用户名: 密码: 验证码:
嵌段聚合物模板辅助合成氧化物纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在探讨嵌段聚合物模板在制备无机微粒中的作用,采用PEO-PPO-PEO系列聚合物中PEO_(106)PPO_(70)PEO_(106)(F127)、EO_(20)PO_(70)EO_(20)(P123)和EO_(78)PO_(30)EO_(78)(F68)为模板制备了氧化锌和氧化铁两种典型的氧化物材料,通过调节各种实验条件,讨论了颗粒形貌和大小的影响因素,主要内容如下:
     1、以嵌段聚合物F127为模板,通过具有普适性的水热合成法合成出有空洞的莲花状氧化锌。用XRD、SEM、XPS、FTIR等分析方法研究了ZnO的结构、组成和表面形貌等。所得分析结果表明F127在空洞ZnO的形成过程中起了决定性的作用,在此基础上,提出了在一定pH值下,以F127为模板剂和晶体生长导向剂,柠檬酸为配位缓释剂的生长机理。分析并讨论了产物在不同煅烧温度下的光致发光性能。同时,讨论了另外两种不同的聚合物P123和F68在合成氧化锌过程中的作用,由于聚合物临界胶束浓度的不同,是造成所得产物形貌差异的关键因素。
     2、以嵌段聚合物P123为模板,用水热法成功的合成了纺锤状和圆饼状的α-Fe_2O_3,通过调节反应条件,对影响反应的实验因素,比如pH值、铁源、柠檬酸的作用的进行了研究。通过实验,我们测试了在这一体系下所合成的氧化铁。当采用硝酸铁为反应物时,得到了纺锤状的α-Fe_2O_3纳米粒子,当用柠檬酸铁时,得到圆饼状的α-Fe_2O_3,我们认为这是由于氧化铁结晶速度和生长取向的不同造成的,具体的原因还需要进一步探讨。通过纺锤状α-Fe_2O_3的磁性测试可以看出,物质具有很好的磁性能,进一步分析物相我们推测,在物质的深层,由于表面高价铁的保护,内部被柠檬酸还原所得的铁单质被友好的保护起来,这是物质具有铁磁性的根本原因。优良的磁性能是本工作的一个亮点。
The point of this dissertation is to discuss the effect of copolymers in synthesis of inorganic materials. Zinc oxide and ferric oxide particles were prepared. How to control size and morphology was discussed. Now sum up as follows:
     1、Novel hollow lotus architectures of wurtzite ZnO were prepared through a simple solution method with the assistance of triblock copolymers of PEO_(106)PPO_(70)PEO_(106)(F127). Thus-prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), field-emission-scanning electron micrographs (FESEM), high-resolution electron microscopy (HRTEM), Fourier transform infrared (FTIR), Brunauer-mmett-Teller (BET) nitrogen adsorption-desorption and Raman spectrum etc. Based on a serial of contrast experiments, an in-situ micelle templating effect of F127 and the intrinsic crystal growth habit of wurtzite ZnO were proposed the key factors determining the formation of the special hollow nanostructures. A broad photoluminescence emission band centered at 393 nm using an excitation wave of 325 nm was observed for the porous ZnO flowers at room temperature. We also discussed the operation of F68 and F127 in the synthesis of ZnO.
     2、By hydrothermal treatment,α-Fe_2O_3 with spindle and plate-like structures were successfully prepared with the assistance of triblock copolymers of EO_(20)PO_(70)EO_(20)(P123). The influence of many factors, such as the pH value, surfactants and the reactants, has been discussed. When we use ferric nitrate as reactant, the spindles were gained. However, if we changed it into ferric citrate, the plates were gained. The reason was hypothesized to be related to the difference of the crystallization rate and the growth tendency. Meanwhile, magnetic properties of the products were systematically investigated. The as-prepared iron oxides had high coercivity and saturation magnetization, which interested us very much. Through the advanced analysis, we found that iron also existed in the production. We speculate that it is the iron that was deoxidized by citric acid and was protected by Fe3+ in the surface.
