用于胰岛素口服给药和肿瘤靶向的壳聚糖衍生物接枝纳米粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究生物大分子药物口服给药系统,分别制备了壳聚糖盐酸盐接枝纳米粒(CHNPs)、壳聚糖季铵盐接枝纳米粒(TMCNPs)、羧化壳聚糖接枝纳米粒(CCNPs)和羧甲基壳聚糖接枝纳米粒(CMCNPs),考察其理化性质。以胰岛素为模型药物,研究纳米粒的载药特性、体外释药规律、体内作用及吸收机理。以香豆素(6-coumarin)标记的CCNPs为载体,研究其在肿瘤靶向中的应用。
     1壳聚糖衍生物接枝纳米粒的制备和表征
     分别以壳聚糖盐酸盐(CH)、壳聚糖季铵盐(TMC)、羧化壳聚糖(CC)和羧甲基壳聚糖(CMC)为亲水大分子单体,甲基丙烯酸甲酯(MMA)为疏水单体,经接枝共聚形成两亲性大分子,水溶液中自组装形成核壳型的CHNPs、TMCNPs、CCNPs和CMCNPs。考察纳米粒的结构、粒径、Zeta电势、形态和稳定性等。结果表明,制得的纳米粒粒径为100~300nm,粒径分布均匀;CHNPs和TMCNPs的Zeta电势为正值,CCNPs和CMCNPs的Zeta电势为负值;CCNPs在胃液中聚集,肠液中分散成纳米粒;CCNPs和CMCNPs冻干和室温贮存稳定性良好。
     2载胰岛素纳米粒研究
     考察载胰岛素纳米粒的形态、粒径、Zeta电势、包封率、载药量及体外释放性质。采用内源荧光光谱、外源荧光光谱、圆二色谱和双荧光标记法研究胰岛素在纳米粒中的载药方式。结果表明,TMCNPs和CCNPs的包封率大于80%,载药量高于10%;CHNPs和CMCNPs的包封率和载药量较低;载胰岛素前后CCNPs的粒径和形态未发生明显变化;Zeta电势随胰岛素浓度增加其绝对值减小;胰岛素可通过氢键、静电作用及范德华力包载至纳米粒;载胰岛素纳米粒的体外释放具pH敏感性。
     研究胰岛素-CCNPs在正常大鼠、糖尿病大鼠及Beagle犬体内的口服降血糖效果。与胰岛素溶液相比,正常大鼠皮下注射胰岛素-CCNPs后血糖最低下降至初始值的41%。正常大鼠口服胰岛素溶液及不同剂量胰岛素-CCNPs,100u·kg~(-1)时,2~12h内血糖降为初始值的80%~67%;15u·kg~(-1)时,降血糖效果不明显;对照组胰岛素溶液无降血糖效果;胰岛素-CCNPs(25u·kg~(-1))的口服药理生物利用度为9.7%。糖尿病大鼠口服胰岛素-CCNPs,6~16h内血糖浓度降低为初始值的80%以下,16h达到最低值,为初始值的35%。Beagle犬口服胰岛素-CCNPs(16.5u·kg~(-1)),4h内血糖降低为初始值的60~80%。
     考察CCNPs体外抑酶作用和对肠道紧密连接的影响,并研究香豆素标记的CCNPs在Peyer's结处的吸收。结果表明,CCNPs可使胰蛋白酶活力下降75%,胃蛋白酶活力下降80%;CCNPs可打开肠道紧密连接,并在肠道Peyer's结处被吸收。
     选择FITC-胰岛素和藻蓝蛋白包载至纳米粒,进一步研究胰岛素口服吸收机理。测定FITC-胰岛素与胰蛋白酶作用后的荧光光谱;考察SD大鼠口服FITC-胰岛素和载FITC-胰岛素的CCNPs后的体内分布;分别测定藻蓝蛋白与胰蛋白酶和胰凝乳蛋白酶作用后的紫外光谱和荧光光谱。结果表明,FITC-胰岛素与胰蛋白酶作用后,荧光强度增强;大鼠口服FITC-胰岛素和载FITC-胰岛素的CCNPs6h后,肝、脾中荧光均较强;藻蓝蛋白与胰蛋白酶和胰凝乳蛋白酶作用后,紫外吸收和荧光强度均减小,蛋白浓度与紫外吸收及荧光强度呈正相关。
     3载黏膜黏附性纳米粒双层膜口服给药载体
     以Na_2-EDTA为交联剂制备壳聚糖水凝胶,加入CCNPs冻干粉,以乙基纤维素膜为背衬层制备载纳米粒壳聚糖水凝胶双层膜(NP-Film~(CH))。对壳聚糖水凝胶膜的形态、粘度、流变行为和体外黏附力等进行表征,并考察CCNPs在不同介质中的体外释放特性。壳聚糖水凝胶具有典型的网络结构,纳米粒可分散其中。壳聚糖水凝胶膜的黏膜黏附力为壳聚糖盐酸盐膜的2~8倍,在回肠处的黏膜黏附力较大。pH 1.2释放介质中,纳米粒从水凝胶膜中释放较慢;pH 7.4 PBS释放介质中,纳米粒释放较快。
     将CCNPs冻干粉载入海藻酸钠水凝胶中并以疏水性乙基纤维素膜为背衬层制备双层膜(NP-Film~(SA))。荧光显微镜和扫描电镜观察纳米粒在双层膜中形态,考察水凝胶的溶胀性、黏膜黏附性和纳米粒释放特性,以钙黄绿素作为荧光模型多肽,观察载药纳米粒在水凝胶膜中的形态。离子强度较低时,海藻酸钠水凝胶膜溶胀率较高;离子强度较高时,其溶胀率较低;pH 5.8和pH 8.0时,其溶胀率较高,pH 1.7时,其溶胀率较低。海藻酸钠水凝胶膜的体外黏膜黏附力达6000N·m~(-2)。0.01 mol·l~(-1)HCl中,CCNPs释放较慢,2h累计释放量约为10%;pH 6.5和pH 7.4 PBS中,CCNPs快速释放。海藻酸钠水凝胶膜含较多孔隙,大小均一的纳米粒可均匀分散在孔隙中。
     4香豆素标记CCNPs在肿瘤细胞中的分布
     以亲脂性荧光染料香豆素标记CCNPs,比较香豆素标记CCNPs在H1299肺癌和HEK293胚肾细胞中的分布情况,研究其组织分布、活体光学成像及体外巨噬细胞摄取。结果表明,香豆素标记CCNPs可被H1299细胞摄取,而不被HEK293胚肾细胞摄取。纳米粒定向聚集于肿瘤部位,肺、肝、肾和脾脏的摄取较少,具有一定的靶向性。
     5生物相容性研究
     以溶血试验、动态凝血时间测定、血小板黏附和形态学观察等方法研究纳米粒的血液相容性,小肠生化损伤、肌肉植入和组织损伤等试验研究材料的组织相容性。CCNPs、CMCNPs和TMCNPs溶血率均低于5%,符合生物材料溶血率要求。与硅化玻璃相比,CCNPs的动态凝血时间较长;CCNPs和CMCNPs的血浆复钙时间延长达40%。CHNPs、CCNPs、CHNPs和壳聚糖水凝胶膜与血小板作用后,血小板未发生变形。CCNPs和NP-Film~(CH)的乳酸脱氢酶(LDH)泄漏值与PBS测定结果相近,表明材料对肠细胞没有生化损伤。壳聚糖水凝胶、CCNPs和CMCNPs对肌肉组织没有损伤。
Chitosan derivative graft nanoparticles including chitosan hydrochloride graft nanoparticles(CHNPs),trimethylated chitosan graft nanoparticles(TMCNPs), carboxylation chitosan graft nanoparticles(CCNPs) and carboxymethyl chitosan graft nanoparticles(CMCNPs) were synthesized and investigated as peroral delivery systems for biomacromolecular drugs.With insulin as a model drug,drug loading,in vitro release,in vivo hypoglycemic effect and absorption mechanism in the GI treact were studied.6-coumarin labeled CCNPs were also evaluated as a potential candidate in tumor targeting.
