性进行了简要的介绍。
     第二部分:以金属有机凝胶为致孔模板的大孔型硼酸亲和整体柱的制备及其应用。以金属有机凝胶(MOGs)作为新颖的致孔模板,3-丙烯酰胺基苯硼酸(AAPBA)作为硼酸配基,乙二醇二甲基丙烯酸酯(EDMA)作为交联剂,在不锈钢柱内原位聚合制备了大孔型有机基质的poly(AAPBA-co-EDMA)亲和整体柱。以MOGs致大孔的新颖方法比传统的致孔方法更加简易方便。通过系统地优化反应条件,包括单体比例、反应温度、MOGs用量,制备得到具有通透大孔结构的整体柱骨架,并结合扫描电镜、傅立叶红外光谱、压汞仪等表征手段对整体柱的形貌、孔径和性能进行评价。将poly(AAPBA-co-EDMA)亲和整体柱应用于对糖蛋白的分离和富集,考察糖蛋白辣根过氧化物酶(HRP)和转铁蛋白(TF)在整体柱上的色谱保留行为,结果表明该大孔型有机硼酸亲和整体柱对糖蛋白表现出良好的亲和性能和动态吸附容量。并将其成功地应用于加标牛血清样品中糖蛋白TF的分离和富集。
     第三部分:采用"One-Pot"法合成有机-无机杂化硼酸亲和整体柱并将其用于中性条件下分离富集糖蛋白。本工作四甲氧基硅烷(TMOS)和乙烯基三甲氧基硅烷(VTMS)作为硅烷前驱体,3-丙烯酰胺基苯硼酸(AAPBA)作为有机单体,采用“One-Pot"法制备一种新型的有机-无机杂化基质的硼酸亲和整体柱,制备过程简单。对AAPBA-硅胶杂化硼酸亲和整体柱的制备条件进行系统的优化,可以得到大孔均匀分布、通透性能良好的整体柱骨架结构。实验中对该硼酸亲和整体柱的骨架形貌、渗透性、动态吸附容量和亲和色谱保留行为等进行表征和评价。由于硅胶基质的引入,AAPBA-(?)胶杂化硼酸亲和整体柱表现出良好的亲水性能,无需在流动相中加入有机溶剂,这样的色谱分析条件有利于生物分子的分析。另外硼酸配基AAPBA中羰基氧原子与硼原子之间的配位作用使其在中性条件下即可与顺式二醇作用,因此该硼酸亲和整体柱在中性条件下即对含有顺式二醇的生物小分子和糖蛋白表现出良好的特异性亲和作用,并被成功的应用于实际样品的分析中。
     第四部分:基于Click Chemistry修饰的新型有机-无机杂化硼酸亲和整体柱的制备及其在糖蛋白分离中的应用。本工作发展了一种新颖的制备有机-无机杂化硼酸亲和整体柱的方法。首先通过"Single-Step"法合成带有叠氮活性基团的杂化整体柱骨架,随后利用叠氮杂化整体柱与炔基硼酸配基之间的铜(Ⅰ)催化叠氮-炔环加成反应(CuAAC)制备“Clicked "有机-无机杂化硼酸亲和整体杜。结合元素分析、红外光谱、扫描电镜等多种常规手段对制备的杂化硼酸亲和整体柱进行系统的表征和评价。“Clicked"有机-无机杂化硼酸亲和整体柱在中性条件下对核苷和糖蛋白表现出良好的亲和性能,pH7.0时糖蛋白卵清白蛋白的动态吸附容量为2.36mg·g-1。该整体柱被成功地应用于从实际样品蛋清中分离富集卵清白蛋白和卵转铁蛋白,具有实用性
     第五部分:基于thiol-ene点击化学修饰的有机-无机杂化硼酸亲和整体柱的制备及应用。本工作首先采用溶胶-凝胶法,以四甲]氧基硅烷硅烷(TMOS)和巯丙基三甲氧基硅烷(MPTMS)作为反应前驱体制备巯硅胶整体柱。然后利用巯基-烯之间的点击反应在整体柱上修饰硼配基3-丙烯酰胺基苯硼酸(AAPBA),制成AAPBA-硅胶杂化亲和整体柱。制备过程简单、安全。优化了硼酸亲和整体柱的制备条件,并以扫描电镜、红外光谱等多种手段对整体柱形貌和机械性能进行表征。AAPBA硅胶杂化亲和整体柱在中性条件下对含有顺式二醇的生物小分子表现出良好的特异性亲和能力,并被成功地应用于对糖蛋白的分离分析。点击化学的修饰方法新颖、可靠,可以用于制备多种不同类型的硼酸亲和整体柱,具有较大的应用前景。
The thesis is involved in the preparation of boronate affinity monolith based on different matrix,and their applicationsfor specific capture of glycoproteins.It consists of five chapters.
     In chapter one, the general introduction include the development of boronate affinity technique and monolithic column, and the challenges during the researches. And the developing history and the preparation methods of boronate affinity monolith were introducted. Additionally, the aim, significance and innovation of this thesis were also presented.
     In chapter two, synthesis and application of a macroporous boronate affinity monolith using a metal-organic gel as a porogenic template for the specific capture of glycoproteins. Amacroporous boronate affinity monolithic column was prepared using3-acrylamidophenylboronic acid (AAPBA) as organic monomer,ethylene dimethacrylate (EDMA)as crosslinker, and metal-organic gels (MOGs) as porogenic template.The poly(AAPBA-co-EDMA) monoliths were synthesized in stainless steel columns by in-situ polymerization. In contrast to traditional porogenic methods,the new explored application of MOGs has proven to be a more convenient method for the formation of macropores. To fabricate the macroporous structure with uniformed open-channel network, the preparation conditions were systematically investigated including the ratio of monomers, reaction temperature and concentration of the MOGs. The prepared macroporous monoliths were characterizedby scanning electron micrographic (SEM), Fourier-transform infrared (FTIR) and mercury intrusion porosimeter, and applied to specific capture of cis-diol containing molecules.Horseradish peroxidase (HRP) and transferrin (TF) were chosen as test glycoproteins, and the chromatographic analysis demonstrated that the macroporous boronate affinity monoliths exhibited highspecificity and better dynamic binding capacity toward glycoproteins. The resulted poly(AAPBA-co-EDMA) affinity monolith was successfullyapplied to specifical capture of TF from a bovine serum sample.
     In chapter three, a boronate-silica hybrid affinity monolith was prepared for specific capture of glycoproteins at neutral pH condition. The monolith was synthesized via a facile "one-pot" procedure in a stainless steel column by concurrently mixing hydrolyzed alkoxysilanes tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS), organic monomer3-acrylamidophenylboronic acid (AAPBA) and initiator2,2'-azobisisobutyronitrile (AIBN) together. The polycondensation of alkoxysilanes and copolymerization of organic monomer and vinyl-silica monolith were carried out successively by reacting at different temperature. After optimizing the preparation conditions, the resulted hybrid affinity monolith was systematically characterized and exhibited excellent affinity to both cis-diol-containing small molecules and glycoproteins at neutral and physiological pH, including adenosine, horseradish peroxidase, transferrin and ovalbumin. The binding capacity of ovalbumin on monolith was measured to be2.5mg·g-1at pH7.0. Furthermore, the hybrid affinity monolith was applied to the separation of transferrin from bovine serum sample at a physiological condition. Good repeatability was obtained and the relative standard deviations (RSDs) of retention time was1.15%and4.77%(n=5) for run-to-run and column-to-column, respectively.
     In chapter four, anovel strategy for preparation of hybridboronate affinity monolith was developed by utilizing Cu(I)-catalyzed1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) of azide-functionalized monolithic intermediate andalkyne-boronate ligand.A "Single-Step" procedurewas first employed to synthesize azide-functionalized hybrid monolith to provide reactive sites for click chemistry,then the alkyne-boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via in-column CuAAC reaction under mild conditions to form "Clicked"hybrid boronate affinity monolith. The prepared boronate affinity monolith was characterized and evaluated by elemental analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy. The resulted hybrid boronate affinity monolith exhibited excellent specificity toward nucleosides and glycoproteins under neutral conditions. The binding capacity of glycoprotein ovalbumin at pH7.0was measured to be2.36mg·g-1. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.
     In chapter five, a novel strategy for preparation of organic-inorganic hybrid boronate affinity monolith was developed by thiol-eneclick chemistry. A mercaptopropyl-modified silica monolith was first synthesized via sol-gel processby in situ co-condensation using tetramethoxysilane (TMOS) and3-mercaptopropyltrimethoxysilane (MPTMS) as precusors, then the3-acrylamidophenylboronic acid (AAPBA)was covalently immobilized on the hybrid monolith via the thiol-eneclick reaction to form AAPBA-silica hybrid affinity monolith. The reaction conditions for the preparation of AAPBA-silica hybrid affinity monolith were carefully optimized, including the ratio of TMOS to MPTMS, the content of poly(ethylene glycol)(PEG) and methanol. The morphology and mechanical stability of the boronate affinity monolith was characterized and evaluated by scanning electron microscopy and fourier-transform infrared spectroscopy. The obtained boronate affinity hybrid monolith exhibited excellent specificity toward cis-diols containing nucleosides under neutral conditions, and was further applied to specific capture of the glycoproteins ovalbumin and horseradish peroxidase.
引文
[1]Chalkley R J, Bradshaw R A, Medzihradszky K F, et al. Protein PTMs:post-translational modifications or pesky trouble makers? J Mass Spectrom,2010,45:1095-1097.
    [2]Mann M, Jensen O N. Proteomic analysis of post-translational modifications. Nat Biotechnol, 2003,21:255-261.
    [3]Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol,2006,24:1241-1252.
    [4]Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PORT database. Biochim Acta,1999,1473:4-8.
    [5]Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS, 2010,14:419-436.
    [6]Geyer, R, Geyer H. Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta,2006,1764:1853-1869.