引文
[1] Feynman RP. 1991. Science. 254, 1300.
    [2]巩雄,张桂兰,汤国庆等. 1997.化学进展. 9, 349.
    [3] Y. H. Zheng, Y. Cheng, Y. S. Wang. 2006. J. Phys. Chem. B. 110, 3093.
    [4] Robert Triboulet. 2003. IEEE. 1012-1020.
    [5]宋词,杭寅,徐军等,人工晶体学报,2004, 33, 81-87.
    [6]http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Lecture2/Lec2.html#anchor9
    [7]汪正然,陈武编,矿物学,上海:上海科学技术出版社
    [8]仲维卓,刘光照,施尔畏,人工晶体学报,1997,26(2):102-107
    [9]元如林,施尔畏,王步国等,中国科学,E辑,1997,27(3):229
    [10]马广鹏,韩建儒,杨长红,仪修杰,谷胜利,杨冬梅,姜付义,压电与声光,2006,28,707-709
    [11] Anno Y.,Mackawat T,Tamaki J,Sensor and Actuators B,1995,(24—25):623—627.
    [12]林艳红,王德军,肇启东,高等学校化学学报,2003,24(11):2 077—2 079.
    [13]林碧霞,傅竹西,廖桂红,发光学报,2005,26,225.
    [14]赵波,李清山,张宁等。2006.半导体学报。27: 1217-1222.
    [15]魏学成,赵有文,董志远等。2006。半导体学报。27:1759-1765.
    [16]李峰,顾书林,叶建东等。2007.半导体学报。28:430-436.
    [17] Bates C H, White W B, Roy R, et al. 1962. Science. 137: 993-999.
    [18] T.Minam1. 1984. Thin Solid Films. 111: 167.
    [19]马瑾,计峰,李淑英,马洪磊。1998.半导体学报, 19:472-476.
    [20] T. Dietl,Phys. Rev. B 2008, 77, 085208.
    [21] K. Ando, H. Saito,W. J. Zheng,T. Fukumura, J. Appl. Phys. 2001, 89, 7284.
    [22] S. W. Jung, S. J. An, G.. C. Yi, et al. 2002. Appl. Phys. Lett. 80: 4561.
    [23] Y. Q. Chang, D. B. Wang, X. H. Luo, et al. 2003.Appl. Phys. Lett. 83: 4020.
    [24] Dana A.Schwartz,Kevin R.Kittilstved, Daniel Gamelin R. Appl. Phys. Lett. 2004, 85,1395.
    [25] K. Ip, R. M. Frazier, Y. W. Heo, et al. 2003. J. Vac. Sci. Technol. B, 21, 1476.
    [26] W. Chen, L. F. Zhao, Y. Q. Wang, Solid State Communications, 2005, 134, 827.
    [27] S. Kolesnik, B. Dabrowski, J. Mais. 2004. J. Appl. Phys. 95, 1475.
    [28]刘劲松,曹洁明,李子全,柯行飞,化学学报,2007,65,1476.
    [29] N. Ohashi, S. Mitarai, O. Fukunaga, J. Electroceramics, 1999, 4, 61.
    [30] K. Maejima, S. Fujita, J. Crystal Growth, 2006, 293, 305.
    [31]赵新宇,郑柏存,无机材料学报,1996,11,611.
    [32]李群,陈水林,姜万超,染整技术,2003,25,5.
    [33] K. J. Chen, F. Y. Hung, S. J. Chang, Z. S. Hu, Applied Surface Science, 2009, 255, 6308.
    [34]刘素琴,黄可龙,无机材料学报,2000,15,376.
    [35] W. Zhao, X. Y. Song, G. Z. Chen, S. X. Sun, Cryst. Res. Technol. 2009, 44, 373.
    [36] Y. S. Fu, X. W. Du, J. Sun, Y. F. Song, J. Liu, J. Alloys Compounds, 2008, 461,527.
    [37] Y. Sun, D. J. Riley, M. Ashfold, J. Phy. Chem. B 2006, 110, 15186.