     1 Preparation and characterization of chitosan derivative graft nanoparticles
     Nanoparticles were prepared by graft polymerization of methyl methacrylate (MMA) and chitosan derivatives including chitosan hydrochloride(CH), trimethylated chitosan(TMC),carboxylation chitosan(CC) and carboxymethyl chitosan(CMC) in aqueous solution.During polymerzation,amphiphilic graft polymers assembled in the solution to form core-shell type nanoparticles,which possessed hydrophobic cores and hydrophilic shell layers on their surfaces,resulting in an excellent aqueous dispersion.Structure of nanoparticles was characterized by dissolubility,FT-IR,~1H-NMR and X-ray.Particle size and zeta potential were determined;morphology was investigated and stability of nanoparticles in the GI tract and during storage and freeze drying process was evaluated.The nanoparticles varied from 100 to 300 nm in size.CHNPs and TMCNPs bore positive zeta potentials while CCNPs and CMCNPs showed negative zeta potentials.The CCNPs assembled in the gastric fluid while was well dispersed in the intestinal fluid.The CCNPs and CMCNPs were stable in the GI tract and during storage or freeze-drying.
     2 Insulin loaded nanopartieles
     The encapsulation efficiencies,loading capacities,in vitro release,particle diameters,zeta potentials and morphologies of insulin loaded nanoparticles were investigated.Endogenous fluorescence,extrinsic fluorescence,circular dichroism(CD) and double labeled fluorescence were used to characterize the conformational structure of insulin when loaded in nanoparticles.Results demonstrated that the encapsulation efficiencies of TMCNPs and CCNPs were above 80%and their loading capacities surpassed 10%.Insulin was mainly located in the shell of the nanoparticles via hydrogen bonding,electrostatic interaction and Vanderwolf force.Morphologies, diameters and zeta potentials did not significantly alter after insulin loading.Insulin release from these nanoparticles exhibited pH-sensitivity.
     Hypoglycemic effects following oral administration of insulin-CCNPs in normal rats,diabetic rats and Beagle dogs were investigated.At 100 u·kg~(-1) and 50 u·kg~(-1),oral administration of insulin-CCNPs led to a significant blood glucose depression of 20-40%within 12 h,achieving a relative pharmacological bioavailability of 9.7%(25 u·kg~(-1)).Blood glucose level of diabetic rats decreased to below 80%following oral administration of CCNPs within 6-16 h,and reached the maximum hypoglycemic effect at 16 h(35%of the initial level).Oral administration of insulin-CCNPs in Beagle dogs at a dose of 16.5 u·kg~(-1) also exhibited remarkable hypoglycemic effect.
     The potential of the CCNPs on enzyme inhibition,opening of the epithelial tight junctions,and absorption enhancement at the Peyer's patches were evaluated. Results showed that the activity of trypsin and pepsin decreased to 25%and 20%in the presence of the CCNPs,respectively.Transient and reversible opening of the tight juntions was achieved following treatment of the CCNPs and uptake of 6-coumarin labeled CCNPs at Peyer's patch was enhanced correspondingly.
     Nanoparticles loaded with FITC-insulin or phycocyanin(PC) were used for the assessment of oral absorption mechanism.The fluorescence spectrum of trypsin treated FITC-insulin was monitored and the in vivo distributions of FITC-insulin and FITC-insulin loaded CCNPs following oral administration in SD rats were investigated.The ultraviolet and fluorescence spectra of trypsin treated PC and chymotrypsin PC were measured.Results showed that fluorescence of FITC-insulin was intensified following exposure to trypsin.Strong fluorescence was detected in the liver and spleen following oral administration of FITC-insulin and FITC-insulin loaded CCNPs.After incubation with trypsin and chymotrypsin,ultraviolet as well as fluorescent intensities of PC were diminished,and positive correlation was determined between protein concentrations and ultraviolet absorption as well as fluorescent intensity.
     3 CCNPs loaded bilaminated film as oral delivery vehicles
     A novel smart drug delivery system(NP-Film~(CH)) consisting of CCNPs and bilaminated films was developed,the films composed of the mucoadhesive chitosan-EDTA hydrogel layer(CH-EDTA) and the hydrophobic ethylcellulose layer.The CH-EDTA was characterized by morphology,viscosity,rheology and in vitro muco-adhesive force.In vitro release in different media was also performed. Results showed that the chitosan-EDTA hydrogel possessed typical network structure, where nanoparticles could be well-dispersed.Chitosan-EDTA hydrogel film showed a 2-8 fold increase in the muco-adhesive force as compared to the chitosan chloride film,and it was especially pronounced in the ileum.Nanoparticles were slowly released from the film at pH 1.2 while easily released at pH 7.4.