    [7]Wang Y, Ao X, Vuong H, et al. Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res,2008,7:4313-4325.
    [8]Lau K S, Dennis J W. N-Glycans in cancer progression. Glycobiology,2008,18:750-760.
    [9]Cao J, Shen CP, Wang H, et al. Identification of N-glycosylation sites on secreted proteins of human hepatocellularcarcinoma cellswithacomplementary proteomicsapproach.J Proteome Res,2009,8:662-672.
    [10]Tian Y, Zhou Y, Elliott S, et al.Solid-phase extraction of N-linked glycopeptides. Nat Protoc, 2007,2:334-339.
    [11]Tanaka T, Matsunage T. Detection of HbAlc by boronate affinity immunoassay using bacterial magnetic particles. Biosen Bioel,2001,16:1089-1094.
    [12]Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDlmultiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem,2004,76: 6560-6565.
    [13]Sturiale L, Barone R, Palmigiano A, et al. Multiplexed glycoproteomic analysis ofglycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics,2008,8:3822-3832.
    [14]Alvarez-Manilla G, Atwood J, GuoY, et al. Tools for glycoproteomic analysis:size exclusion chromatography facilitatesidentification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res,2006,5:701-708.
    [15]Liu S, Bakovic L, Chen A. Specific binding of glycoproteins with poly(aniline boronic acid) thin film. J Electroanal Chem,2006,591:210-216.
    [16]Preinerstorfer B, Lammerhofer M, Lindner W. Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci,2009,32:1673-1685.
    [17]Zhang Q, Tang N, Schepmoes AA, et al. Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res,2008,7: 2025-2032.
    [18]Tuytten R, Lemiere F, Van Dongen W, et al. Development of an on-line SPE-LC-ESI-MS method for urinary nucleosides:hyphenation of aprotic boronic acid chromatography with hydrophilic interaction LC-ESI-MS. Anal Chem,2008,80:1263-1271.
    [19]LiF L, Zhao X J, Wang W Z,et al. Synthesis of silica-based benzeneboronic acid affinity materials and application as pre-column in coupled-column high-performance liquid chromatography. Anal Chim Acta,2006,580:181-187.
    [20]Xu YW, Zhang LJ, Lu HJ, et al. On-plate enrichment of glycopeptides by using boronic acid functionalized gold-coated Si wafer. Proteomics,2010,10:1079-1086.
    [21]Li H Y, Liu Z. Recent advances in monolithic column-based boronate-affinity chromatography. Trend in Analytical Chemistry,2012,37:148-161.
    [22]Zhou W, Yao N, Yao GP, et al.Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem Commun,2008,5577-5579.
    [23]Tang J, Liu Y, Yin P, et al.Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics,2010,10:2000-2014.
    [24]Sparbier K, Koch S, Kessler I, et al.Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech,2005,16: 407-413.
    [25]Lin ZA, Zheng JN, Lin F, et al. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. J Mater Chem,2011,21: 518-524.
    [26]Liang L, Liu Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun,2011,47: 2255-2257.
    [27]Zhang XH, He XW, Chen LX, et al.Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem,2012,22: 16520-16526.
    [28]Li X B, Pennington J, Stobaugh J F, et al. Synthesis of sulfonamide-and sulfonyl-phenylboronic acid modified silica phases for boronate affinity chromatography at physiological pH. Anal Biochem,2008,372:227-236.
    [29]Lowe E A, Lu M, Wang A, et al. Stationary phase-based two-dimensional chromatography combining both covalent and noncovalent interactions on a single HPLC column. J Sep Sci, 2006,29:959-965.
    [30]Xu YW, Wu ZX, Zhang LJ, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica.Anal Chem,2009,81; 503-508.
    [31]Akparov V, Stepanov V. Phenylboronic acid as a ligand for biospecific chromatography of serine proteinases. J Chromatogr,1978,155:329-336.
    [32]Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, et al. J Chromatogr A,2010,1217: 3635-3641.
    [33]Chen M, Lu Y, Ma Q, et al. Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins.Analyst,2009,134:2158-2164.
    [34]Lee D P. Chromatographic evaluation of large-pore and non-porous polymeric reversed phases. JChromatogr,1988,443:143-153.
    [35]Hanson M, Unger K K. Evaluation of advanced silica packings, Part Ⅱ:Application of nonporoussilica particles in HPLC. LC-GC,1997,15:364-368.
    [36]Regnier F E. Perfusion chromatography. Nature,1991,350:634-635.
    [37]Afeyan N B, Fulton S P, Regnier F E. Perfusion chromatography packing materials for proteins andpeptides. J Chromatogr A,1991,544:267-279.
    [38]Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A,2002,965:35-49.
    [39]Svec F, Huber C G. Monolithic Materials:Promises, Challenges, Achievements. Anal Chem, 2006,78:2100-2107.
    [40]Smith N W, Jiang Z J. Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A,2008,1184:416-440.
    [41]Svec F. Porous polymer monoliths:Amazingly wide variety of techniques enabling their preparation. J Chromatogr A,2010,1217:902-924.
    [42]Aoki H, Tanaka N, Kubo T, et al. Polymer-based monolithic columns in capillary format tailored by using controlled in situ polymerization. J Sep Sci,2009,32:341-358.
    [43]Peters E C, Svec F, Frechet J M J. Rigid macroporous polymer monoliths. Adv Mater,1999, 11:1169-1181.
    [44]Mould D L, Synge R L M. Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst,1952,77:964-969.
    [45]Mould D L, Synge R L M. Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membrances. Biochem J,1954,58:571-585.
    [46]Kubin M, Spacek P, Chromecek R. Gel permeation chromatography on porous poly (ethyleneglycol methacrylate). Collect Czech Chem Commun,1967,32:3881-3887.
    [47]Ross W D, Jefferson R T.In situ-formed open-pore polyurethane as chromatography supports. J Chromatogr Sci,1970,8:386-389.
    [48]Hileman F D, Sievers R E, Ross W D, et al. In situ preparation and evaluation of open porepolyurethane chromatographic columns. Anal Chem,1973,45:1126-1130.
    [49]Hjerten S, Liao J L, Zhang R. High-performance liquid chromatography on continuous polymer beds. J Chromatogr,1989,473:273-275.
    [50]Hjerten S. Continuous beds:high-resolving, cost-effective chromatographic matrices. Nature, 1992,356:810-811.
    [51]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem,1992,64:820-822.
    [52]Tennikova T B, Bleha M, Svec F, et al. High-performance membrane chromatography of proteins, a novel method to protein separation. J Chromatogr A,1991,555:97-107.
    [53]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.1. Gel formation behavior and effect of solvent composition. J Non-Cryst Solids,1992,139: 1-13.
    [54]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.2. Effects of molecular-weight and temperature. J Non-Cryst Solids,1992,139:14-24.
    [55]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.3. Effect of catalytic condition. J Non-Cryst Solids,1992,142:36-44.
    [56]Nakanishi K, Soga N. Phase-Separation in silica sol-gel system containing polyacrylic-acid. 4. Effect Of Chemical Additives. J Non-Cryst Solids,1992,142:45-54.
    [57]Minakuchi H, Nakanishi K, Tanaka N, et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem,1996,68: 3498-3501.
    [58]Fields S M. Silica xerogel as a continuous column support for high-performance liquid chromatography. Anal Chem,1996,68,2709-2712.
    [59]Li Y, Chen Y, Ciuparu D, et al. Incorporation of single-wall carbon nanotubes into an organicpolymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. AnalChem,2005,77:1398-1406.
    [60]Legido-Quigley C,MarlinND,MelinV,et al.Advances in capillary electrochromatographyand micro-high performance liquid chromatography monolithic columns for separation science.Electrophoresis,2003,24:917-944.
    [61]Jin W H, Fu H J, Huang X D, et al. Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillaryelectrochromatography. Electrophoresis,2003,24:3172-3180.
    [62]Fujimoto C, Fujise Y, Matsuzawa E. Fritless packed columns for capillary electrochromatography:Separation of uncharged compounds on hydrophobic hydrogels. Anal Chem,1996,68:2753-2757.
    [63]FreitagR. Comparison of the chromatographic behavior of monolithic capillary columns incapillary electrochromatography and nano-high-performance liquid chromatography.JChromatogr A,2004,1033:267-273.
    [64]Koide T, Ueno K. Enantiomeric separations by capillary electrochromatography with chargedpolyacrylamide gels incorporating chiral selectors. Anal Sci,2000,16:1065-1070.
    [65]Zhang S H, Huang X, Horvath C, et al. Capillary electrochromatography of proteins and peptideswith a cationic acrylic monolith. J Chromatogr A,2000,887:465-477.
    [66]EeltinkS,RozingGP,SchoenmakersPJ,et al.Practical aspects of usingmethacrylate-ester-based monolithic columns in capillary electrochromatography. J Chromatogr A, 2006,1109:74-79.
    [67]Peters E C, Petro M, Frechet J M J, et al. Molded rigid polymer monoliths as separation media forcapillary electrochromatography.2. Effect of chromatographic conditions on the separation. AnalChem,1998,70:2296-2302.
    [68]Sun X L, He X W, Zhang Y K, et al. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta,2009,79:926-934.
    [69]Sun X L, He J, Cai G R, et al. Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples. J Sep Sci,2010,33:3786-3793.
    [70]邹汉法,吴明火, 王方军等。整体柱制备技术的新进展及其在蛋白质组学中应用。色谱,2009,27:526-536.
    [71]Peters E C, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography.1. Fine Control of Porous Properties and Surface Chemistry. Anal Chem,1998,70:2288-2295.
    [72]Dong J, Ou J J, Dong X L, et al. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography. J Sep Sci,2007,30:2986-2992.
    [73]Kubo T, Kimura N, Hosoya K, et al. Novel polymer monolith prepared from a water-soluble crosslinking agent. J Polym Sci, Polym Chem,2007,45:3811-3817.
