用户名: 密码: 验证码:
光学相干断层成像评价猪冠状动脉药物洗脱支架置入后新生内膜覆盖的病理对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Assessment of Early-stage Neointimal Coverage after Drug-eluting Sterts and Bare-mental Stent Implantation by Optical Coherence Tomography:Compared with Histology
  • 作者:赵杰
  • 论文级别:博士
  • 学科专业名称:内科学
  • 学位年度:2012
  • 导师:杨跃进
  • 学科代码:100201
  • 学位授予单位:北京协和医学院
  • 论文提交日期:2012-05-01
摘要
背景:药物洗脱支架(DES)由于抑制内皮增生与BMS相比明显降低了支架内再狭窄的发生,同时也导致了血管内皮修复延迟,增加了支架内血栓的发生率。研究表明支架内再狭窄及晚期血栓形成与支架术后内皮化程度密切相关。光学相干断层成像(OCT)作为一种新型血管腔内检测技术,具有极高的组织学分辨率,可达到10μ m,与光镜和电镜下组织学结构有良好的相关性,优于现有的任何成像技术,为评价支架新生内膜提供了条件。现有OCT研究多为评价支架置入后≥3个月的新生内膜情况,对于支架置入术后早期尤其是1个月以内的新生内膜覆盖情况目前仍缺乏资料。
     目的:通过与病理切片对比,评价OCT成像对支架置入术后新生内膜覆盖的检测价值。
     方法:18只健康实验用中华小型猪(7~9月龄,体重18~25Kg,雄性)于术前1天服用氯吡格雷(300mg)和阿司匹林(300mg),全麻后通过右股动脉途径行左右冠状动脉造影,于LAD、LCX及RCA分别随机置入西罗莫司药物洗脱支架(SES)、紫杉醇药物洗脱支架(PES)、佐他莫司药物洗脱支架(ZES)支架一枚,术后继续服用氯吡格雷(75mg/d)和阿司匹林(300mg/d),并随机分为3组,每组6只,分别于7天、14天、28天后再次进行OCT成像,测量并计算新生内膜厚度、支架内面积、管腔面积、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率,同时分期处死动物,取出心脏并保留部分升主动脉段,以4%多聚甲醛100mmHg (1mmHg=0.133kPa)加压灌注30min,分离出支架段冠状动脉,予以塑料包埋,切片后行苏木素-伊红染色及弹力纤维染色,通过光镜下观察及图像分析软件,得出新生内膜厚度、支架内面积、管腔面积、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率,并将OCT成像结果与病理组织学结果进行对比研究。
     结果:总计对11058个支架梁的OCT图像进行了分析,三种DES置入后7天时应用OCT测量新生内膜厚度、新生内膜面积、平均面积狭窄百分比及新生内膜覆盖率与病理比较无显著差异,OCT测量SES.PES及ZES三种药物洗脱支架新生内膜厚度分别为30.5±39.9μ m、46.8±44.4μm、61.3±37.7μm,新生内膜覆盖率分别为43.77±2.4%、50.56±1.45%、53.62±2.49%。支架置入14天时应用OCT测量SES、PES及ZES三种药物洗脱支架新生内膜厚度分别为63.5±78.1μ m、128.4±130.3μ m、132.6±103.3μ m,新生内膜覆盖率分别为72.62±3.88%、73.71±4.64%、77.91±4.84%,与病理组织学比较无显著性差异,此外两者比较新生内膜面积及平均面积狭窄百分比差别也不明显。支架置入28天时应用OCT观察和病理切片观察,测量新生内膜厚度、新生内膜面积以及新生内膜覆盖率两者比较均无明显差异。OCT测量SES、PES及ZES三种药物洗脱支架新生内膜厚度分别为136.3±91.1μ m、215.2±145.7μm、244.3±282.3μm,新生内膜覆盖率分别为90.96±4.35%、91.82±4.00%、94.88±2.93%。
     结论:3组DES在置入7天时的内膜覆盖率即接近甚至超过50%,28天时内膜覆盖率超过90%,提示3种DES在置入早期既有较好的新生内膜覆盖。通过比较,提示OCT与病理观察结果无显著统计学差异,OCT能清晰显示支架贴壁情况,准确评价支架表面新生内膜覆盖情况。
     背景:冠状动脉支架置入是治疗冠心病的有效手段,但支架术后再狭窄、支架内血栓形成等安全性问题在药物洗脱支架(DES)时代仍然是热点话题。研究表明支架内再狭窄及晚期血栓形成与支架术后贴壁不良以及内皮化程度差密切相关。光学相干断层成像(OCT)具有极高的分辨率,接近组织学水平,能够安全精确地评价药物洗脱支架置入后支架贴壁情况及新生内膜增生情况。不同类型的支架具有不同的特性,对内膜愈合的影响也不尽相同。药物洗脱支架虽能抑制平滑肌增生,但也导致内膜延迟愈合,但报道显示支架内血栓的发生率有所增加。此外目前OCT研究多为评价支架置入后≥3个月的新生内膜情况,对于支架置入术后早期尤其是1个月以内的新生内膜覆盖情况仍缺乏资料。
     目的:本研究应用光学相干断层成像比较中华小型猪冠状动脉置入DES及BMS术后7天、14天及28天后新生内膜覆盖情况,并比较不同DES之间新生内膜覆盖有无差异。
     方法:本研究拟选用健康实验用中华小型猪18只,7-9月龄,体重18-25Kg,雄性。每只动物于接受冠脉介入治疗前1天服用氯吡格雷(300mg)和阿司匹林(300mg)。实验动物全麻后通过右股动脉途径行左右冠状动脉造影,于LAD、LCX及RCA分别随机置入雷帕霉素药物洗脱支架(SES)、紫杉醇药物洗脱支架(PES)、佐他莫司药物洗脱支架(ZES)支架一枚,之后再将BMS支架随机置入其中一支冠脉近段,支架血管直径比率为1.1-1.2:1,应用OCT技术观察支架贴壁情况,术后继续服用氯吡格雷(75mg/d)和阿司匹林(300mg/d),并随机分为3组,每组6只,分别于7天、14天、28天后再次进行OCT成像,测量并计算新生内膜厚度、支架内面积、管腔面积、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率,比较DES和BMS支架组7天、14天、28天时有无差异,并在不同DES组之间进行对比研究。