    [38] Z. H. Yang, C. Y. Luan, W. X. Zhang, A. P. Liu, S. P. Tang, Thin Solid Films, 2008, 516, 5974.
    [39] Li Jin-Sheng, et al.1995.硅酸盐学报, 23: 79-84.
    [40]格冈道雄。1979.电子技术21(9) 43.
    [41] D. M. Sherman. 1990. A. C. S. Symposium Series. 415, 284.
    [42] Kittel C. 1946. Physical Review. 70: 965-968.
    [43] Jacobs I S, Bean C P, Rado G T, Suhl H. 1963. Academic Press. 749-752.
    [44] Chjudnovsky E M, Gunther L. 1988. Physical Review Letters. 60: 661-664.
    [45] Kneller E F, Luborsky F E. 1963. Journal of Applied Physics. 34: 656-658.
    [46]张强,张彰,夏义本,化学研究,2004,15,10.
    [47]邱春喜,姜继森,赵振杰等,无机材料学报,2001,16,957.
    [48] X. J. Xu, J. Wang, C. Q. Yang, H. Y. Wu, F. F. Yang, J. Alloys and Compounds, 2009, 468, 414.
    [49]叶钊,林荣英,福州大学学报,2002,30,918.
    [50] Y. H. Zheng, Y. Cheng, Y. S. Wang, etc. J. Electrochem. Soc. 2003, 150, 1, A133.
    [51] B Gates, Y Y Wu, YD Y in et al. 2001. J. Am. Chem. Soc. 123 : 11500-115011.
    [52] Araki Hidenobu, Fukuoka Atsushi, et al. 2003. Journal of Molecular Catalysis. A, 199: 95-102.
    [53] H F Yang, Q H Shi, D Y Zhao et al. 2003. J. Am. Chem. Soc. 125: 4724-47251.
    [54] K Kamata, Y Lu, YN Xia. 2003. J. Am. Chem. Soc. 125: 2384-23851.
    [55] M S Sander, A L Prieto, R Gronsky et al. 2002. Adv. Mater. 14: 665-667.
    [56] B A Hernandez, K S Chang, E R Fisher et al. 2002. Chem. Mater. 14(2): 4820-4821
    [56] S F Ai, G Lu, Q He et al. 2003. J. Am. Chem. Soc. 125: 11140-11141.
    [57] K Koh, K Ohno, Y Tsujii et al. 2003. Angew. Chem. Int. Ed. 42: 4194-41971.
    [58] J P S patz, A Roescher, M Mêller. 1996. Adv. Mater. 8: 337-3391.
    [59]时钟涛,韩民,万建国,王广厚。2008. [J]物理学进展。01(28): 96-105.
    [60] M Wu, J Long, A Huang et al. 1999. Langmuir. 15(26): 8822-88251.
    [61]丛日敏,罗运军,于怀清。2008. [J].化学学报。8(66): 985-989.
    [1] Y. G Sun, Y. N. Xia, 2002. Science. 298, 2176.
    [2] Bao J, Maaroof AI, Wieczorek L. et al. 2003. Adv. Mater. 15, 1832.
    [3] Hyukin S, Jeong U, Xia YN. 2005. Nat. Mater, 4, 671.
    [4] Li XH, Zhang DH, Chen JS. 2006. J. Am. Chem. Soc. 128, 8382.
    [5] H. Du, Z.W. Jiang. 2008. J. Phys. Chem. B. 112, 6638.
    [6] X. Gu, F. F. Jian. 2008. J. Phys. Chem. C. 112, 20176.
    [7] B. Yang, X. W. Ge, M. Z. Wang. 2008. Mater. Lett. 62, 429.
    [8] M. S. Wendland, S. C.Zimmerman. 1999. J. Am. Chem. Soc. 121, 1389.
    [9] H. G. Yang, H. C. Zeng. 2004. J. Phys. Chem. B. 108, 3492.
    [10] H. Nakano, H Nakamura. 2006. J. Am. Chem. Soc. 89, 1455.