    [74]Courtois J, Bystrom E, Irgum K, et al. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer,2006,47:2603-2611.
    [75]Wei Q, James S L.A metal-organic gel used as a template for porous organic polymer. Chem Commun,2005,1555-1556.
    [76]Yin J F, Yang G L, Wang H L, et al. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Chem Commun,2007,4614-4616.
    [77]Yang F, Lin Z A, He X W, et al. Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for specific capture of glycoproteins. J Chromatogr A,2011,1218:9194-9201.
    [78]鲁彦,郭建宇,张祥民。一种反相毛细管液相色谱整体柱的制备方法及其色谱性能研究。分析化学,2006,34:1463-1466.
    [79]Tanaka N, Nogayama H, Kobayashi H, et al. Monolithic silica columns for HPLC, micro-HPLC, and CEC.J High Resol Chromatogr,2000,23:111-116.
    [80]Fujimoto C. Preparation of fritless packed silica columns for capillary electrochromatography. J High Resol Chromatogr,2000,23:89-92.
    [81]NakanishiK, SogaN. Phase separation in gelling silica-organic polymer solution:systems containing poly[sodium styrcnesulfonate]. JAmCeram Soc,1991,74:2518-2530.
    [82]SoonthorntantikulW, Leepipatpiboon N, IkegamiT, et al. Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography.J Chromatogr A,2009,1216:5868-5874.
    [83]Miyamoto K, Hara T, Kobayashi H, et al. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal Chem,2008,80:8741-8750.
    [84]Ikegami T, Hare T, Kimura H, et al.Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. J Chromatogr A,2006,1106:112-117.
    [85]Miyazaki S M S, Takahashi M, Ohira M, et al.Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. J Chromatogr A,2011,1218: 1988-1994.
    [86]Hayes JD, Malik A. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.Anal Chem,2001,73:987-996.
    [87]Lu Z L, Zhang P F, Jia L. Preparation of chitosan functionalized monolithic silica column for hydrophilic interaction liquid chromatography. J Chromatogr A,2010,1217:4958-4964.
    [88]Dulay MT, Quirino J P, Bennett B D, et al. Photopolymerized Sol-Gel Monoliths for CapillaryElectrochromatography. Anal Chem,2001,73:3921-3926.
    [89]ChenZ L, OzawaH, UchiyamaK, et al.Cyclodextrin-modified monolithic columns for resolving dansyl amino acid enantiomers and positional isomers by capillary electrochromatography. Electroporesis,2003,24:2550-2558.
    [90]HayesJD, MalikA. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. AnalChem,2000,72:4090-4099.
    [91]Ma JF, Liang Z, Qiao XQ, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. AnalChem,2008,80:2949-2956.
    [92]Hou CY, Mao JF, Tao DY, et ak.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. JProteome Res,2010,9:4093-4101.
    [93]Wu MH, Wu RA, Zhang ZB, et al. Preparation and application of organic-silica hybrid monolithic capillary columns. Electrophoresis,2011,32:105-115.
    [94]梁玉,张丽华,张玉奎。新型整体材料的制备及其在蛋白质组学中的应用。色谱,2011,29: 805-815.
    [95]Ou J J, Lin H, Zhang Z B, et al. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis,2013,34:126-140.
    [96]Colon H, Zhang X, Murphy J K, et al.Allyl-functionalized hybrid silica monolitha. Chem Commun,2005,22:2826-2828.
    [97]Yan L J, Zhang Q H, Zhang H, et al.Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. J Chromatogr A, 2004,1046:255-264.
    [98]ZhengM M, Lin B, Feng Y Q.Hybrid organic inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography. J Chromatogr A,2007,1164:48-55.
    [99]Tian Y, Zhang L F, Zeng Z R, et al.Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29:960-970.
    [100]Yan L J, Zhang Q H, Feng Y Q, et al.Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography. J Chromatogr A,2006,1121:92-98.
    [101]Yan L J, Zhang Q H, Zhang W B, et al.Hybrid organic-inorganic phenyl monolithic columnfor capillary electrochromatography. Electrophoresis,2005,26:2935-2941.
    [102]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.
    [103]Wu M H, Wu R A, Wang F J, et al. "One-Pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem, 2009,81:3529-3536.
    [104]Dong MM, Wu MH, Wang FJ, et al. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem,2010,82:2907-2915.
    [105]Lin H,Ou J J,Zhang Z B,et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "One-Pot" approach for hydrophilic-interaction liquid chromatography (HILIC).Anal Chem,2012,84:2721-2728.
    [106]Zhang Z B,Wu M H,Wu R A,et al. Preparation of perphenylcarbamoylated β-Cyclodextrin-silica hybrid monolithic column with "One-Pot" approach for enantioseparation by capillary liquid chromatography. Anal Chem,2011,83:3616-3622.
    [107]Zhang Z B,Lin H,Ou J J,et al.Preparation of phenyl-silica hybrid monolithic column with "One-Pot" process for capillary liquid chromatography. J Chromatogr A,2012,1228: 263-269.
    [108]Xu H R, Xu Z D, Yang L M, et al. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci,2011,34:2314-2322.
    [109]Wu M H, Wu R A, Li R B, et al.Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns. Anal Chem,2010,82: 5447-5454.
    [110]Svec F, Frechet J M J. Kinetic control of pore formation in macroporous polymers. Chem Mater,1995,7:707-715.
    [111]Zhang Q, Tang N, Brock J W C, et al.Enrichment and analysis of nonenzymatically glycated peptides:boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J Proteome Res,2007,6:2323-2330.
    [112]Potter O G, Breadmore M C, Hilder E R. Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst,2006,131:1094-1096.
    [113]Ren LB, Liu Z, Dong MM, et al. Synthesis and characterization of a new boronate affinity monolithic capillary forspecific capture of cis-diol-containing compounds. JChromatogr A,2009,1216:4768-4774.
    [114]Ren LB, Liu YC, Dong MM, et al. Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J Chromatogr A.2009,1216:8421-8425.
    [115]Lin ZA,Pan JL, Lin Y, et al. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography.Analyst,2011,136:3281-3288.
    [116]Liu YC, Ren LB, Liu Z. A unique boronic acid functionalized monolithiccapillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun, 2011,47:5067-5069.
    [117]Ren L B, Liu Z, Liu Y C, et al. Ring-Opening polymerization with synergistic co-monomers:New access to boronate functionalized polymeric monolith for specific capture of cis-diol-containing biomolecules under neutral pH condition. Angew Chem Int Ed,2009,48:6704-6707.
    [118]Liu Y C, Lu Y, Liu Z. Restricted access boronate affinity porous monolith as a protein A mimetic for specific capture of immunoglobulin G. Chem Sci,2012,3:1467-1471.
    [119]Li HY, Liu YC,Liu J, et al. A Wulff-type boronate for affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun,2011,47,8169-8171.
    [120]Li HY, Wang HY, Liu YC, et al.A benzoboroxole-functionnalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun,2012,48:4115-4117.
    [121]刘云春.苯硼酸功能化整体柱的制备、应川及非常规作用机理研究:[博士学位论文].南京:南京大学,2012.
    [122]Liu XC, Scouten WH.New ligands for boronate affinity chromatography. J Chromatogr A, 1994,687:61-69.
    [123]Lin Z A, Pang J L, Yang H H, et al. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun,2011,47: 9675-9677.
    [124]Lin Z A, Huang H, Li S H, et al. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J Chromatogr A,2013,1271:115-123.
    [125]Li Q J, Lu C C, Li H Y, et al. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A,2012,1256:114-120.
    [126]Liu X C. Boronic Acids as Ligands for Affinity Chromatography. Chin J Chromatogr,2006, 24:73-80.
    [127]Sun X L, Liu R, He X W, et al. Preparation of phenylboronic acid functionalized cation-exchange monolithic columns for protein separation and refolding. Talanta,2010,81: 856-864.
    [1]Dwek MV, Ross HA, Leathem AJC. Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer.Proteomics,2001, 1:756-762.
    [2]Ireland BS, Brockmeier U, Howe CM, et al.Lectin-deficient calreticulin retains full functionality as a chaperone for class I histocompatibility molecules. Mol Biol Cell,2008, 19:2413-2423.
    [3]Lehle L, Strahl S, Tanner W. Protein Glycosylation, Conserved from Yeast to Man:A Model Organism Helps Elucidate Congenital Human Diseases. Angew Chem Int Ed,2006,45: 6802-6818.
    [4]Krishnamoorthy L, Mahal LK. Glycomic analysis:an array of technologies.ACS Chem Biol,2009,4:715-732.
    [5]Hirabayashi J. Lectin-based structural glycomics:glycoproteomics and glycan profiling. Glycoconj J,2004,21:35-40.
    [6]Thaysen-Andersen M, Hojrup P. Enrichment and characterization of glycopeptides from gel-separated glycoproteins. Am Biotechnol Lab,2006,24:14-17.
    [7]Tian Y, Zhou Y, Elliott S, et al. Solid-phase extraction of N-linked glycopeptides. Nat Protoc, 2007,2:334-339.
    [8]Alvarez-Manilla G, Atwood J III, Guo Y, et al. Tools for glycoproteomic analysis:size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res,2006,5:701-708.
    [9]Preinerstorfer B, Lammerhofer M, Lindner W. Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci,2009,32:1673-1685.
    [10]Nishiyabu R, Kubo Y, James T D, et al. Boronic acid building blocks:tools for sensing and separation. Chem Commun,2011,47:1106-1123.
    [11]Nishiyabu R, Kubo Y, James TD, et al. Boronic acid building blocks:tools for self assembly. Chem Commun,2011,47:1124-1150.
    [12]Liang L, Liu Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun,2011,47, 2255-2257.
    [13]Dou P, Liang L, He J G, et al. Boronate functionalized magnetic nanoparticles and off-line hyphenation with capillary electrophoresis for specific extraction and analysis of biomolecules. J Chromatogr A,2009,1216:7558-7563.