     结果:本研究应用OCT技术总共同对15096个支架梁进行了分析,SES置入7天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率均存在显著差异(P<0.001)。置入14天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比及新生内膜覆盖率存在显著差异(P<0.001)。置入28天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率存在显著差异(P<0.001)。PES置入7天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比及新生内膜覆盖率存在显著差异。置入14天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比和新生内膜覆盖率存在显著差异(P<0.001)。置入28天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率存在显著差异(P<0.001)。ZES置入7天时与BMS比较,两者新生内膜厚度差异显著(P=0.014),而新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率无显著差异(P值分别为0.36、0.476、0.233)。置入14天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比、和新生内膜覆盖率存在显著差异。置入28天时与BMS比较,两者新生内膜厚度、新生内膜面积、平均面积狭窄百分比差异显著,而新生内膜覆盖率没有显著差异(P=0.062)。
     结论:通过以上对中华小型猪置入BMS及DES后1个月内进行OCT检查,结果显示各DES与BMS在术后早期新生内膜覆盖情况不同,BMS组要明显优于SES和PES组。显示第一代DESs与BMS比较,在术后1月内新生内膜生长规律不同。7天时ZES组新生内膜表现与BMS组无明显差异,14天及28天时,两组之间比较差异显著。此外不同DES之间比较发现,SES、PES、ZES术后1月内新生内膜厚度及覆盖率也不同,数据显示ZES表现优于其他两种DES,因此DES的类型可能影响血管内膜愈合过程。
     背景:药物洗脱支架的应用明显降低了支架内再狭窄的发生,但同时由于药物抑制平滑肌细胞增殖也导致了血管内膜修复延迟,增加了支架内血栓的发生率导致严重后果。研究表明支架内再狭窄及晚期血栓形成与支架术后内皮化程度密切相关。常规冠状动脉造影和血管内超声(IVUS)受自身技术条件和分辨率的限制,不足以清晰显示支架表面新生内膜情况。光学相干断层成像(OCT)作为一种新型的血管内成像技术,具有极高的组织学分辨率,是IVUS的10倍,与病理有良好的相关性,能清晰显示支架表面新生内膜覆盖情况并准确测量支架丝表面新生内膜的厚度,在评价支架治疗效果方面是其他技术很难替代的。佐他莫司洗脱支架作为新型的药物洗脱支架,具有很细的支架丝,且药物洗脱迅速,临床研究评价远期效果较好。目前研究多数评价支架置入≥3个月后新生内膜情况,对于支架术后早期尤其1个月内研究资料很少。
     目的:应用光学相干断层成像(OCT)技术评价猪冠状动脉佐他莫司洗脱支架(ZES)术后早期(7天、14天、28天)时新生内膜覆盖情况,同时与病理组织学及电镜扫描图像进行比较。
     方法:18只健康实验用中华小型猪(7-9月龄,体重18-25Kg,雄性)于术前1天服用氯吡格雷(300mg)和阿司匹林(300mg),全麻后通过右股动脉途径行左右冠状动脉造影,选择走形较直、分支较少、管径较粗的一支冠状动脉置入佐他莫司药物洗脱支架(ZES)支架一枚,术后继续服用氯吡格雷(75mg/d)和阿司匹林(300mg/d),并随机分为3组,每组6只,分别于7天、14天、28天后再次进行OCT成像,测量并计算新生内膜厚度、支架内面积、管腔面积、新生内膜面积、平均面积狭窄百分比、新生内膜覆盖率,同时分期处死动物,分离出支架段冠状动脉,标本经处理后在光镜及扫描电镜下观察。
     结果:OCT检查与病理组织学及扫描电镜检查有良好的相关性。用OCT观察三个时期支架表面新生内膜情况,比较发现新生内膜厚度存在显著差异(61.3±37.7μm vs.132.6±103.3μ m vs.244.3±282.3μ m,P<0.001),新生内膜覆盖率也存在显著差异(53.62%±2.49%vs.77.91%±4.84%vs.94.88%±2.93%,P<0.001),同时三个时期内膜厚度分布也不同,7天时以<100p m为主,28天时>200μm为主。
     结论:OCT在支架术后7天即能清晰观察到新生内膜覆盖情况,佐他莫司洗脱支架术后28天大多数支架丝被新生内膜覆盖。
Background:Randomized studies have shown that DESs reduce clinical restenosis rates significantly compared with BMSs due to inhibition of intimal neoproliferation. However this effect has proved to be associated with delayed or deficient re-endothelialization. Studies show that the neointimal coverage is closely related to the intrastent restenosis and thrombosis. Angiography can only display the vascular lumen, while IVUS imaging lacks sufficient resolution to reveal stent neointimal coverage accurately. optical coherence tomography (OCT) is a recently developed optical imaging technique that provides high resolution (around10μm) and particularly well adapted for the study of the most superficial layers of the stent new coverage.