     Another novel polymeric composite carrier consisting of CCNPs and bilaminated films which were composed of the mucoadhesive alginate-Ca~(2+) hydrogel and the hydrophobic ethylcellulose layer was developed,which might be a promising drug carrier.Morphology of nanoparticles in the bilaminated films was examined using fluorescence microscopy and scanning electronic microscopy.Swelling, muco-adhesion and nanoparticle release was studied,and morphology of calcein loaded nanoparticles in the films was also examined.At low ionic strength,the alginate hydrogel film possessed high swelling ratios and vice-versa at high ionic strength.Swelling ratios were high at pH 5.8 and 8.0,while low at pH 1.7.In vitro muco-adhesive force of the alginate film was 6000 N-m~(-2).Slow release of the CCNPs was achived in 0.01 mol·l~(-1) HCl with a total release amount of 10%within 2h.Fast dissolution was observed in pH 6.5 and pH 7.4 PBS.Large quantities of pores were present in the alginate film,where nanoparticles could be well distributed.
     4 Distribution of coumarin-labeled nanoparticles in tumors
     CCNPs were labeled with lipophilic fluorescent 6-coumarin,and their distributions in H1299 and HEK293 cells were compared.Besides,tissue distribution, in vivo optical imaging and in vitro macrophage uptake was investigated.Results showed that coumarin-labeled CCNPs could be uptaken by H1299 cells rather than HEK293 cells.Nanoparticles were concentrated in tumor tissues with low distribution in lungs,livers,kidneys and spleen,which indicated tumor-targeting properties.
     5 Biocompatibility
     Blood compatibility of the nanoparticles was evaluated in terms of hemolysis, kinetic thrombus time,platelet adhesion.Tissue compatibility was assessed with respect to intestinal biochemical damage,in vivo implantation and tissue damage. Hemolysis ratios of the CCNPs,CMCNPs and TMCNPS were below 5%,which met the requirements of biomedical materials.The CCNPs showed prolonged thrombus time compared to silicated glass;CCNPs and CMCNPs exhibited prolonged recalcification time of 40%.Morphological deformation and activation of the platelets were not detected upon treatment with CHNPs,CCNPs,CHNPs,and chitosan hydrogel films.Lactate dehydrogenase leakage in the small intesetine of SD rats was minimal following exposure to CCNPs and NP-film~(CH),indicating integrity of the intestinal epithelia.No damage towards the muscle was detected after implantation of chitosan-EDTA hydrogel film,CCNPs or CMCNPs,either.
引文
[1]Soane RJ.,Frier M.,Perkins AC.,Jones NS.,Davis SS.,Ilium L.Evaluation of the clearance characteristics of bioadhesive systems in humans[J].Int J Pharm,1999,178:55-65.
    [2]Ilium L.Chitosan and its use as a pharmaceutical excipient[J].Pharm Res,1998,15:1326-1331.
    [3]Prabaharan M.,Gong S.Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carders[J].Carbohydr Polym,2008,73(1):117-125.
    [4]Gao Y.,Xu ZH.,Chen SW.,Gu WW.,Chen LL.,Li YP.Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery:in vitro characteristics and transfection efficiency[J].Int J Pharm,2008,In Press,Accepted Manuscript.
    [5]Erthold A.,Cremer K.,Kreuter J.Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs[J].J Contr Rel,1996,39:17-25.
    [6]Hya Y.,Shiratani M.,Kobayashi H.Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytoxicity[J].Pure Appl Chem,1994,A31:629-642.
    [7]Bodmeier R.,Chen HG.,Pacratakul O.A novel approach to the delivery of microor nanoparticles[J].Pharm Res,1989,6(5):413-417.
    [8]Sadeghi AMM.,Dorkoosh FA.,Avadi MR.,Saadat P.,Rafiee-Tehrani M.,Junginger HE.Preparation,characterization and antibacterial activities of chitosan,N-tdmethyl chitosan(TMC) and N-diethylmethyl chitosan(DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods[J],Int J Pharm,2007,In Press,Accepted Manuscript.
    [9]Shikata F.,Tokumitsu H.,Ichikawa H.In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer[J].Eur J Pharm Biopharm,2002,53(1):57-63.
    [10]张杰.胰岛素口腔雾化肺吸入剂Exubera的临床研究方案介绍[J].中国临床药理学杂志,2007,23(3):232-233.
    [11]Ikesue K.,Kopeckova P.,Kopecek J.Degradation of proteins by guinea pig intestinal enzymes[J].Int J Pharm,1993,95(1):171-179.
    [12]Higashi T.,Hirayama F.,Arima H.,Uekama K.Polypseudorotaxanes of pegylated insulin with cyclodextrins:Application to sustained release system[J]. Bioorg Med Chem Lett, 2007,17(7): 1871-1874.
    [13] Swenson ES., Milisen WB., Curatolo W. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility [J]. Pharm Res, 1994,11:1132-1142.
    [14] Lowe PJ., Temple CS. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats [J]. J Pharm Pharmacol, 1994,46: 547-552.
    [15] Janes KA., Calvo P., Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules [J]. Adv Drug Del Rev, 2001,47:57-83.
    [16] Jerry N., Anitha Y., Sharmo CP. In vivo absorption studies of insulin from an oral delivery system [J]. Drug Deliv, 2001, 8(1):19-23.
    [17] Carino GP, Jacob JS, Mathiowitz E. Nanosphere based on oral insulin delivery. J Contr Rel, 2000, 65:261-269.
    [18] Marschutz M., Caliceti P., Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin [J]. Pharm Res, 2000,17 (12): 1468-1474.
    [19] Salamat-Miller N., Chittchang M., Johnston TP. The use of mucoadhesive polymers in buccal drug delivery [J]. Adv Drug Deliv Rev, 2005,57:1666-1691.
    [20] Waite JH., Qin X. Polyphosphoprotein from the adhesive pads of Mytilus edulis [J]. Biochemistry, 2001,40: 2887-2893.