    [14]Lee J H, Kim Y S, Ha M Y, et al.Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom,2005,16:1456-1460.
    [15]Tang L, Liu Y C, Qi D W, et al. On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics,2009,9:5046-5055.
    [16]Zhang L J, Xu Y W, Yao H L, et al.Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins.Chem Eur J, 2009,15:10158-10166.
    [17]Yeap W S, Tan Y Y, Loh K R, et al.Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem,2008,80:4659-4665.
    [18]Xu Y, Wu Z, Zhang L, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem,2009,81:503-508.
    [19]Yu C, Davey M H, Svec F, et al. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem,2001,73:5088-5096.
    [20]Mallik R, Jiang T, Hage D S. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns. Anal Chem,2004,76: 7013-7022.
    [21]Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev,2009,38:1294-1314.
    [22]Lee J, Farha OK, Robert J, et al. Metal-organic framework materials as catalysts.Chem Soc Rev,2009,38:1450-1459.
    [23]Allendorf MD, Bauer CA, Bhakta RK, et al. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev,2009,38:1248-1256.
    [24]Wei Q, James S L. A metal-organic gel used as a template for porous organic polymer. Chem Commun,2005,1555-1556.
    [25]Yin J F, Yang G L, Wang H L, et al. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Chem Commun,2007,4614-4616.
    [26]Li S Q, Davis E N, Anderson J, et al. Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring-Biomacromolecules,2009,10:113-118.
    [27]Lin Z A, Yang F, He X W, et al. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography. J Chromatogr A,2009,1216:8612-8622.
    [1]Foster A. Zone electrophoresis of carbohydrates. Adv In Carbohydr Chem,1957,12:81-115.
    [2]Weith H L, Wiebers J L, Gilham P T. Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochem,1970,9:4396-4401.
    [3]Glad M, Ohlson S, Hansson L, et al. High performance liquid affinity chromatography of nucleogides, nucleotides and carbohydrates with boronic acid-substituted microparticulate silica. J Chromatogr,1980,200:254-260.
    [4]Svec F. Less common applications of monoliths:I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.Electrophoresis,2006,27: 947-961.
    [5]Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A,2002,965:35-49.
    [6]Li H Y, Liu Z. Recent advances in monolithic column-based boronate-affinity chromatography. Trend in Analytical Chemistry,2012,37:148-161.
    [7]Lin Z A, Pang J L, Yang H H, et al. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun,2011,47: 9675-9677.
    [8]Colon L A, Li L. Organo-silica hybrid monolithic columns for liquid chromatography. Adv Chromatogr,2008,46:391-421.
    [9]Ma JF, Liang Z, Qiao XQ, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. AnalChem,2008,80:2949-2956.
    [10]Hou CY, Mao JF, Tao DY, et ak.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. JProteome Res,2010,9:4093-4101.
    [11]Ou J J, Lin H, Zhang Z B, et al. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis,2013,34:126-140
    [12]Wu M H, Wu R A, Wang F J, et al. "One-Pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem, 2009,81:3529-3536.
    [13]Lin H,Ou JJ,Zhang ZB,et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "One-Pot" approach for hydrophilic-interaction liquid chromatography (HILlC).Anal Chem,2012,84:2721-2728.
    [14]Zhang ZB, Wu MH, Wu RA,et al. Preparation of perphenylcarbamoylated β-Cyclodextrin-silica hybrid monolithic column with "One-Pot" approach for enantioseparation by capillary liquid chromatography. Anal Chem,2011,83:3616-3622.
    [15]Xu HR, Xu ZD, Yang LM, et al. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci,2011,34:2314-2322.
    [16]Lin Z A, Huang H, Li S H, et al. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J Chromatogr A,2013,1271:115-123.
    [17]Li Q J, Lu C C, Li H Y, et al. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A,2012,1256:114-120.
    [18]Ren L B, Liu Z, Liu Y C, et al. Ring-Opening polymerization with synergistic co-monomers: New access to boronate functionalized polymeric monolith for specific capture of cis-diol-containing biomolecules under neutral pH condition. Angew Chem Int Ed,2009, 48:6704-6707.
    [19]Li HY, Liu YC,Liu J, et al. A Wulff-type boronate for affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun,2011,47,8169-8171.
    [20]Liu YC, Ren LB, Liu Z. A unique boronic acid functionalized monolithiccapillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun, 2011,47:5067-5069.
    [21]Li HY, Wang HY, Liu YC, et al.A benzoboroxole-functionnalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun, 2012,48:4115-4117.
    [22]Liu XC, Scouten WH.New ligands for boronate affinity chromatography.J Chromatogr A, 1994,687:61-69.
    [23]Tian Y, Zhang L F, Zeng Z R, et al.Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29:960-970.
    [24]Stanelle R D, Sander L C, Marcus R K. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. J Chromatogr A,2005,1100:68-75.
    [25]Ren LB, Liu Z, Dong MM, et al. Synthesis and characterization of a new boronate affinity monolithic capillary forspecific capture of cis-diol-containing compounds. JChromatogr A.2009,1216:4768-4774.
    [26]Ren LB, Liu YC, Dong MM, et al. Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J Chromatogr A,2009,1216:8421-8425.
    [1]Kolb HC, Finn MG, Sharpless KB.Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl,2001,40:2004-2021.
    [2]Moses J E, Moorhouse A D. The growing applications of click chemistry. Chem Soc Rev, 2007,36:1249-1262.
    [3]Fournieer D, Hoogenboom R, Schubert U S. Clicking polymers:a straightforward approach to novel macromolecular architectures.2007,36:1339-380.
    [4]Binder W H, Sachsenhofer R. "Click" chemistry in polymer and material science:an update. Macromol Rapid Commun,2008,29:952-981.
    [5]陈琳,石乃恩,钱妍,等.点击化学与功能有机/聚合物材料.化学进展,2010,22,406-416.
    [6]邱素艳,高森,林振宇,等.点击化学最新进展。化学进展,2011,23:637-648.
    [7]Yao Y, Tian D M, Li H B.Cooperative Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for Colorimetric Co2+ Sensing. Applied Materials & Interfaces,2010, 2:684-690.
    [8]Gallant N D, Lavery K A, Amis E J, et al.Universal Gradient Substrates for "Click" Biofunctionalization. Adv Mater,2007,19:965-969.
    [9]Prakash S, Long T M, Selby J C, et al."Click" Modification of Silica Surfaces and Glass Microfluidic Channels. Anal Chem,2007,79:1661-1667.
    [10]Agard N J, Prescher J A, Bertozzi C R, et al. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2004,126:15046-15047.
    [11]Mehdinia A, Kazemi S H, Bathaie S Z, et al.Electrochemical studiesof DNA immobilization onto the azide-terminated monolayers and itsinteraction with taxol Anal Biochem,2008, 375:331-338.
    [12]Cutler J I, Zheng D, Xu X Y, et al.Polyvalent oligonucleotide iron oxide nanoparticle "Click" conjugates. Nano Lett,2010,10:1477-1480.
    [13]Kinnane C R, Wark K, Such G K, et al.Peptide-Functionalized, Low-Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small,2009,5:444-448.
    [14]Moore N M, LinN J, Gallant N D, et al.Enhancing MC3T3-E1 Osteoblast Proliferation Using Immobilized Osteogenic Growth Peptide on Gradient Substrates Synthesized via "Click" Chemistry. Biomaterials,2010,31:1604-1611.
    [15]Mindt T L, Struthers H, Brans L, et al. "Click to Chelate":□ Synthesis and Installation of Metal Chelates into Biomolecules in a Single Step. J Am Chem Soc,2006,128: 15096-15097.
    [16]Hein J E, Fokin V V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev,2010,39:1302-1315.
    [17]Slater M, Snauko M, Svec F,et al. "Click chemistry" in the preparation of porous polymer-based particulate stationary phases for mu-HPLC separation of peptides and proteins. Anal Chem,2006,78:4969-4975.
    [18]Huang HX, Jin Y, Xue MY,et al. A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chem Commun,2009,6973-6975.
    [19]Moni L, Ciogli A, Acquarica ID, et al. Synthesis of sugar-based silica gels by copper-catalysed azide-alkyne cycloaddition via a single-step azido-activated silica intermediate and the use of the gels in hydrophilic interaction chromatography. Chem Eur J, 2010,16:5712-5722.
    [20]Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, et al. "Clickable" affinity ligands for effective separation of glycoproteins. J Chromatogr A,2010,1217:3635-3641.
    [21]White MA, Johnson JA, Koberstein JT, et al. Toward the syntheses of universal ligands for metal oxide surfaces:controlling surface functionality through click chemistry. J Am Chem Soc,2006,128:11356-11357.
    [22]Jian GQ, Liu YX, He XW, et al.Click chemistry:a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples. Nanoscale,2012,4: 6336-6342.
    [23]Li H M, Cheng F O, Duft A M, et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. J Am Chem Soc,2005,127: 14518-14524.
    [24]Liu J Y, Nie Z H, Gao Y, et al. "Click" coupling between alkyne-decorated multiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles. J Polym Sci Part A:Polym Chem, 2008,46:7187-7199.
    [25]Chu CH, Liu RH.Application of click chemistry on preparation of separation materials for liquid chromatography. Chem Soc Rev,2011,40:2177-2188.
    [26]Guo Z M, Lei A W, Liang X M, et al. Click chemistry:a new facile ad efficient strategy for preparation of functionalized HPLC packings. Chem Commun,2006,4512-4514.
    [27]Huang H X, Jin Y, Xue M Y, et al. A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chem Commun,2009,6973-6975.
    [28]Guo Z M, Jin Y, Liang T, et al. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click β-cyclodextrin"stationary phase. J Chromatogr A,2009,1216:257-263.
    [29]Hjerten S, Mohammad J, Nakazato K. Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J Chromatogr. A,1993,646:121-128.