     Objectives:(1) Comparison of neointimal coverage of sirolimus-eluting stents (SES) between OCT and histology:7,14and28days respectively after implantation;(2) Comparison of neointimal coverage of paclitaxel-eluting stents (PES) between OCT and histology:7,14and28days respectively after implantation;(3) Comparison of neointimal coverage of zotarolimus-eluting stents (ZES) between OCT and histology:7,14and28days respectively after implantation.
     Methods:54stents (18SESs;18PESs;18ZESs) were implanted in18minipig which were treated with asprin and clopidogrel and randomly divided into three groups. Every coronary artery contained only one stent. The porcines underwent OCT and were then euthanized at7days (n=6),14days (n=6) and 28days(n=6). All stent-implanted arteries in these animals were evaluated by histology. Corresponding OCT and histology images were selected with the distal and proximal radiopaque markers used as landmarks. Stent neointimal coverage at each strunt were evaluated. Neointimal hyperplasia (NIH) thickness, intrastent area, lumen area, NIH area and rate of strut coverage were measured calculated in each cross-section of OCT and pathological section.
     Results:11058struts were analysised with OCT. OCT image has no obvious difference with histology image7days after three kinds of DESs implantation. There are also no obvious difference between OCT and histology image14days after stent implantation by calculating NIH thickness, NIH area and rate of neointimal coverage.In28th day after implantation, there are also no obvious difference comparing OCT image with histology.
     Conclusions:This study showed that OCT image had good correlation with histology. The rate of neointimal coverage in three DESs groups were50%or over7days after implantation, and even more than90%28days after implantation, which showed that the neointimal coverage of DES were good in the early stage after implantation. ZES group showed best result in NIH thickness and neointimal coverage in three kinds of DESs. OCT is a high-resolution (around10μm) imaging technology that is10times of IVUS and particularly well adapted for the study of the most superficial layers of the vessel wall and for strut-by-strut stent analysis.