    [21] Liu YY., Miyoshi H., Nakamura M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles [J]. Int J Cancer, 2007,120:2527-2537.
    [22] Brannon-Peppas L., Blanchette JO. Nanoparticle and targeted systems for cancer therapy [J], Adv Drug Deliv Rev, 2004,56:1649-1659.
    [1]He P.,Davis SS.In vitro evaluation of the mucoadhesive properties of chitosan microspheres[J].Int J Pharm,1998,166:75-68.
    [2]Chen F.,Zhang ZR.,Yuan F.,Qin X.,Wang M.,Huang Y.In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery[J].Int J Pharm, 2008,349(1-2):226-233.
    [3]Zeisig R.,Shimada K.,Hirota S.Effect of sterical stabilization on macrophage uptake in vitro and on thickness of the fixed aqueous layer of liposomes made from alkylphosphocholines[J].Biochim Biophys Acta,1996,1285(2):237-45.
    [4]方超.重组人肿瘤坏死因子隐形纳米粒肿瘤靶向研究[D].复旦大学,2005.
    [5]马利敏.胰岛素聚酯纳米粒及微粒的研究[D].北京医科大学,2005.
    [6]邓联东.两亲性嵌段共聚物及其自组装载药胶束的研究[D].天津大学,2002.
    [7]Jintapattanakit A.,Junyaprasert VB.,Mao S.,Sitterberg J.,Bakowsky U.,Kissel T.Peroral delivery of insulin using chitosan derivatives:A comparative study of polyelectrolyte nanocomplexes and nanoparticles[J].Int J Pharm,2007,342(1-2):240-249.
    [8]Palmberger TF.,Hombach J.,Bernkop-Schnurch A.Thiolated chitosan:Development and in vitro evaluation of an oral delivery system for acyclovir[J].Int J Pharm,2008,348(1-2):54-60.
    [9]IBravo-Osuna I.,Millotti G.,Vauthier C.,Ponchel G.In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate)core-shell nanoparticles[J].Int J Pharm,2007,338(1-2):284-290.
    [10]Entsar S.,Abdou ES.,Khaled SA.,Elsabee NMZ.Extraction and characterization of chitin and chitosan from local sources[J].Bioresour Technol,2008,99(5):1359-1367.
    [11]张银松.胆甾醇基—壳聚糖衍生物自聚集纳米粒的制备及其用作药物载体的初步研究[D].中国协和医科大学,2006.
    [12]万荣欣.羧甲基壳聚糖的制备及其生物学评价[D].天津医科大学,2006.
    [13]Harish Prashanth KV.,Tharanathan RN.Studies on graft copolymerization of chitosan with synthetic monomers[J].Carbohydr Polym,2003,54:343-351.
    [14]胡筱敏.壳聚糖接枝共聚及其产物絮凝性能的研究[D].东北大学,2005.
    [15]Elizalde-Pena N.,Flores-Ramirez G.,Luna-Barcenas SR.,Vasquez-Garcia G.,Arambula-Villa B.,Garcia-Gaitan JG.,Rutiaga-Quinones,Gonzalez-Hernandez J.Synthesis and characterization of chitosan-g-glycidyl methacrylate with methyl methacrylate[J].Eur Polym J,2007,43(9):3963-3969.
    [16]陈幼芳.疏水性药物微胶囊的自组装构筑及其缓释性能研究[D].浙江大学,2006.
    [17]梁骏.壳聚糖—甲基丙烯酸酯接枝共聚物的合成、表征及其应用[D].苏州 大学,2004.
    [18]杜田.壳聚糖衍生物的合成及其纳米粒子的制备研究[D].南开大学,2006.
    [19]Sadeghi AMM.,Dorkoosh FA.,Avadi MR.,Saadat P.,Rafiee-Tehrani M.,Junginger HE.Preparation,characterization and antibacterial activities of chitosan,N-trimethyl chitosan(TMC) and N-diethylmethyl chitosan(DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods[J].Int J Pharm,2007,Accepted Manuscript.
    [20]Chen F.,Zhang ZR.,Huang Y.Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers[J].Int J Pharm,2007,336(1,4):166-173.
    [21]Amidi M.,Stefan G.,Romeijn,Borchard G.,Junginger HE.,Wire E.Hennink WE.,Jiskoot W.Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system[J],J Contr Rel,2006,111(1-2):107-116.
    [22]谢文明.壳聚糖的化学改性及生物功能研究[D].浙江大学,2002.
    [23]曹茂盛.纳米材料学[M].2002:115.
    [24]Son YJ.,Jang JS.,Cho YW.,Chung H.,Park RW.,Kwon IC.,Kim IS.,Park JY.,Seo SB.,Park CR.,Jcong SY.Biodistdbution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect[J].J Contr Rel,2003,91(1-2):135-145.
    [25]丁洪.新型温敏PEPN生物材料及其纳米给药系统研究[D].四川大学,2006.
    [26]Langer K.,Marburger C.Methyl methacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery.Part Ⅰ:preparation and physicochemical characterization[J].Int J Pharm,1996,137:67-74.
    [27]Sadzuka Y.,Nakade A.,Tsuruda T.Study on the characterization of mixed polyethyleneglycol modified liposomes containing doxorubicin[J].J Contr Rel,2003,91(3):271-280.
    [28]Jie P.,Venkatrarnan SS.,Min F.,Freddy BYC.,Huat GL.Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier[J].J Contr Rel,2005,110(1):20-33.
    [1]Owens DR.,Zinman B.,Bolli G.Alternative routes of insulin delivery[J].Diab Med,2003,20:886-898.
    [2]Kennedy FP.Recent developments in insulin delivery techniques:current status and future potential[J].Drugs,1991,42:213-227.
    [3]Damge C.,Maincent P.,Ubrich N.Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats[J].J Contr Rel,2007,117(2):163-170.
    [4]Portero A.,Teijeiro-Osorio D.,Alonso MJ.,Remunan-Lopez C.Development of chitosan sponges for buccal administration of insulin[J].Carbohydr Polym,2007,68(4):617-625.
    [5]Teply,BA.,Tong R.,Jeong SY.,Luther G.,Sheriff I.,Yim CH.,Khademhosseini A.,Farokhzad OC.,Langer RS.,Cheng JJ.The use of charge-coupled polymeric mieroparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules[J].Biomaterials,2008,29(9):1216-1223.