    [30]Guerrouache M, Millot MC, Carbonnier B. Functionalization of macroporous organic polymer monolith based on succinimide ester reactivity for chiral capillary chromatography: a cyclodextrin click approach. Macromol Rapid Commun,2009,30:109-113.
    [31]Slater MD, Frechet JMJ, Svec F.In-column preparation of a brush-type chiral stationary phase using click chemistry and a silica monolith. J Sep Sci,2009,32:21-28.
    [32]Sun XL, Lin D, He XW, et al.A facile and efficient strategy for one-step in situ preparation of hydrophobic organic monolithic stationary phases by click chemistry and its application on protein separation. Talanta,2010,82:404-408.
    [33]Sun XL, He XW, Chen LX,et al. In-column "click" preparation of hydrophobic organic monolithic stationary phases for protein separation. Anal Bioanal Chem,2011,399: 3407-3413.
    [34]Zhang XH, He XW, Chen LX, et al. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem,2012,22: 16520-16526.
    [35]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.
    [36]Wang F J, Dong J, Jiang X G, et al. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Anal Chem,2007,79:6599-6606.
    [1]Zhang WB,Li Y W, Li X P,et al.Synthesis of shape amphiphiles based on functionalpolyhedral oligomeric silsesquioxane end-capped poly(L-lactide)with diversehead surface chemistry.Macromolecules,2011,44:2589-2596.
    [2]Qin A J, Tang L,Lam J W Y,et al.Metal-free click polymerization:synthesis andphotonic properties of poly(aroyltriazole)s.AdvFunct Mater,2009,19:1891-1900.
    [3]Cunningham C W, Mukhopadhyay A, Lushington G H, et al. Uptake, distribution and diffusivity of reactive fluorophores in cells:implications toward target identification. MolPharm,2010,7:1301-1310.
    [4]Kamphuis M M J,Johnston A P R,Such G K,et al.Targeting of cancer cellsusing click-functionalized polymer capsules.J Am ChemSoc,2010,132:15881-15883.
    [5]LinCC, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.Biomaterials,2011, 32:9685-9695.
    [6]Chu C, Liu R. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem Soc Rev,2011,40:2177-2188.
    [7]Dondoni A, Marra A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev,2012,41:573-586.
    [8]Posner T. Beitrage zur Kenntniss der ungesattigten Verbindungen. Ⅱ. Ueber die Addition von Meroaptsnen an ungesattigteKohlenwasserstoffe. Ber Dtsh Chem Ges,1905,38:646-657.
    [9]Hoyle C E, Lee T Y, Roper T. Thiol-enes:Chemistry of the past with promise for the future. J Polym Sci Part A:Polym Chem,2004,42:5301-5338.
    [10]Shen A, Guo Z, Yu L, et al. A novel zwitterionic HILIC stationary phase based on "thiol-ene" click chemistry between cysteine and vinyl silica. Chem Commun,2011,47:4550-4552.
    [11]Qiu H,Mallik A K,Takafuji M,et al.A facile and specific approach to new liquidchromatography adsorbents obtained by ionic self-assembly.ChemEurJ,2011,17:7288-7297.
    [12]Lubda D,Lindner W.Monolithic silica columns with chemically bondedtert-butylcarbamoylquinine chiral anion-exchanger selector as a stationary phasefor enantiomer separations.J ChromatogrA,2004,1036:135-143.
    [13]Preinerstorfer B,Lubda D,Lindner W,et al.Monolithic silica-based capillarycolumn with strong chiral cation-exchange type surface modification forenantioselective non-aqueous capillary electrochromatography.JChromatogr A,2006,1106:94-105.
    [14]Tijunelyte I,Babinot J,Guerrouache M,et al.Hydrophilic monolith withethylene glycol-based grafts prepared via surface confined thiol-ene clickphotoaddition.Polymer,2012,53:29-36.
    [15]Chen Y, Wu M, Wang K, et al. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy. J Chromatogr A,2011,1218:7982-7988.
    [16]Wang K, Chen Y, Yang H, et al. Modification of VTMS hybrid monolith via thiol-ene click chemistry for capillary electrochromatography. Talanta,2012,91:52-59.
    [17]陈霞,韦誉,陆俊宇,等.硫醇-烯点击化学法制备C18毛细管电色谱开管柱及其性能研究.分析化学研究简报,2012,10:1584-1588.
    [18]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.
    [1]Chalkley R J, Bradshaw R A, Medzihradszky K F, et al. Protein PTMs:post-translational modifications or pesky trouble makers? J Mass Spectrom,2010,45:1095-1097.
    [2]Mann M, Jensen O N. Proteomic analysis of post-translational modifications. Nat Biotechnol, 2003,21:255-261.
    [3]Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol,2006,24:1241-1252.
    [4]Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PORT database. Biochim Acta,1999,1473:4-8.
    [5]Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS, 2010,14:419-436.
    [6]Geyer, R, Geyer H. Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta,2006,1764:1853-1869.
    [7]Wang Y, Ao X, Vuong H, et al. Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach. J Proteome Res,2008,7:4313-4325.
    [8]Lau K S, Dennis J W. N-Glycans in cancer progression. Glycobiology,2008,18:750-760.
    [9]Cao J, Shen CP, Wang H, et al. Identification of N-glycosylation sites on secreted proteins of human hepatocellularcarcinoma cellswithacomplementary proteomicsapproach.J Proteome Res,2009,8:662-672.
    [10]Tian Y, Zhou Y, Elliott S, et al.Solid-phase extraction of N-linked glycopeptides. Nat Protoc, 2007,2:334-339.
    [11]Tanaka T, Matsunage T. Detection of HbAlc by boronate affinity immunoassay using bacterial magnetic particles. Biosen Bioel,2001,16:1089-1094.
    [12]Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDImultiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem,2004,76: 6560-6565.
    [13]Sturiale L, Barone R, Palmigiano A, et al. Multiplexed glycoproteomic analysis ofglycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics,2008,8:3822-3832.
    [14]Alvarez-Manilla G, Atwood J, GuoY, et al. Tools for glycoproteomic analysis:size exclusion chromatography facilitatesidentification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res,2006,5:701-708.
    [15]Liu S, Bakovic L, Chen A. Specific binding of glycoproteins with poly(aniline boronic acid) thin film. J Electroanal Chem,2006,591:210-216.
    [16]Preinerstorfer B, Lammerhofer M, Lindner W. Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci,2009,32:1673-1685.
    [17]Zhang Q, Tang N, Schepmoes AA, et al. Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res,2008,7: 2025-2032.
    [18]Tuytten R, Lemiere F, Van Dongen W, et al. Development of an on-line SPE-LC-ESI-MS method for urinary nucleosides:hyphenation of aprotic boronic acid chromatography with hydrophilic interaction LC-ESI-MS. Anal Chem,2008,80:1263-1271.
    [19]LiF L, Zhao X J, Wang W Z,et al. Synthesis of silica-based benzeneboronic acid affinity materials and application as pre-column in coupled-column high-performance liquid chromatography. Anal Chim Acta,2006,580:181-187.
    [20]Xu YW, Zhang LJ, Lu HJ, et al. On-plate enrichment of glycopeptides by using boronic acid functionalized gold-coated Si wafer. Proteomics,2010,10:1079-1086.
    [21]Li H Y, Liu Z. Recent advances in monolithic column-based boronate-affinity chromatography. Trend in Analytical Chemistry,2012,37:148-161.
    [22]Zhou W, Yao N, Yao GP, et al.Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem Commun,2008,5577-5579.
    [23]Tang J, Liu Y, Yin P, et al.Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics,2010,10:2000-2014.
    [24]Sparbier K, Koch S, Kessler I, et al.Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech,2005,16: 407-413.
    [25]Lin ZA, Zheng JN, Lin F, et al.Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. J Mater Chem,2011,21: 518-524.
    [26]Liang L, Liu Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun,2011,47: 2255-2257.
    [27]Zhang XH, He XW, Chen LX, et al.Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem,2012,22: 16520-16526.
    [28]Li X B, Pennington J, Stobaugh J F, et al. Synthesis of sulfonamide-and sulfonyl-phenylboronic acid modified silica phases for boronate affinity chromatography at physiological pH. Anal Biochem,2008,372:227-236.
    [29]Lowe E A, Lu M, Wang A, et al. Stationary phase-based two-dimensional chromatography combining both covalent and noncovalent interactions on a single HPLC column. J Scp Sci, 2006,29:959-965.
    [30]Xu YW, Wu ZX, Zhang LJ, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem,2009,81:503-508.
    [31]Akparov V, Stepanov V. Phenylboronic acid as a ligand for biospecific chromatography of serine proteinases. J Chromatogr,1978,155:329-336.
    [32]Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, et al. J Chromatogr A,2010,1217: 3635-3641.
    [33]Chen M, Lu Y, Ma Q, et al. Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins.Analyst,2009,134:2158-2164.
    [34]Lee D P. Chromatographic evaluation of large-pore and non-porous polymeric reversed phases. JChromatogr,1988,443:143-153.
    [35]Hanson M, Unger K K. Evaluation of advanced silica packings, Part Ⅱ:Application of nonporoussilica particles in HPLC. LC-GC,1997,15:364-368.
    [36]Regnier F E. Perfusion chromatography. Nature,1991,350:634-635.
    [37]Afeyan N B, Fulton S P, Regnier F E. Perfusion chromatography packing materials for proteins andpeptides. J Chromatogr A,1991,544:267-279.
    [38]Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A,2002,965:35-49.
    [39]Svec F, Huber C G. Monolithic Materials:Promises, Challenges, Achievements. Anal Chem, 2006,78:2100-2107.
    [40]Smith N W, Jiang Z J. Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A,2008,1184:416-440.
    [41]Svec F. Porous polymer monoliths:Amazingly wide variety of techniques enabling their preparation. J Chromatogr A,2010,1217:902-924.