     Background:Coronary stenting is the standard strategy in percutaneous coronary intervention. The use of DESs reduce clinical restenosis rates significantly compared with BMSs due to inhibition of intimal neoproliferation. Howerve, it was reported that the rate of stent thrombosis especially the late stent thrombosis increased. Autopsy studies have shown this effect to be associated with delayed or deficient re-endothelialization. Optical coherence tomography (OCT) is an intracoronary imaging modality with a high-resolution of10to20, providing detailed information of stent strut malapposition and neointimal coverage. Different kind of stents have different characteristics which lead to different influence on the neointima hyperplasia. Most current studies concerned about the neointima by OCT more than3months after stent implantation.
     Objectives:(1) Comparison of neointimal coverage of sirolimus-eluting stents (SES) with bare-mental stent (BMS) by optical coherence tomography7,14and28days respectively after implantation;(2) Comparison of neointimal coverage of paclitaxel-eluting stents (PES) with BMS by optical coherence tomography7,14and28days respectively after implantation;(3) Comparison of neointimal coverage of zotarolimus-eluting stents (ZES) with BMS by optical coherence tomography7,14and28days respectively after implantation;(4) Comparison of neointimal coverage between SES and PES and ZES by optical coherence tomography7,14and28days respectively after implantation.
     Methods:72stents (18BMSs;18SESs;18PESs;18ZESs) were implanted in18minipig which were treated with asprin and clopidogrel and randomly divided into three groups. Every coronary artery contained only one drug-eluting stent and BMS was imlapnted in the proximal segment of DES of right coronary artery. The porcines underwent OCT and were then euthanized at7days (n=6),14days(n=6) and28days(n=6). All stent-implanted arteries in these animals were evaluated by OCT. Neointimal hyperplasia (NIH) thickness, intrastent area, lumen area, NIH area and rate of strut coverage were measured and calculated in each OCT cross-section.
     Results:There were15096struts analysized by OCT in this study. There were significant differences between SES group and BMS group7days,14days and28days after implantation in neointimal hyperplasia thichness, neointimal area and the rate of neointimal coverage (P<0.001). And the same result showed in the PES and ZES, except the rate of neointimal coverage in ZES group7days and28days after implantation (7days:53.62±2.49%vs55.40±3.55%, P=0.233;28days:94.88±2.93%vs97.64±2.51%, P=0.062). Conclusions:The neointimal coverage of struts were different between BMS and DESs in the first month after implantation. Better results showed in the BMS group comparing with DESs groups (especially the SES and PES groups). In addition, ZES had no significant different with BMS7days after implantation. There were also significant differents between different kinds of DESs. The result of ZES group was obviously better than SES and PES groups according to this study.
     Background:The use of DESs reduce clinical restenosis rates significantly compared with BMSs due to inhibition of intimal neoproliferation. Howerve, it was reported that the rate of stent thrombosis especially the late stent thrombosis increased. Studies have shown that the restenosis and intrastent thrombosis were associated with delayed or deficient re-endothelialization. Because of the limit of various conditions, coronary angiograpy (CAG) and intravascular ultrasound (IVUS) can not show the details of stents and neointima especially in the early stage after stent implantation. OCT is a high-resolution (around10μm) imaging technology that is10times of IVUS and particularly well adapted for the study of the most superficial layers of the vessel wall and for strut-by-strut stent analysis. There were many studies showed that the prognosis of zotarolimus-eluting stents (ZES) was good. But most of these studies cared about the neointimal coverage more than3months after implantation.
     Objective:Comparative analysis of neointimal coverage with ZES by optical coherence tomography (OCT) between7days and14days and28days after implantation. Comparison of neointimal coverage between OCT and histology and scanning electron microscope image.
     Method:Eighteen minipigs were randomly divided into three groups. Each animal was implanted with one zotarolimus-eluting stent in coronary artery randomly. Three groups of minipigs underwent OCT and were then euthanized at7days (n=6),14days (n=6) and28days (n=6) respectively after stent implantation. All stent-implanted arteries were observed by light microscope and scanning electron microscope after specimen disposal.
     Results:OCT image has good correlation with histology and scanning electron microscope. OCT results show that there were significant difference of neointimal hyperplasia thickness between7days,14days and28days groups (61.3±37.7μ m vs.132.6±103.3μm vs.244.3±282.3μm, P<0.001). The rate of neointimal coverage also had significant difference between the three groups (53.62%±2.49%vs.77.91%±4.84%vs.94.88%±2.93%, P<0.001). The distribution of variety of neointima were also different.