    [6]Cho E.,Gwak H.,Chun I.Formulation and evaluation of ondansetron nasal delivery systems[J].Int J Pharm,2008,349(1-2):101-107.
    [7]Grabovac V.,Foger F.,Bernkop-Schnurch A.Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers[J].Int J Pharm,2008,348(1-2):169-174.
    [8]Damage C.,Vonderscher J.,Marbach P.,Pinget M.1997.Poly(alkyl cyanoacrylate)nanocapsules as a delivery system in the rat for octreotide,a long-acting somatostatin analogue[J].J Pharm Pharmacol,1997,49:949-954.
    [9]Peterson PL.A simplification of the protein assay method of Lowry et al.which is more generally applicable[J].Anal Biochem,1977,83:346-356.
    [10]张德昌.医学药理学,第一版[M].北京医科大学中国协和医科大学联合出版社,1998:940.
    [11]向轶.巯基化壳聚糖载胰岛素口服亚微球的研究[D].四川大学,2005.
    [12]吴正红.壳聚糖及其衍生物包覆胰岛素口服纳米脂质体的研究[D].中国药科大学,2003.
    [13]徐雄良.可血管注射用胰岛素PELGE三嵌段共聚物纳米给药系统的研究[D].四川大学,2006.
    [14]Tiyaboonchai W.,Woiszwillo J.,Sims RC.,Middaugh CR.Insulin containing polyethylenimine-dextran sulfate nanoparticles[J].Int J Pharm,2003,255(1-2):139-151.
    [15]徐巍.肝靶向性大蒜素聚氰基丙烯酸正丁酯纳米粒的研究[D].山东大学,2006.
    [16]郑杭生,张亚军,徐真,徐莲英.全缘千里光碱脂质体包封率测定方法的研 究[J].中国药学杂志,2007,42(14):1075-1078.
    [17]Sarmcnto B.,Ferreira DC.,Jorgensen L.,van de Weert M.Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles[J].Eur J Pharm Biopharm,2007,65(1):10-17.
    [18]吴琼珠.胰岛素硬脂酸纳米粒的制备及其口服吸收机理研究[D].中国药科大学,2002.
    [19]Liu J.,Gong T.,Wang CG.,Zhong Z.,Zhang Z.Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles:Preparation and characterization[J].Int J Pharm,2007,340(1-2):153-162.
    [20]周立斌.B-环糊精及其聚乳酸接枝共聚物对氨基酸和胰岛素的包络作用[D].天津工业大学,2003.
    [21]Pizarro SA.,Sauer K.Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides[J].Photochem Photobiol,2001,73(5):556-563.
    [22]许宝青.纯顶螺旋藻中荧光藻蓝蛋白的分离纯化[D].浙江大学,2003.
    [23]薛志欣.壳聚糖、琼胶糖的提取及其对藻胆蛋白缓释作用的研究[D].中国海洋大学,2007.
    [24]王思玲,苏德森,李乐道.口服胰岛素微粒剂降血糖有效性及大鼠胃肠道有效吸收部位的研究[J].沈阳药科大学学报,2001,18(2):79-83.
    [25]Cui FD.,Shi K.,Zhang LQ.,Tao AJ.,Kawashima Y.Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery:Preparation,in vitro characterization and in vivo evaluation[J].J Contr Rel,2006,114(2):242-250.
    [26]杨华.两亲壳聚糖水凝胶的合成及其在蛋白类药物释放体系中的应用[D].中国科学院成都有机化学研究所,2005.
    [27]Jani PU.,McCarthy DE.,Florence AT.Nanosphere and microsphere uptake via Peyer's patches:observation of the rate of uptake in rat after a single oral dose[J].Int J Pharm,1992,86:239-246.
    [28]Schipper NGM.,Olsson S.,Hoogstraate JA,de Boer AG,Varum KM.,Artursson P.1997.Chitosan as absorption enhancers for poorly absorbable drugs.2.Mechanism of absorption enhancement[J].Pharm Res,1997,14:923-929.
    [29]van der Lubben IM.,Verhoef JC.,van Aelst AC.,Borchard G.,Junginger HE.Chitosan microparticlcs for oral vaccination::preparation,characterization and preliminary in vivo uptake studies in murine Peyer's patches[J].Biomaterials,2001,22(7):687-694.
    [30]Bartunik HD.,Summers LJ.,Bartsh HH.Crystal structure of bovine β-trypsin at 1.5A resolution in a crystal form with low molecular packing density-active site geometry,ions pairs and solvent structure[J].J Mol Biol,1989,210:813-828.
    [31]Yamagata T.,Morishita M.,Kavimandan NJ.,Nakamura K.,Fukuoka Y.,Takayama K.,Peppas NA.Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids[J].J Contr Rel,2006,112(3):343-349.
    [32]Ooya T.,Eguchi M.,Ozaki A.,Yui N.Carboxyethylester-polyrotaxanes as a new calcium chelating polymer:synthesis,calcium binding and mechanism of trypsin inhibition[J].Int J Pharm,2002,242(1-2):47-54.
    [33]Boer AD.,Noach A.,Roosemalen M.,Kurosaki Y.,Breimer D.Effect of apical and/or basolateral application of EDTA on the permeability of hydrophilic compounds in a human intestinal epithelial cell line[J].Pharm Res,1991,8:S215.
    [34]郭健新.亮丙瑞林脂质纳米粒结构与肠道转运功能的研究[D].中国药科大学,2003.
    [35]Swenson ES.,Milisen WB.,Curatolo W.Intestinal permeability enhancement:efficacy,acute local toxicity,and reversibility[J].Pharm Res,1994,11:1132-1142.
    [36]Borges O.,Cordeiro-da-Silva A.,Romeijn SG.,Amidi M.,de Sousa A.,Borchard G.,Junginger HE.Uptake studies in rat Peyer's patches,cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination[J].J Contr Rel,2006,114:348-358.
    [37]Vila A.,Sanchez A.,Janes K.,Behrens I.,Kissel T.,Jato JLV.,Alonso MJ.Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice[J].Eur J Pharm Biopharm,2004,57(1):123-131.
    [38]Damge C.,Maincent P.,Ubrich N.Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats[J].J Contr Rel,2007,117(2):163-170.