    [11] F. Caruso, R. A. Caruso, H. Mohwald. 1998. Science. 282, 1111.
    [12] M. Yang, G. Wang, Z. Z. Yang. 1998. Mater. Chem. Phys. 111, 5.
    [13] X. Sun, Y. Li. 2004. Angew. Chem. Int. Ed. 43, 3827.
    [14] H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai. 2004. Angew. Chem. Int. Ed. 43, 1540.
    [15] J. Bao, Y. Liang, Z. Xu, L. Si. 2003. Adv. Mater. 15, 1832.
    [16] J. Geng, J. J. Zhu, D. J. Lu, H. Y. Chen. 2006. Inorg. Chem. 45, 8403.
    [17] M. Mazur. 2008. J. Phys. Chem. C. 112, 13528.
    [18] X. G. Wang, H. Kawanami, N. M. Islam, et al. 2008. Chem. Com. 37, 4442.
    [19] C. L. Hsu, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen. 2005. Chem. Commun. 28, 3571.
    [20] B. Q. Cao, X. M. Teng, S. H. Heo, Y. Li, S. O. Cho, G. H. Li, W. P. Cai. 2007. J. Phys. Chem. C. 111, 2470.
    [21] Z. L. Wang. 2007. Appl. Phys. A: Mater. Sci. Process. 88, 7.
    [22] C. H. Lu, L. M. Qi, J. H. Yang, L. Tang, D. Y. Zhang. 2006. J. M. Ma, Chem. Commun. 33, 3551.
    [23] X. F. Wu, H. Bai, C. Li, G. W. Lu, G. Q. Shi. 2006. Chem. Commun. 15, 1655.
    [24] Y. Liu, J. Dong, P. J. Hesketh, M. Liu. 2005. J. Mater. Chem. 15, 2316.
    [25] Y. Tian, H. B. Lua, L. Liao, J. C. Li, Y. Wu, Q. Fu. 2009. Phys. E 41, 729.
    [26] L. Li, H. Q. Wang, G. C. Qi, J. H. Ma, X. L. Xie, H. Zhao, F. Gao. 2008. Chem.Phys. Lett. 455, 93.
    [27] Z. T. Chen, L. Gao. 2008. Cryst. Growth. Design. 8, 460.
    [28] B. Liu, H. C. Zeng. 2007. Chem. Mater. 19, 5824.
    [29] M. S. Mo, S. H. Lim, Y. W. Mai, R.K. Zheng, S. P. Ringer. 2008. Adv. Mater. 20, 339.
    [30] Maremette J M, Norwig J, Meyer W H, St~ekelmann E. 1997. Adv Mater. 9: 647-651
    [31] Cdlfen H, Antonietti M. 1998. Langrauir. 14, 582-589
    [32] C6/fen H, Qi L. 2001. Chem Eur J. 7: 106-11
    [33] Yu S H, C61fen H, Hat,mann J, Antonietti M. 2002. Advan Funet Mater. 12: 541-545
    [34] Antonietti M, Cd/fen H, Mann S, Breulmann M, C,~ltner C G, Wa1sh D. 1998. Chem Eur J. 4: 2493-2500.
    [35] X. G. Wang, H. Kawanami, N. M. Islam. 2008. Chem. Com. 37, 4442.
    [36] R. Wahab, S.G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang, H. S. Shin. 2007. Mater. Res. Bull. 42, 1640.
    [37] Y. J. Gao, W. C. Zhang, W. L. Wu, Y. Xia, G. S. Huang, L.L. Xu, J. C. Shen, G.G. Siu, P.K. Chu. 2008. Appl. Surf. Sci. 255, 1982.
    [38] O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, H. Heinrich. 2007. Mater. Sci. Eng. B 145, 57.
    [39] S. H. Huang, Z. Chen, X. C. Shen, Z.Q. Zhu, K. Yu. 2008. Solid State Commun. 145, 418.
    [40] S. Music, S. Popovi?, M. Maljkovi?, D. Drag?evi?. 2002. J. Alloys Compd. 347, 324.