     Conclusion:Neointima can be clearly observed7days after stent implantation by OCT. Most of the struts were covered with neointima28days after ZES implantation.
引文
1. Lisette Okkels Jensen, Per Thayssen, DMSci, et al. Influence of a Pressure Gradient Distal to Implanted Bare-Metal Stent on In-Stent Restenosis After Percutaneous Coronary Intervention. Circulation. 2007:116:2802-2808.
    2. Maarten J. Suttorp, Gert J. Laarman, Braim M. Rahel, et al. Primary Stenting of Totally Occluded Native Coronary Arteries Ⅱ (PRISON Ⅱ): A Randomized Comparison of Bare Metal Stent Implantation With Sirolimus-Eluting Stent Implantation for the Treatment of Total Coronary Occlusions. Circulation.2006:114:921-928.
    3. Brendan Doyle, Charanjit S. Rihal, Crochan J.0'Sullivan, et al. Outcomes of Stent Thrombosis and Restenosis During Extended Follow-Up of Patients Treated With Bare-Metal Coronary Stents. Circulation. 2007:116:2391-2398.
    4. Katsumi Inoue, Kazuaki Mitsudo, Masakiyo Nobuyoshi. Comparative Pathologic Studies of Chronic Tissue Responses to Repeated Bare-Metal versus Drug-Eluting Stent Implantation within the Same or Different Types of Stents. Circulation.2008:118:S_748.
    5. Gregg W. Stone, Stephen G. Ellis, Antonio Colombo, et al. Offsetting Impact of Thrombosis and Restenosis on the Occurrence of Death and Myocardial Infarction After Paclitaxel-Eluting and Bare Metal Stent Implantation. Circulation.2007; 115:2842-2847.
    6. Aloke V. Finn MD, Michael Joner MD, et al. Pathological Correlates of Late Drug-Eluting Stent Thrombosis. Strut Coverage as a Marker of Endothelialization. Circulation,2007,115:2435-2441.
    7. Aloke V. Finn; Gaku Nakazawa; et al. Vascular Responses to Drug Eluting Stents:Importance of Delayed Healing. Arterionscler Thromb Vase boil,2007,27:1500-1510.
    8. Michael Joner, Aloke V. Finn, Andrew Farb, et al. Pathology of Drug-Eluting Stents in Humans Delayed Healing and Late Thrombotic Risk. J Am Coll Cardiol,2006,48:193-202.
    9. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science,1991,254:1178-1181.
    10. Jang IK, Bouma BE, Rang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol.2002 Feb 20:39(4):604-9.
    11. Takano M, Inami S, Jang IK, et. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent three months after implantation. Am J Cardiol.2007,15;99(8):1033-8.
    12. Daisuke Matsumo to, Junya Shite, Toshiro Shinke, Hiromasa Otake, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. European Heart Journal,2007,28(8):961-967.
    13.Matsumoto Daisuke, Shite Junya, Shinke Toshiro, et al. Evaluation of Long-term Changes of Neointimal Coverage on Sirolimus-eluting Stents by Optical Coherence Tomography. Circulation.2006;114:11_645.
    14. Teruyoshi Kume, Takashi Akasaka, Takahiro Kawamoto, et al. Visualization of neointima formation by optical coherence tomography. International heart journal.2005; 46(6):1133-6.
    15. Shimpei Nakatani, Osaka Rosai Hosp. Influence of Strut Width on Neointimal Coverage After Sirolimus-Eluting Stent Implantation Assessed by Optical Coherence Tomography. Circulation.2009; 120:S947.
    16. Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence tomography:optimisation of image acquisition and quantitative assessment of stent strut apposition. Eurolnterv,2007,3:128-136.
    1. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science,1991,254:1178-1181.
    2. Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy:properties and demonstration of vascular pathology. Circulation.1996:93:1206-13.
    3. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plagues in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol.2002 Feb 20:39(4):604-9.
    4. Takano M, Inami S, Jang IK, et. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent three months after implantation. Am J Cardiol.2007,15;99(8):1033-8.
    5. Daisuke Mat sumo to, Junya Shite, Toshiro Shinke, Hiromasa Otake, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. European Heart Journal,2007,28(8):961-967.