    [39]Li MG.,Lu WL.,Wang JC.,Zhang X.,Wang XQ.,Zheng AP.,Qiang Zhang Q.Distribution,transition,adhesion and release of insulin loaded nanoparticles in the gut of rats[J].Int J Pharm,2007,329(1-2):182-191.
    [1]John D.,Smart.The basics and underlying mechanisms of mucoadhesion[J].Adv Drug Delivery Rev,2005,57(11):1556-1568.
    [2]George M.,Abraham TE.Polyionic hydrocolloids for the intestinal delivery of protein drugs:Alginate and chitosan—a review[J].J Contr Rel,2006,114(1):1-14.
    [3]Dorkoosh FA.,Verhoef JC.,Borchard G.,Rafiee-Tehrani M.,Verheijden JHM.,Junginger HE.Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers[J].Int J Pharm,2002,247:47-55.
    [4]Whitehead K.,Shen ZC.,Mitragotri S.Oral delivery of macromolecules using intestinal patches:applications for insulin delivery[J].J Contr Rel,2004,98(1):37-45.
    [5]Remunan-Lopez C.,Portero A.,Vila-Jato JL.,Alonso MJ.Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery [J].J Contr Rel,1998,55:143-152.
    [6]施荟.胰岛素口腔贴膜的研究[D].复旦大学,2005.
    [7]Portero A.,Teijeiro-Osorio D.,Alonso MJ.,Remunan-Lopez C.Development of chitosan sponges for buccal administration of insulin[J].Carbohydr Polym,2007,68(4):617-625.
    [8]Grabovac V.,Foger F.,Bernkop-Schniirch A.Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers[J].Int J Pharm,2008,348(1-2):169-174.
    [9]Iliuta I.,Larachi F.Hydrodynamics of power-law fluids in trickle-flow reactors:Mechanistic model,experimental verification and simulations[J].Chem Eng Sci,2002,57(11):1931-1942.
    [10]唐翠.基于含Carbopol的超多孔水凝胶复合物(SPHCc)载体的胰岛素新型口服给药系统研究[D].复旦大学,2005.
    [11]黄慧.壳聚糖胰岛素微球在糖尿病大鼠中的降糖作用研究[D].四川大学,2002.
    [12]Yamagata T.,Morishita M.,Kavimandan NJ.,Nakamura K.,Fukuoka Y.,Takayama K.,Peppas NA.Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids[J].J Contr Rel,2006,112(3):343-349.
    [13]Ludwig A.The use of mucoadhesive polymers in ocular drug delivery[J].Adv Drag Delivery Rev,2005,57:1595-1639.
    [14]Yang KC.,Hogg R.Estimation of particle size distributions from turbidimetric measurements[J].Anal Chem,1979,51(6):758-763.
    [15]蒋曙光.蛋白质抗原口服聚酸酐纳米粒载体研究[D].中国药科大学,2004.
    [16]Wu J-Y.,Liu S-Q.,Wan-Sia Heng P.,Yang Y-Y.Evaluating proteins release from,and their interactions with,thermosensitive poly(N-isopropylacrylamide) hydrogels [J].J Contr Rel,2005,102:361-372.
    [17]Morishita M.,Goto T.,Peppas NA.,Joseph JI.,Torjman MC.,Munsick C.,Nakamura K.,Yamagata T.,Takayama K.,Lowman AM.Mucosal insulin delivery systems based on complexation polymer hydrogels:effect of particle size on insulin enteral absorption[J].J Contr Rel,2004;97:115-124.
    [18]Maurstad G.,Mφrch YA.,Bausch AR.,Stokke BT.Polyelectrolyte layer interpenetration and swelling of alginate-chitosan multilayers studied by dual wavelength reflection interference contrast microscopy[J].Carbohydr Polym,2008,71(4):672-681.
    [19]Grant GT.,Morris ER.,Rees DA.,Smith PJC.,Thom D.Biological interactions between polysaccharides and divalent cations:The egg-box model[J].FEBS Letters,1973,32:195-198.
    [20]周煜竣.新型水凝胶用作医用辅料的研究[D].中山大学,2006.
    [21]薛伟明.口服蛋白质药物的天然多糖微球载体研究[D].中国科学院大连化学物理研究所,2003.
    [22]何淑兰.可降解海藻酸盐水凝胶的研究[D].天津大学,2005.
    [23]Harish Prashanth KV,Tharanathan RN.Studies on graft copolymerization of chitosan with synthetic monomers.Carbohydr Polym 2003;54:343-351.
    [24]刘郁杨.用于新型抗癌药物定性控制释放的高分子载体的合成与表征[D].西北工业大学,2003.
    [25]舒晓正.离子交联天然多糖基药物控释制剂的研究[D].浙江大学,2001.
    [26]Najafi F.,Sarbolouki MN.Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol)[J].Biomaterials,2003,24:1175-1182.
    [1]Wei IC.,Tsao N.,Huang YH.,Ho YS.,Wu CC.,Yu DF.,Yang DJ.~(99m)Tc-glycopeptide:Synthesis,biodistribution and imaging in breast tumor-beating rodents[J].Appl Radiat Isot,2008,66(3):320-331.
    [2]Chatterjee DK.,Rufaihah AJ.,Zhang Y.Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J].Biomaterials,29(7):937-943.
    [3]Medarova Z.,Pham W.,Kim Y.,Dai G..,Moore A.In vivo imaging of tumor response to therapy using a dual-modality imaging strategy[J].Int J Cancer,2006,118:2796-2802.
    [4]Liu YY.,Miyoshi H.,Nakamura M.Nanomedicine for drug delivery and imaging:A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles[J].Int J Cancer,2007,120:2527-2537.
    [5]Chertok B.,Moffat BA.,David AE.,Yu F.,Bergemann C.,Ross BD.,Yang VC. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors[J].Biomaterials,2008,29(4):487-496.
    [6]Zhang BB.,Cheng J.,Li D.,Liu XH.,Ma GP.,Chang J.A novel method to make hydrophilic quantum dots and its application on biodetection[J].Mater Sci Eng B,2008,In Press,Uncorrected Proof.
    [7]Schroeder JE.,Shweky I.,Shmeeda H.,Banin U.,Gabizon A.Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles[J].J Contr Rel,2007,124(1-2):28-34.