    [42]Aoki H, Tanaka N, Kubo T, et al. Polymer-based monolithic columns in capillary format tailored by using controlled in situ polymerization. J Sep Sci,2009,32:341-358.
    [43]Peters E C, Svec F, Frechet J M J. Rigid macroporous polymer monoliths. Adv Mater,1999, 11:1169-1181.
    [44]Mould D L, Synge R L M. Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst,1952,77:964-969.
    [45]Mould D L, Synge R L M. Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membrances. Biochem J,1954,58:571-585.
    [46]Kubin M, Spacek P, Chromecek R. Gel permeation chromatography on porous poly (ethyleneglycol methacrylate). Collect Czech Chem Commun,1967,32:3881-3887.
    [47]Ross W D, Jefferson R T. In situ-formed open-pore polyurethane as chromatography supports. J Chromatogr Sci,1970,8:386-389.
    [48]Hileman F D, Sievers R E, Ross W D, et al. In situ preparation and evaluation of open porepolyurethane chromatographic columns. Anal Chem,1973,45:1126-1130.
    [49]Hjerten S, Liao J L, Zhang R. High-performance liquid chromatography on continuous polymer beds. J Chromatogr,1989,473:273-275.
    [50]Hjerten S. Continuous beds:high-resolving, cost-effective chromatographic matrices. Nature, 1992,356:810-811.
    [51]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem,1992,64:820-822.
    [52]Tennikova T B, Bleha M, Svec F, et al. High-performance membrane chromatography of proteins, a novel method to protein separation. J Chromatogr A,1991,555:97-107.
    [53]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.1. Gel formation behavior and effect of solvent composition. J Non-Cryst Solids,1992,139: 1-13.
    [54]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.2. Effects of molecular-weight and temperature. J Non-Cryst Solids,1992,139:14-24.
    [55]Nakanishi K, Soga N. Phase-separation in silica sol-gel system containing polyacrylic-acid.3. Effect of catalytic condition. J Non-Cryst Solids,1992,142:36-44.
    [56]Nakanishi K, Soga N. Phase-Separation in silica sol-gel system containing polyacrylic-acid. 4. Effect Of Chemical Additives. J Non-Cryst Solids,1992,142:45-54.
    [57]Minakuchi H, Nakanishi K, Tanaka N, et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem,1996,68: 3498-3501.
    [58]Fields S M. Silica xerogel as a continuous column support for high-performance liquid chromatography. Anal Chem,1996,68,2709-2712.
    [59]Li Y, Chen Y, Ciuparu D, et al. Incorporation of single-wall carbon nanotubes into an organicpolymer monolithic stationary phase for μ-HPLC and capillary electrochromatography. AnalChem,2005,77:1398-1406.
    [60]Legido-Quigley C,MarlinND,MelinV,et al.Advances in capillary electrochromatographyand micro-high performance liquid chromatography monolithic columns for separation science.Electrophoresis,2003,24:917-944.
    [61]Jin W H, Fu H J, Huang X D, et al. Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillaryelectrochromatography. Electrophoresis,2003,24:3172-3180.
    [62]Fujimoto C, Fujise Y, Matsuzawa E. Fritless packed columns for capillary electrochromatography:Separation of uncharged compounds on hydrophobic hydrogels. Anal Chem,1996,68:2753-2757.
    [63]FreitagR. Comparison of the chromatographic behavior of monolithic capillary columns incapillary electrochromatography and nano-high-performance liquid chromatography.JChromatogr A,2004,1033:267-273.
    [64]Koide T, Ueno K. Enantiomeric separations by capillary electrochromatography with chargedpolyacrylamidc gels incorporating chiral selectors. Anal Sci,2000,16:1065-1070.
    [65]Zhang S H, Huang X, Horvath C, et al. Capillary electrochromatography of proteins and peptideswith a cationic acrylic monolith. J Chromatogr A,2000,887:465-477.
    [66]EeltinkS,RozingGP,SchoenmakersPJ,et al.Practical aspects of usingmethacrylate-ester-based monolithic columns in capillary electrochromatography. J Chromatogr A, 2006,1109:74-79.
    [67]Peters E C, Petro M, Frechet J M J, et al. Molded rigid polymer monoliths as separation media forcapillary electrochromatography.2. Effect of chromatographic conditions on the separation. AnalChem,1998,70:2296-2302.
    [68]Sun X L, He X W, Zhang Y K, et al. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta,2009,79:926-934.
    [69]Sun X L, He J, Cai G R, et al. Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples. J Sep Sci,2010,33:3786-3793.
    [70]邹汉法,吴明火,王方军等。整体信制备技术的新进展及其在蛋白质组学中的应用。色谱,2009,27:526-536.
    [71]Peters E C, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography.1. Fine Control of Porous Properties and Surface Chemistry. Anal Chem,1998,70:2288-2295.
    [72]Dong J, Ou J J, Dong X L, et al. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography. J Sep Sci,2007,30:2986-2992.
    [73]Kubo T, Kimura N, Hosoya K, et al. Novel polymer monolith prepared from a water-soluble crosslinking agent. J Polym Sci, Polym Chem,2007,45:3811-3817.
    [74]Courtois J, Bystrom E, Irgum K, et al. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer,2006,47:2603-2611.
    [75]Wei Q, James S L. A metal-organic gel used as a template for porous organic polymer. Chem Commun,2005,1555-1556.
    [76]Yin J F, Yang G L, Wang H L, et al. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Chem Commun,2007,4614-4616.
    [77]Yang F, Lin Z A, He X W, et al. Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for specific capture of glycoproteins. J Chromatogr A,2011,1218:9194-9201.
    [78]鲁彦,郭建宇,张详民。一种反相毛细管液相色谱整体信的制备方法及其色谱性能研究。分析化学,2006,34:1463-1466.
    [79]Tanaka N, Nogayama H, Kobayashi H, et al. Monolithic silica columns for HPLC, micro-HPLC, and CEC. J High Resol Chromatogr,2000,23:111-116.
    [80]Fujimoto C. Preparation of fritless packed silica columns for capillary electrochromatography. J High Resol Chromatogr,2000,23:89-92.
    [81]NakanishiK, SogaN. Phase separation in gelling silica-organic polymer solution:systems containing poly[sodium styrenesulfonate]. JAmCeram Soc,1991,74:2518-2530.
    [82]SoonthorntantikulW, Leepipatpiboon N, IkegamiT, et al. Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography.J Chromatogr A,2009,1216:5868-5874.
    [83]Miyamoto K, Hara T, Kobayashi H, et al. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal Chem,2008,80:8741-8750.
    [84]Ikegami T, Hare T, Kimura H, et al.Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. J Chromatogr A,2006,1106:112-117.
    [85]Miyazaki S M S, Takahashi M, Ohira M, et al.Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. J Chromatogr A,2011,1218: 1988-1994.
    [86]Hayes JD, Malik A. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.Anal Chem,2001,73:987-996.
    [87]Lu Z L, Zhang P F, Jia L. Preparation of chitosan functionalized monolithic silica column for hydrophilic interaction liquid chromatography. J Chromatogr A,2010,1217:4958-4964.
    [88]Dulay MT, Quirino J P, Bennett B D, et al. Photopolymerized Sol-Gel Monoliths for CapillaryElectrochromatography. Anal Chem,2001,73:3921-3926.
    [89]ChenZ L, OzawaH, UchiyamaK, et al.Cyclodextrin-modified monolithic columns for resolving dansyl amino acid enantiomers and positional isomers by capillary electrochromatography. Electroporesis,2003,24:2550-2558.
    [90]HayesJD, MalikA.Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. AnalChem,2000,72:4090-4099.
    [91]Ma JF, Liang Z, Qiao XQ, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. AnalChem,2008,80:2949-2956.
    [92]Hou CY, Mao JF, Tao DY, et ak.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. JProteome Res,2010,9:4093-4101.
    [93]Wu MH, Wu RA, Zhang ZB, et al. Preparation and application of organic-silica hybrid monolithic capillary columns. Electrophoresis,2011,32:105-115.
    [94]梁玉,张丽华,张玉奎。新型整体材料的制备及其在蛋白质组学中的的应用。色谱,2011,29:805-815.
    [95]Ou J J, Lin H, Zhang Z B, et al. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis,2013,34:126-140.
    [96]Colon H, Zhang X, Murphy J K, et al.Allyl-functionalized hybrid silica monolitha. Chem Commun,2005,22:2826-2828.
    [97]Yan L J, Zhang Q H, Zhang H, et al.Hybrid organic inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. J Chromatogr A, 2004,1046:255-264.
    [98]ZhengM M, Lin B, Feng Y Q.Hybrid organic-inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography. J Chromatogr A,2007,1164:48-55.
    [99]Tian Y, Zhang L F, Zeng Z R, et al.Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29:960-970.
    [100]Yan L J, Zhang Q H, Feng Y Q, et al.Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography. J Chromatogr A,2006,1121:92-98.
    [101]Yan L J, Zhang Q H, Zhang W B, et al.Hybrid organic-inorganic phenyl monolithic columnfor capillary electrochromatography. Electrophoresis,2005,26:2935-2941.
    [102]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.
    [103]Wu M H, Wu R A, Wang F J, et al. "One-Pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem, 2009,81:3529-3536.
    [104]Dong MM, Wu MH, Wang FJ, et al. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem,2010,82:2907-2915.
    [105]Lin H,Ou J J,Zhang Z B,et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "One-Pot" approach for hydrophilic-interaction liquid chromatography (HILIC).Anal Chem,2012,84:2721-2728.
    [106]Zhang Z B,Wu M H,Wu R A,et al. Preparation of perphenylcarbamoylated β-Cyclodextrin-silica hybrid monolithic column with "One-Pot" approach for enantioseparation by capillary liquid chromatography. Anal Chem,2011,83:3616-3622.
    [107]Zhang Z B,Lin H,Ou J J,et al.Preparation of phenyl-silica hybrid monolithic column with "One-Pot" process for capillary liquid chromatography. J Chromatogr A,2012,1228: 263-269.