    6. Matsumoto Daisuke, Shite Junya, Shinke Toshiro, et al. Evaluation of Long-term Changes of Neointimal Coverage on Sirolimus-eluting Stents by Optical Coherence Tomography. Circulation.2006;114:Ⅱ_645.
    7. Teruyoshi Kume, Takashi Akasaka, Takahiro Kawamoto, et al. Visualization of neointima formation by optical coherence tomography. International heart journal.2005; 46(6):1133-6.
    8. Shimpei Nakatani, Osaka Rosai Hosp. Influence of Strut Width on Neointimal Coverage After Sirolimus-Eluting Stent Implantation Assessed by Optical Coherence Tomography. Circulation.2009; 120:S947.
    9. Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence tomography:optimisation of image acquisition and quantitative assessment of stent strut apposition. Eurolnterv,2007,3:128-136.
    10. Katsumi Inoue, Kazuaki Mitsudo, Masakiyo Nobuyoshi. Comparative Pathologic Studies of Chronic Tissue Responses to Repeated Bare-Metal versus Drug-Eluting Stent Implantation within the Same or Different Types of Stents. Circulation.2008; 118:S_748.
    11. Gregg W. Stone, Stephen G. Ellis, Antonio Colombo, et al. Offsetting Impact of Thrombosis and Restenosis on the Occurrence of Death and Myocardial Infarction After Paclitaxel-Eluting and Bare Metal Stent Implantation. Circulation.2007; 115:2842-2847.
    12. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-el ut ing stents. JAMA 2005;293:2126-30.
    13. Cut lip DE, Bairn DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 2001; 103:1967-71.
    14. Flores-Rios X, Marzoa-Rivas R, Abugattas-de Torres JP, et al. Late thrombosis of paclitaxel-eluting stents:long-term incidence, clinical consequences and risk factors in a cohort of 604 patients. Am Heart J 2008:155:648-53.
    15. Aloke V. Finn MD, Michael Joner MD, et al. Pathological Correlates of Late Drug-Eluting Stent Thrombosis. Strut Coverage as a Marker of Endothelialization. Circulation,2007,115:2435-2441.
    16. Aloke V. Finn; Gaku Nakazawa; et al. Vascular Responses to Drug Eluting Stents:Importance of Delayed Healing. Arterionscler Thromb Vase boil,2007,27:1500-1510.
    17. Michael Joner, Aloke V. Finn, Andrew Farb, et al. Pathology of Drug-Eluting Stents in Humans Delayed Healing and Late Thrombotic Risk. J Am Coll Cardiol,2006,48:193-202.
    18. Holmes Jr DR, Kereiakes DJ, LaskeyWK, et al. Thrombosis and drug-el ut ing stents:an objective appraisal. J Am Coll Cardiol 2007;50:109-18.
    19. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis:strut coverage as a marker of endothelialization. Circulation,2007,115:2435-2441.
    20. Takano M, Inami S, Jang IK, et al. Evaluation by optical coherence tomography of neointimal coverage of sirolimuseluting stent three months after implantation. Am J Cardiol 2007;99:1033-8.
    21. Takano U, Yamamoto M, Inami S, et al. Long-term follow-up evaluation after sirolimus-eluting stent implantation by optical coherence tomography:do uncovered struts persist? J Am Coll Cardiol 2008:51:968-9.
    22. Takano M, Yamamoto M, Inami S, et al. Long-term follow-up evaluation after sirolimus-eluting stent implantation by optical coherence tomography:do uncovered struts persist? J Am Coll Cardiol 2008:51:968-9.
    23. Guagliumi G, Musumeci G, Sirbu V, et al. Optical coherence tomography assessment of in vivo vascular response after implantation of overlapping bare-metal and drug+eluting stents. JACC Cardiovase Interv,2010,3: 531-539.
    24. Tamburino C, La Manna A, Di Salvo ME, etal. First-in-man 1-year clinical outcomes of the Catania Coronary Stent System with Nanothin Polyzene-F in de novo native coronary artery lesions:the ATLANTA (Assessment of The LAtest Non-Thrombogenic Angiop/asty stent)trial. JACC Cardiovase Interv.2009.2:197-204.
    25. Yao ZH, Matsubara T, Inada T, et al. Neointimal coverage of sirolimus-eluting stents 6 months and 12 months after implantation: evaluation by optical coherence tomography. Chin Med J (Engl). 2008:121 (6):503-507.