    [8]Raikar US.,Renuka CG.,Nadaf YF.,Mulimani BG.,Karguppikar AM.,Soudagar MK.Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7molecules:Determination of ground and excited state dipole moment[J].Spectroc Acta Pt.A.2006,65:673-677.
    [9]Satpati AK.,Kumbhakar M.,Maity DK.,Pal H.Chem.Photophysical investigations of the solvent polarity effect on the properties of coumarin-6 dye[J].Phys.Lett.2005,407:114-118.
    [10]Li DM.,Zhang JL.,Anpo M.,Xue MZ.,Liu YG.Photophysical and photochemical properties of Coumain-6 molecules incorporated within MCM-48[J].Mater Lett,2005,59:2120-2123.
    [11]Sahoo SK PJ.,Prabha S.,Bargar T.,Labhasetwar V.Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,1-lactide-co-glycolide)nanoparticles[J].Int J Pharm,2003,262(1-2):1-11.
    [12]Davda J.,Labhasetwar V.Characterization of nanoparticle uptake by endothelial cells[J].Int J Pharm,2002,233(1-2):51-59.
    [13]陆伟.阳离子白蛋白结合聚乙二醇—聚乳酸纳米粒的脑内递药研究[D].复旦大学,2005.
    [14]Ravnic DJ.,Zhang YZ.,Turhan A.,Tsuda A.,Pratt JP.,Huss HT.,Mentzer SJ.Microsc.Res.Tech.2007,70:776-781.
    [15]冯敏.聚乙二醇-聚谷氨酸苄酯嵌段共聚物载药纳米胶束的制备及性能研究[D].中山医科大学,2001.
    [1]Serrano MC.,Pagani R.,Vallet-Regi M.,Pena J.,Ramila A.,Izquierdo I.In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts[J].Biomaterials,2004,25(25):5603-5611.
    [2]Williams DF.The Williams Dictionary of Biomaterials[G].Liver-pool,UK:University Press;1999:40.
    [3]张奇峰.纳米羟基磷灰石与血液中生物大分子及红细胞的相互作用,武汉理工大学[D].2006.
    [4]吕晓迎.生物材料血液相容性的体外新方法研究[D].东南大学,2002.
    [5]胡玉锋.水溶性壳聚糖衍生物在生物材料表面的构建及其抗凝血性能研究[D].南京师范大学,2005.
    [6]李赛.聚氰基丙烯酸纳米微囊作为蛋白质多肽药物控释载体的研究[D].中国科学院成都有机化学研究所,2004.
    [7]Aspenstrom-Fagerlund B.,Ring L.,Aspenstrom P.,Tallkvist J.,Ilback NG.,Glynn AW.Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes[J].Toxicology,2007,237:12-23.
    [1]Tauzin B.Report:Biotechnology Medicines in Development,Pharmaceutical Research and Manufacturers Association,Washington DC,2006.
    [2] Wang W. Instability, stability, and formulation of liquid protein pharmaceuticals [J]. Int J Pharm, 1999,185:129-188.
    [3] Wang W. Protein aggregation and its inhibition in biopharmaceutics [J]. Int J Pharm, 2005, 289:1-30.
    [4] Pettit DK., Gombotz WR. The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals [J]. Trends Biotechnol, 1998,16: 343-349.
    [5] Crommelin DJA., Storm G, Verrijk R., Leede LD., Jiskoot W., Hennink WE. Shifting paradigms: biopharmaceuticals versus low molecular weight drugs [J]. Int J Pharm, 2003,266:3-16.
    [6] Iiu J., Gong T., Wang CG, Zhong Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: Preparation and characterization [J]. Int J Pharm, 2007,340:153-162.
    [7] Leonard M., Rastello De Boisseson M., Hubert P., Dalencon F., Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties [J]. J Contr Rel, 2004,98: 395-405.
    [8] Kim WJ., Yockman JW., Lee M., Jeong JH., Kim YH., Kim SW. Solubel Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for antiangiogenesis [J]. J Contr Rel, 2005,106: 224-234.
    [9] Park JH., Kwon S., Nam JO., Park RW., Chung H., Seo SB., Kim IS., Kwon IC., Jeong SY. Self-assembled nanoparticles based on glycol chitosan bearing 5 β-cholanic acid for RGD peptide delivery [J]. J Contr Rel, 2004,95:579-588.
    [10] Garinot M., Fievez V, Pourcelle V, Stoffelbach F., des Rieux A., Plapied L., Theate I., Freichels H., Jerome C., Marchand-Brynaert J., Schneider YJJ, Preat V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination [J]. J Contr Rel, 2007,120:195-204.
    
    [11] Yoncheva K., Lizarraga E., Irache JM. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties [J]. Eur J Phar Sci, 2005, 24: 411-419.
    [12] Takeuchi H., Yamamoto H., Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery [J]. Adv Drug Deliv Rev, 2001,47(1): 39-54.
    [13] Rouzes C., Leonard M. Influence of polymeric surfactants on the properties of drug-loaded PLA nanospheres [J]. Colloid Surf B-Biointerfaces, 2003,32: 125-135.
    [14] Vila A., Sanchez A., Tobio M., Calvo P., Alonso MJ. Design of biodegradable particles for protein delivery [J]. J Contr Rel, 2002, 78:15-24.
    [15] Borges O., Borchard G., Verhoef JC., Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system [J]. Int J Pharm, 2005, 299: 155-166.
    
    [16] Savic SD., Savic MM., Vesic SA., Vuleta GM., Muller-Goymann CC. 2006. Vehicles based on a sugar surfactant: colloidal structure and its impact on in vitro/in vivo hydrocortisone permeation [J]. Int J Pharm, 2006, 320: 86-95.
    [17] Graf A., Ablinger E., Peters S., Zimmer A., Hook S., Rades T. Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides [J]. Int J Pharm, 2008,350(1-2): 351-360.
    [18] Fasano A., Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model [J]. J Clin Invest, 1997,99:1158-1164.
    [19] Lopez JE., Peppas NA. Cellular evaluation of insulin transmucosal delivery [J]. J Biomater Sci Polym Ed, 2004,15: 386-396.
    [20] Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential? [J]. Drug Discov Today Technol, 2005, 2: 75-81.