    [108]Xu H R, Xu Z D, Yang L M, et al. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci,2011,34:2314-2322.
    [109]Wu M H, Wu R A, Li R B, et al.Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns. Anal Chem,2010,82: 5447-5454.
    [110]Svec F, Frechet J M J. Kinetic control of pore formation in macroporous polymers. Chem Mater,1995,7:707-715.
    [111]Zhang Q, Tang N, Brock J W C, et al.Enrichment and analysis of nonenzymatically glycated peptides:boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J Proteome Res,2007,6:2323-2330.
    [112]Potter O G, Breadmore M C, Hilder E R. Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst,2006,131:1094-1096.
    [113]Ren LB, Liu Z, Dong MM, et al. Synthesis and characterization of a new boronate affinity monolithic capillary forspecific capture of cis-diol-containing compounds. JChromatogr A,2009,1216:4768-4774.
    [114]Ren LB, Liu YC, Dong MM, et al. Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J Chromatogr A,2009,1216:8421-8425.
    [115]Lin ZA, Pan JL, Lin Y, et al. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst, 2011,136:3281-3288.
    [116]Liu YC, Ren LB, Liu Z. A unique boronic acid functionalized monolithiccapillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun, 2011,47:5067-5069.
    [117]Ren L B, Liu Z, Liu Y C, et al. Ring-Opening polymerization with synergistic co-monomers:New access to boronate functionalized polymeric monolith for specific capture of cis-diol-containing biomolecules under neutral pH condition. Angew Chem Int Ed,2009,48:6704-6707.
    [118]Liu Y C, Lu Y, Liu Z. Restricted access boronate affinity porous monolith as a protein A mimetic for specific capture of immunoglobulin G. Chem Sci,2012,3:1467-1471.
    [119]Li HY, Liu YC,Liu J, et al. A Wulff-type boronate for affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun,2011,47,8169-8171.
    [120]Li HY, Wang HY, Liu YC, et al.A benzoboroxole-functionnalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun,2012,48:4115-4117.
    [121]刘云春.苯硼酸功能化整体柱的制备、应用及非常规作用机理研究:[博士学位论文].南京:南京大学,2012.
    [122]Liu XC, Scouten WH.New ligands for boronate affinity chromatography. J Chromatogr A, 1994,687:61-69.
    [123]Lin Z A, Pang J L, Yang H H, et al. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun,2011,47: 9675-9677.
    [124]Lin Z A, Huang H, Li S H, et al. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J Chromatogr A,2013,1271:115-123.
    [125]Li Q J, Lu C C, Li H Y, et al. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A,2012,1256:114-120.
    [126]Liu X C. Boronic Acids as Ligands for Affinity Chromatography. Chin J Chromatogr,2006, 24:73-80.
    [127]Sun X L, Liu R, He X W, et al. Preparation of phenylboronic acid functionalized cation-exchange monolithic columns for protein separation and refolding. Talanta,2010,81: 856-864.
    [128]Dwek MV, Ross HA, Leathem AJC. Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer.Proteomics,2001, 1:756-762.
    [129]Ireland BS, Brockmeier U, Howe CM, et al.Lectin-deficient calreticulin retains full functionality as a chaperone for class Ⅰ histocompatibility molecules. Mol Biol Cell,2008, 19:2413-2423.
    [130]Lehle L, Strahl S, Tanner W. Protein Glycosylation, Conserved from Yeast to Man:A Model Organism Helps Elucidate Congenital Human Diseases. Angew Chem Int Ed,2006, 45:6802-6818.
    [131]Krishnamoorthy L, Mahal LK. Glycomic analysis:an array of technologies.ACS Chem Biol,2009,4:715-732.
    [132]Hirabayashi J. Lectin-based structural glycomics:glycoproteomics and glycan profiling. Glycoconj J,2004,21:35-40.
    [133]Thaysen-Andersen M, Hojrup P. Enrichment and characterization of glycopeptides from gel-separated glycoproteins. Am Biotechnol Lab,2006,24:14-17.
    [134]Tian Y, Zhou Y, Elliott S, et al. Solid-phase extraction of N-linked glycopeptides. Nat Protoc,2007,2:334-339.
    [135]Alvarez-Manilla G, Atwood J Ⅲ, Guo Y, et al. Tools for glycoproteomic analysis:size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res,2006,5:701-708.
    [136]Preinerstorfer B, Lammerhofer M, Lindner W. Synthesis and application of novel phenylboronate affinity materials based on organic polymer particles for selective trapping of glycoproteins. J Sep Sci,2009,32:1673-1685.
    [137]Nishiyabu R, Kubo Y, James T D, et al. Boronic acid building blocks:tools for sensing and separation. Chem Commun,2011,47:1106-1123.
    [138]Nishiyabu R, Kubo Y, James TD, et al. Boronic acid building blocks:tools for self assembly. Chem Commun,2011,47:1124-1150.
    [139]Liang L, Liu Z. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun,2011,47, 2255-2257.
    [140]Dou P, Liang L, He J G, et al. Boronate functionalized magnetic nanoparticles and off-line hyphenation with capillary electrophoresis for specific extraction and analysis of biomolecules. J Chromatogr A,2009,1216:7558-7563.
    [141]Lee J H, Kim Y S, Ha M Y, et al.Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom,2005,16:1456-1460.
    [142]Tang L, Liu Y C, Qi D W, et al. On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics,2009,9:5046-5055.
    [143]Zhang L J, Xu Y W, Yao H L, et al.Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins.Chem Eur J, 2009,15:10158-10166.
    [144]Yeap W S, Tan Y Y, Loh K R, et al.Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem,2008,80:4659-4665.
    [145]Xu Y, Wu Z, Zhang L, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem,2009,81:503-508.
    [146]Yu C, Davey M H, Svec F, et al. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem,2001,73:5088-5096.
    [147]Mallik R, Jiang T, Hage D S. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns. Anal Chem,2004,76: 7013-7022.
    [148]Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev,2009,38:1294-1314.
    1149] Lee J, Farha OK, Robert J, et al. Metal-organic framework materials as catalysts.Chem Soc Rev,2009,38:1450-1459.
    [150]Allendorf MD, Bauer CA, Bhakta RK, et al. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev,2009,38:1248-1256.
    [151]Wei Q, James S L. A metal-organic gel used as a template for porous organic polymer. Chem Commun,2005,1555-1556.
    [152]Yin J F, Yang G L, Wang H L, et al. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Chem Commun,2007,4614-4616.
    [153]Li S Q, Davis E N, Anderson J, et al. Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring.Biomacromolecules,2009,10:113-118.
    [154]Lin Z A, Yang F, He X W, et al. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography. J Chromatogr A,2009,1216:8612-8622.
    [155]Foster A. Zone electrophoresis of carbohydrates. Adv In Carbohydr Chem,1957,12: 81-115.
    [156]Weith H L, Wiebers J L, Gilham P T. Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochem,1970,9:4396-4401.
    [157]Glad M, Ohlson S, Hansson L, et al. High performance liquid affinity chromatography of nucleogides, nucleotides and carbohydrates with boronic acid-substituted microparticulate silica. J Chromatogr,1980,200:254-260.
    [158]Svec F. Less common applications of monoliths:I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.Electrophoresis,2006,27: 947-961.
    [159]Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A,2002,965:35-49.
    [160]Li H Y, Liu Z. Recent advances in monolithic column-based boronate-affinity chromatography. Trend in Analytical Chemistry,2012,37:148-161.
    [161]Lin Z A, Pang J L, Yang H H, et al. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun,2011,47: 9675-9677.
    [162]Colon L A, Li L. Organo-silica hybrid monolithic columns for liquid chromatography. Adv Chromatogr,2008,46:391-421.
    [163]Ma JF, Liang Z, Qiao XQ, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. AnalChem,2008,80: 2949-2956.
    [164]Hou CY, Mao JF, Tao DY, et ak.Organic-inorganic hybrid silica monolith based immobilized titanium ion affinity chromatography column for analysis of mitochondrial phosphoproteome. JProteome Res,2010,9:4093-4101.
    [165]Ou J J, Lin H, Zhang Z B, et al. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis,2013,34:126-140
    [166]Wu M H. Wu R A, Wang F J, et al. "One-Pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal Chem, 2009,81:3529-3536.
    [167]Lin H,Ou JJ,Zhang ZB,et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "One-Pot" approach for hydrophilic-interaction liquid chromatography (HILIC).Anal Chem,2012,84:2721-2728.
    [168]Zhang ZB, Wu MH, Wu RA,et al. Preparation of perphenylcarbamoylated (3-Cyclodextrin-silica hybrid monolithic column with "One-Pot" approach for enantioseparation by capillary liquid chromatography. Anal Chem,2011,83:3616-3622.
    [169]Xu HR, Xu ZD, Yang LM, et al. "One-pot" preparation of basic amino acid-silica hybrid monolithic column for capillary electrochromatography. J Sep Sci,2011,34:2314-2322.
    [170]Lin Z A, Huang H, Li S H, et al. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for capillary liquid chromatography of biomolecules. J Chromatogr A,2013,1271:115-123.
    [171]Li Q J, Lu C C, Li H Y, et al. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A,2012,1256:114-120.
    [172]Ren L B, Liu Z, Liu Y C, et al. Ring-Opening polymerization with synergistic co-monomers:New access to boronate functionalized polymeric monolith for specific capture of cis-diol-containing biomolecules under neutral pH condition. Angew Chem Int Ed,2009,48:6704-6707.
    [173]Li HY, Liu YC,Liu J, et al. A Wulff-type boronate for affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun,2011,47,8169-8171.
    [174]Liu YC, Ren LB, Liu Z. A unique boronic acid functionalized monolithiccapillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun, 2011,47:5067-5069.
    [175]Li HY, Wang HY, Liu YC, et al.A benzoboroxole-functionnalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem Commun,2012,48:4115-4117.