    26. Kim JS, Fan C, Choi D, et al. Different patterns of neointimal coverage between acute coronary syndrome and stable angina after various types of drug-eluting stents implantation; 9-month follow-up optical coherence tomography study. Int J Cardiol.2009.
    27. Wessely R, Schomig A, Kastrati A. Sirolimus and Paclitaxel on polymer-based drug-eluting stents:Similar but different. J Am Coll Cardiol 2006; 47:708-714.
    28. Motreffa P, Souteyranda G, Levesque S, et al. Comparative analysis of neointimal coverage with paclitaxel and zotarolimus drug-eluting stents, using optical coherence tomography 6 months after implantation. Arch Cardiaovasc Dis.2009; 102(8-9):617-624.
    29. Miyazawa A, Ako J, Hongo Y, Hur SH,et al. Comparison of vascular response to zotarolimus-eluting stent versus sirolimus-eluting stent: intravascular ultrasound results from ENDEAVOR III. Am Heart J.2008 Jan; 155(1):108-113.
    30. Waseda K, Hasegawa T, Ako J,et al. Comparison of vascular response to zotarolimus-eluting stent vs paclitaxel-eluting stent implantation: pooled IVUS results from the ZoMaxx Ⅰ and Ⅱ trials. Circ J.2010 Nov; 74 (11):2334-2339.
    31. Kandzari DE, Leon MB, PopmaJJ, et al. Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease:a randomized controlled trial. J Am Coll Cardiol,2006.48: 2440-2447.
    32. Kang KW, Ko YG, Shin DH, et al. Comparison of vascular remodeling in patients treated with sirolimus-versus zotarolimus-eluting stent following acute myocardial infarction. Clin Cardiol.2012 Jan; 35(1):49-54.
    33. Shin DI, Seung KB, Kim PJ, et al. Long-term coronary endothelial function after zotarolimus-eluting stent implantation. A 9 month comparison between zotarolimus-eluting and sirolimus-eluting stents. Int Heart J. 2008 Nov;49(6):639-652.
    34. Stefanini GG, Serruys PW, Silber S, et al. The impact of patient and lesion complexity on clinical and angiographic outcomes after revascularization with zotarolimus-and everolimus-eluting stents:a sub study of the RESOLUTE A11 Comers Trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol.2011 May 31:57(22):2221-2232.
    35. Gogas BD, Radu M, Onuma Y, et al. Evaluation with in vivo optical coherence tomography and histology of the vascular effects of the everolimus-eluting bioresorbable vascular scaffold at two years following implantation in a healthy porcine coronary artery model: implications of pilot results for future pre-clinical studies. Int J Cardiovasc Imaging.2012 Mar;28(3):499-511.
    36. Kubo T, Nakamura N, Matsuo Y, et al. Virtual histology intravascular ultrasound compared with optical coherence tomography for identification of thin-cap fibroatheroma. Int Heart J.2011;52(3):175-179.
    37. Sanchez-Elvira G, Coma-Canella I, Artaiz M, et al. Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography. Heart Int.2010 Dec 31;5(2):e12.
    38. Garcia-Garcia HM, Gonzalo N, Regar E, Serruys PW. Virtual histology and optical coherence tomography:from research to a broad clinical application. Heart.2009;95(16):1362-1374.
    39. Nagai H, Ishibashi-Ueda H, Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis. Catheter Cardiovasc Interv.2010 May 1; 75 (6):961-963.
    40. Kawasaki M, Hattori A, Ishihara Y, et al. Tissue characterization of coronary plaques and assessment of thickness of fibrous cap using integrated backscatter intravascular ultrasound. Comparison with histology and optical coherence tomography. Circ J.2010 Nov; 74 (12):2641-8.
    1. Li sette Okkels Jensen, Per Thayssen, DMSci, et al. Influence of a Pressure Gradient Distal to Implanted Bare-Metal Stent on InStent Restenosis After Percutaneous Coronary Intervention. Circulation. 2007:116:2802-2808.
    2. Maarten J. Suttorp, Gert J. Laarman, Braim M. Rahel, et al. Primary Stent ing of Totally Occluded Native Coronary Arteries II (PRISON II): A Randomized Comparison of Bare Metal Stent Implantation With Sirolimus-Eluting Stent Implantation for the Treatment of Total Coronary Occlusions. Circulation.2006:114:921-928.