    [41] J. AParkinson, H. Z. Sun, P. Sadler. 1998. J. Chem. Commun. 8, 881.
    [42] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian. 2005. J. Phys. Chem. B 109, 9463.
    [43] J. M. Jang, S. D. Kim, H. M. Choi, J. Y. Kim, W. G. Jung, Mater. Chem. Phys. 2009, 113, 389.
    [44] J. P. Liu, X. T. Huang. 2005. Mater. Chem. Phys. 98, 523.
    [45] P. Alexandridis, T. A. Hatton. 1994. Macromolecules 27, 2414.
    [46] Q. Yang, K. Tang, J. Zuo, Y. Qian. 2004. Appl. Phys. A 79, 1847.
    [47] J. Lim, K. Shin, H. W. Kim, C. Lee. 2004. Mater. Sci. Eng. B 107, 301
    [1] Cornell RM; Schwertmann U. 1996. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH, Weinhein.
    [2] Faust BC, Hoffmann MR, Bahnemann DW. 1989. J. Phys. Chem. 93, 6371.
    [3] Han JS, Bredow T, Davey DE, et al. 2001. Sens. Axtuators B. 75, 18.
    [4] Chen J, Xu L, Li W, et al. 2005. Adv. Mater. 17, 582.
    [5] Matijevi? E, Scheiner P, J. Colloid. 1976. Interf. Sci. 61, 24.
    [6] Hamada S, Matijevi? E. 1982.J. Chem. Soc., Faraday Trans I. 78, 2147.
    [7] Ozaki M, Kratohvil S, Matijevi? E, et al. 1984. J. Colloid Interf. Sci. 102, 146.
    [8] Ozaki M, Ookoshi N, Matijevi? E, et al. 1990. J.Colloid Interf. Sci. 137 546.
    [9] Sugimoto T, Khan M, Muramatsu A. 1993. Colloids Surf. A: Physicochem. Eng. Aspects. 70, 167.
    [10] Zhong L S, Hu J S, Liang H P, et al. 2006. Adv. Mater. 18, 2426.
    [11] Tang ZY, Kotov NA. 2005. Adv. Mater. 17, 951.
    [12] Zhang GQ, Lu XL, Wang W, et al. 2007. Chem. Mater. 19, 5207.
    [13] Dong LF, Gushtyuk T, Jiao J. 2004. J.Phys. Chem. B. 108, 1617.
    [14] Hu J T, Odom T W, Lieber C M, 1999. J. Am. Chem. Soc. 32, 435.
    [15] Law M, Goldberg J, Yang P D, Annu. 2004. Rev. Mater. Res. 34, 83.
    [16] Yuan J K, Li W N, Gomez S, et al. 2005. J. Am. Chem. Soc. 127, 14184.
    [17] Liu B, Zeng H C. 2004. J. Am. Chem. Soc. 126, 8124.
    [18] X. G. Wen, S. H. Wen, Y. Dong, et al. 2005. J. Phys. Chem. B. 109, 215.
    [19] Y. Lin, F. Q. Sun, X. Y. Yuan, et al. 2004. Appl. Phys. A. 78, 1197.
    [20] Zhu L P, Xiao H M, Liu X M, et al. 2006. J. Mater. Chem. 16, 1794
    [21] Zhong L S, Hu J S, Liang H P, et al. Adv. Mater. 2006, 18, 2426.
    [22] Li X L, Liu J F, Li Y D. 2003. Materials Chemistry and Physics. 80, 222.
    [23] Liu X M, Fu S Y, Xiao H M, Huang C J. 2005. J. Solid State. Chem. 178, 2798.
    [24] Zhu L P, Xiao H M, Fu S Y. 2007. Cryst. Growth Des. 7, 177.
    [25] Zhu L P, Xiao H M, Liu X M, Fu S Y. 2006. J. Mater. Chem. 16, 1794.
    [26] Jing Z, Wu S. 2004. Mater. Lett. 58, 3637.
    [27] Liu X M, Fu S Y, Xiao H M. 2006. J. Solid State. Chem. 179, 1554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700