    [176]Liu XC, Scouten WH.New ligands for boronate affinity chromatography. J Chromatogr A, 1994,687:61-69.
    [177]Tian Y, Zhang L F, Zeng Z R, et al.Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29:960-970.
    [178]Stanelle R D, Sander L C, Marcus R K. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography. J Chromatogr A,2005,1100:68-75.
    [179]Ren LB, Liu Z, Dong MM, et al. Synthesis and characterization of a new boronate affinity monolithic capillary forspecific capture of cis-diol-containing compounds. JChromatogr A,2009,1216:4768-4774.
    [180]Ren LB, Liu YC, Dong MM, et al. Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J Chromatogr A.2009,1216:8421-8425.
    [181]Kolb HC, Finn MG, Sharpless KB.Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl,2001,40:2004-2021.
    [182]Moses J E, Moorhouse A D. The growing applications of click chemistry. Chem Soc Rev, 2007,36:1249-1262.
    [183]Fournieer D, Hoogenboom R, Schubert U S. Clicking polymers:a straightforward approach to novel macromolecular architectures.2007,36:1339-380.
    [184]Binder W H, Sachsenhofer R. "Click" chemistry in polymer and material science:an update. Macromol Rapid Commun,2008,29:952-981.
    [185]陈琳,石乃恩,钱妍,等.点击化学与功能有机/聚合物材料.化学进展,2010,22,406-416.
    [186]邱素艳,高森,林振宇,等.点击化学最新进展。化学进展,2011,23:637-648.
    [187]Yao Y, Tian D M, Li H B.Cooperalive Binding of Bifunctionalized and Click-Synthesized Silver Nanoparticles for Colorimetric Co2+ Sensing. Applied Materials & Interfaces,2010, 2:684-690.
    [188]Gallant N D, Lavery K A, Amis E J, et al.Universal Gradient Substrates for "Click" Biofunctionalization. Adv Mater,2007,19:965-969.
    [189]Prakash S, Long T M, Selby J C, et al."Click" Modification of Silica Surfaces and Glass Microfluidic Channels. Anal Chem,2007,79:1661-1667.
    [190]Agard N J, Prescher J A, Bertozzi C R, et al. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc, 2004,126:15046-15047.
    [191]Mehdinia A, Kazemi S H, Bathaie S Z, et al.Electrochemical studiesof DNA immobilization onto the azide-terminated monolayers and itsinteraction with taxol Anal Biochem,2008,375:331-338.
    [192]Cutler J I, Zheng D, Xu X Y, et al.Polyvalent oligonucleotide iron oxide nanoparticle "Click" conjugates. Nano Lett,2010,10:1477-1480.
    [193]Kinnane C R, Wark K, Such G K, et al.Peptide-Functionalized, Low-Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small,2009,5:444-448.
    [194]Moore N M, LinN J, Gallant N D, et al.Enhancing MC3T3-E1 Osteoblast Proliferation Using Immobilized Osteogenic Growth Peptide on Gradient Substrates Synthesized via "Click" Chemistry. Biomaterials,2010,31:1604-1611.
    [195]Mindt T L, Struthers H, Brans L, et al. "Click to Chelate":Synthesis and Installation of Metal Chelates into Biomolecules in a Single Step. J Am Chem Soc,2006,128: 15096-15097.
    [196]Hein J E, Fokin V V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(Ⅰ) acetylides. Chem Soc Rev,2010,39:1302-1315.
    [197]Slater M, Snauko M, Svec F,et al. "Click chemistry" in the preparation of porous polymer-based particulate stationary phases for mu-HPLC separation of peptides and proteins. Anal Chem,2006,78:4969-4975.
    [198]Huang HX, Jin Y, Xue MY,et al. A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chem Commun,2009,6973-6975.
    [199]Moni L, Ciogli A, Acquarica ID, et al. Synthesis of sugar-based silica gels by copper-catalysed azide-alkyne cycloaddition via a single-step azido-activated silica intermediate and the use of the gels in hydrophilic interaction chromatography. Chem Eur J, 2010,16:5712-5722.
    [200]Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, et al. "Clickable" affinity ligands for effective separation of glycoproteins. J Chromatogr A,2010,1217:3635-3641.
    [201]White MA, Johnson JA, Koberstein JT, et al. Toward the syntheses of universal ligands for metal oxide "surfaces:controlling surface functionality through click chemistry. J Am Chem Soc,2006,128:11356-11357.
    [202]Jian GQ, Liu YX, He XW, et al.Click chemistry:a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples. Nanoscale,2012,4: 6336-6342.
    [203]Li H M, Cheng F O, Duft A M, et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. J Am Chem Soc,2005,127: 14518-14524.
    [204]Liu J Y, Nie Z H, Gao Y, et al. "Click" coupling between alkyne-decorated multiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles. J Polym Sci Part A:Polym Chem, 2008,46:7187-7199.
    [205]Chu CH, Liu RH.Application of click chemistry on preparation of separation materials for liquid chromatography. Chem Soc Rev,2011,40:2177-2188.
    [206]Guo Z M, Lei A W, Liang X M, et al. Click chemistry:a new facile ad efficient strategy for preparation of functionalized HPLC packings. Chem Commun,2006,4512-4514.
    [207]Huang H X, Jin Y, Xue M Y, et al. A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chem Commun,2009,6973-6975.
    [208]Guo Z M, Jin Y, Liang T, et al. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click β-cyclodextrin"stationary phase. J Chromatogr A,2009,1216:257-263.
    [209]Hjerten S, Mohammad J, Nakazato K. Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J Chromatogr. A,1993,646:121-128.
    [210]Guerrouache M, Millot MC, Carbonnier B. Functionalization of macroporous organic polymer monolith based on succinimide ester reactivity for chiral capillary chromatography: a cyclodextrin click approach. Macromol Rapid Commun,2009,30:109-113.
    [211]Slater MD, Frechet JMJ, Svec F.In-column preparation of a brush-type chiral stationary phase using click chemistry and a silica monolith. J Sep Sci,2009,32:21-28.
    [212]Sun XL, Lin D, He XW, et al.A facile and efficient strategy for one-step in situ preparation of hydrophobic organic monolithic stationary phases by click chemistry and its application on protein separation. Talanta,2010,82:404-408.
    [213]Sun XL, He XW, Chen LX,et al. In-column "click" preparation of hydrophobic organic monolithic stationary phases for protein separation. Anal Bioanal Chem,2011,399: 3407-3413.
    [214]Zhang XH, He XW, Chen LX, et al. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J Mater Chem,2012,22: 16520-16526.
    [215]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.
    [216]Wang F J, Dong J, Jiang X G, et al. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Anal Chem,2007,79:6599-6606.
    [217]Zhang WB,Li Y W, Li X P,et al.Synthesis of shape amphiphiles based on functionalpolyhedral oligomeric silsesquioxane end-capped poly(L-lactide)with diversehead surface chemistry.Macromolecules,2011,44:2589-2596.
    [218]Qin A J, Tang L,Lam J W Y,et al.Metal-free click polymerization:synthesis andphotonic properties of poly(aroyltriazole)s.AdvFunct Mater.2009,19:1891-1900.
    [219]Cunningham C W, Mukhopadhyay A, Lushington G H, et al. Uptake, distribution and diffusivity of reactive fluorophores in cells:implications toward target identification. MolPharm,2010,7:1301-1310.
    [220]Kamphuis M M J,Johnston A P R,Such G K,et al.Targeting of cancer cellsusing click-functionalized polymer capsules.J Am ChemSoc,2010,132:15881-15883.
    [221]LinCC, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.Biomaterials, 2011,32:9685-9695.
    [222]Chu C, Liu R. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem Soc Rev,2011,40:2177-2188.
    [223]Dondoni A, Marra A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev,2012,41:573-586.
    [224]Posner T. Beitrage zur Kenntniss der ungesattigten Verbindungen. II. Ueber die Addition von Meroaptsnen an ungesattigteKohlenwasserstoffe. Ber Dtsh Chem Ges,1905,38: 646-657.
    [225]Hoyle C E, Lee T Y, Roper T. Thiol-enes:Chemistry of the past with promise for the future. J Polym Sci Part A:Polym Chem,2004,42:5301-5338.
    [226]Shen A, Guo Z, Yu L, et al. A novel zwitterionic HILIC stationary phase based on "thiol-ene" click chemistry between cysteine and vinyl silica. Chem Commun,2011,47: 4550-4552.
    [227]Qiu H,Mallik A K,Takafuji M,et al.A facile and specific approach to new liquidchromatography adsorbents obtained by ionic self-assembly.ChemEurJ,2011,17:7288-7297.
    [228]Lubda D,Liridner W.Monolithic silica columns with chemically bondedtert-butylcarbamoylquinine chiral anion-exchanger selector as a stationary phasefor enantiomer separations.J ChromatogrA,2004,1036:135-143.
    [229]Preinerstorfer B,Lubda D.Lindner W,et al.Monolithic silica-based capillarycolumn with strong chiral cation-exchange type surface modification forenantioselective non-aqueous capillary electrochromatography.JChromatogr A,2006,1106:94-105.
    [230]Tijunelyte I,Babinot J,Guerrouache M,et al.Hydrophilic monolith withethylene glycol-based grafts prepared via surface confined thiol-ene clickphotoaddition.Polymer,2012,53:29-36.
    [231]Chen Y, Wu M, Wang K, et al. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy. J Chromatogr A,2011,1218:7982-7988.
    [232]Wang K, Chen Y, Yang H, et al. Modification of VTMS hybrid monolith via thiol-ene click chemistry for capillary electrochromatography. Talanta,2012,91:52-59.
    [233]陈霞,韦誉,陆俊宇,等.硫醇-烯点击化学法制备C18毛细管电色谱开管柱及其性 能研究.分析化学研究简报,2012,10:1584-1588.
    [234]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. J Chromatogr A,2008,1195:78-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700