    [21] Clark MA., Blair H., Liang L., Brey RN., Brayden D., Hirst BH. Targeting polymerised liposome vaccine carriers to intestinal M cells [J]. Vaccine, 2001, 20: 208-217.
    [22] des Rieux A., Ragnarsson EGE., Gullberg E., Preat V., Schneider YJ., Artursson P.Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium [J]. Eur J Pharm Sci, 2005, 25: 455-465.
    [23] Eldridge JH., Hammond CJ., Meulbroek JA., Staas JK., Gilley RM., Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches [J]. J Contr Rel, 1990,11: 205-214.
    [24] Shakweh M., Besnard M., Nicolas V, Fattal E. Poly(lactide-co-glycolide) particles of different physicochemical properties and their uptake by Peyer's patches in mice [J]. Eur J Pharm Biopharm, 2005, 61:1-13.
    [1]Drexler KE.,Peterson C.,Pergamit G.New York:Morrow[C].1991,19.
    [2]Haley B.,Frenkel E.Nanoparticles for drug delivery in cancer treatment[C].Urologic Oncology:Seminars and Original Investigations,2008,26(1):57-64.
    [3]Jones A.,Harris AL.New developments in angiogenesis:a major mechanism for tumor growth and target for therapy[J].Cancer J Sci Am,1998,4:209-217.
    [4]Maeda H.The enhanced permeability and retention(EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting[J].Adv Enzyme Regul,2001,41(1):189-207.
    [5]Yezhelyev MV.,Gao X.,Xing Y.Emerging use of nanoparticles in diagnosis and treatment of breast cancer[J].Lancet Oncol,2006,7:657-667.
    [6]Yuan F.Transvascular drug delivery in solid tumors[J].Semin Radiat Oncol,1998,8:164-175.
    [7]Beduneau A.,Saulnier P.,Benoit JP.Active targeting of brain tumors using nanocarriers[J].Biomaterials,2007,28(33):4947-4967.
    [8]Zhang ZP.,Lee SH.,Feng SS.Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery[J].Biomaterials,2007,28:1889-1899.
    [9]Tseng CL.,Wang TW.,Dong GC.,Wu SYH.,Young TH.,Shieh MJ.,Lou PJ.,Lin FH.Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting[J].Biomaterials,2007,28:3996-4005.
    [10] Hughes GA. Nanostructure-mediated drug delivery [J]. Nanomed Nanotech Biol Med, 2005,1: 22-30.
    [11] Agarwal A., Saraf S., Asthana A., Gupta U., Gajbhiye V., Jain NK. Ligand based dendritic systems for tumor targeting [J]. Int J Pharm, 2008,350(1-2): 3-13.
    [12] Sinek J., Frieboes H., Zheng X., Cristini V. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles [J]. Biomed Microdevices, 2004b, 6:297-309.
    [13] Svenson S., Tomalia DA. 2005. Dendrimers in biomedical applications reflections on the field [J]. Adv Drug Deliv Rev, 2005,57: 2106-2129.
    [14] Bhadra D., Bhadra S., Jain S., Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil [J]. Int J Pharm, 2003, 257:111-124.
    [15] Liang B., He ML., Xiao ZP., Li Y, Chan CY., Kung HE, Shuai XT., Peng Y Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery [J]. Biochem Biophys Res Commun, 2008, 367(4): 874-880.
    [16] Nakayama M., Okano T. Preparation and characterization of paclitaxel-loaded thermoresponsive polymeric micelles [J]. Polymer preprints, 2006,2020.
    [17] Le Garrec D., Gori S., Karkan D., Luo L., Lessard DG, Smith D. Preparation, characterization, cytotoxicity and biodistribution of docetaxel-loaded polymeric micelle formulations [J]. J Drug Deliv Sci Technol, 2005,15(2): 115-120.
    [18] Chrai SS., Murari R., Ahmad I. Liposomes, part one: manufacturing issues [J]. BioPharm, 2001,14(11): 10-14.
    [19] Huang SK., Stauffer PR., Hong K. Liposomes and hyperthermia in mice: Increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes [J]. Cancer Res, 1994,54: 2186-2191.
    [20] Rijcken CJ., Snel CJ., Schiffelers RM., van Nostrum CF., Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies [J]. Biomaterials, 2007, 28(36): 5581-5593.
    [21] Liu B., Yang M., Li R., Ding Y, Qian X., Yu L., Jiang X. The antitumor effect of novel docetaxel-loaded thermosensitive micelles [J]. Eur J Pharm Biopharm, 2008, In Press, Accepted Manuscript.
    [22] Liu C., Fan W., Chen X., Liu CS., Meng XG., Park HJ. Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR) [J]. Curr Appl Phys, 2007, 7:125-129.
    [23] Lu B., Xiong SB., Yang H., Yin XD., Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases [J]. Eur J Pharm Sci, 2006,28(1-2): 86-95.
    [24] Feng SS., Zhao LY, Zhang ZP., Bhakta G., Win KY, Dong Y, Chien S. Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo [J]. Chem Eng Sci, 2007,62(23): 6641-6648.
    [25] Jamieson T., Bakhshi R., Petrova D., Pocock R., Imam M., Seifalian AM. Biological applications of quantum dots [J]. Biomaterials, 2007,28(31): 4717-4732.
    [26] Nozik AJ. Multiple exciton generation in semiconductor quantum dots [J], Chem Phys Lett, 2008, In Press, Accepted Manuscript.
    [27] Tan WB., Huang N., Zhang Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications [J]. J. Colloid Interface Sci, 2007,310:464-470.
    [28] Sorenson CM., Klabunde KJ. Nanoscale materials in chemistry [N]. John Wiley and Sons, Inc., New York, 2001:169-172.
    [29] Ma HL., Xu YE, Qi XR., Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution, and applications in detecting liver cancers [J]. Int J Pharm, 2008, In Press, Accepted Manuscript.
    [30] Autiero M., Celentano L., Cozzolino R., Laccetti P., Marotta M., Mettivier G., Montesi MC., Quarto M., Riccio P., Roberti G., Russo P. Early detection of tumor masses by in vivo hematoporphyrin-mediated fluorescence imaging [J]. Nucl Instrum Methods Phys Res Sect A, 2007, 571: 392-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700