    3. Brendan Doyle, Char an jit S. Rihal, Crochan J.0'Sullivan, et al. Outcomes of Stent Thrombosis and Restenosis During Extended Follow-Up of Patients Treated With Bare-Metal Coronary Stents. Circulation. 2007:116:2391-2398.
    4. Katsumi Inoue, Kazuaki Mitsudo, Masakiyo Nohuyoshi. Comparative Pathologic Studies of Chronic Tissue Responses to Repeated Bare-Metal versus Drug-Eluting Stent Implantation within the Same or Different Types of Stents. Circulation.2008; 118:S_748.
    5. Gregg W. Stone, Stephen G. Ellis, Antonio Colombo, et al. Offsetting Impact of Thrombosis and Restenosis on the Occurrence of Death and Myocardial Infarction After Paclitaxel-Eluting and Bare Metal Stent Implantation. Circulation.2007:115:2842-2847.
    6. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 2005;293:2126-30.
    7. Cut lip DE, Bairn DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 2001:103:1967-71.
    8. Flores-Rios X, Marzoa-Rivas R, Abugattas-de Torres JP, et al. Late thrombosis of paclitaxel-eluting stents:long-term incidence, clinical consequences and risk factors in a cohort of 604 patients. Am Heart J 2008:155:648-53.
    9. Iakovou I, Schmidt T, Bonizzomi E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA.2005:293:2126-2130.
    10. Aloke V. Finn MD, Michael Joner MD, et al. Pathological Correlates of Late Drug-Eluting Stent Thrombosis. Strut Coverage as a Marker of Endothelialization. Circulation,2007,115:2435-2441.
    11. Aloke V. Finn; Gaku Nakazawa; et al. Vascular Responses to Drug Eluting Stents:Importance of Delayed Healing. Arterionscler Thromb Vasc boil,2007,27:1500-1510.
    12. Michael Joner, Aloke V. Finn, Andrew Farb, et al. Pathology of Drug-Eluting Stents in Humans Delayed Healing and Late Thrombotic Risk. J Am Coll Cardiol,2006,48:193-202.
    13. Holmes Jr DR, Kereiakes DJ, LaskeyWK, et al. Thrombosis and drug-eluting stents:an objective appraisal. J Am Coll Cardiol 2007;50:109-18.
    14. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis:strut coverage as a marker of endothelialization. Circulation,2007,115:2435-2441.
    15. Cook S, Wenaweser P, Togni M, Billinger M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation.2007 May 8; 115(18):2426-2434.
    16. Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis:strut coverage as a marker of endothelialization. Circulation.2007 May 8; 115(18):2435-2441.
    17. Nakazawa G, Finn AV, Joner M, et al. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients:an autopsy study. Circulation.2008 Sep 9;118(11):1138-1145.
    18. Machecourt J, Danchin N, Lablanche JM, et al. Risk factors for stent thrombosis after implantation of sirolimus-eluting stents in diabetic andnondiabeticpatients:the EVASTENT Matched-Cohort Registry. JAm Coil Cardiol,2007,50(6):501-508.
    19. Togni M, Raber L, Cocchia R, et al. Local vascular dysfunction after coronary paditaxel-eluting stent implantation. Int J Cardiol.2007 Aug 21; 120(2):212-220.
    20. Shin DI, Kim PJ, Seung KB, et al. Drug-eluting stent implantation could be associated with long-term coronary endothelial dysfunction. Int Heart J.2007 Sep; 48 (5):553-567.
    21. McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004 Oct 23-29:364(9444):1519-1521.
    22. Togni M, Windecker S, Cocchia R, et al. Sirolimus-eluting stents associated with paradox ic coronary vasoconstriction. J Am Coll Cardiol. 2005 Jul 19:46(2):231-236.
    23. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation.2001 Jul 24; 104 (4):473-479.
    24. Virmani R, Liistro F, Stankovic G, et al. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation.2002 Nov 19; 106(21):2649-2651.
    25. Colombo A, Orlic D, Stankovic G, et al. Preliminary observations regarding angiographic pattern of restenosis after rapamycin-eluting stent implantation. Circulation.2003 May 6; 107(17):2178-2180.
    26. Hamilos M, Sarma J, Ostojic M, et al. Interference of drug-eluting stents with endothelium-dependent coronary vasomotion:evidence for device-specific responses. Circ Cardiovasc Interv.2008 Dec; 1(3):193-200.
    27. van den Heuvel M, Sorop 0, Batenburg WW, et al. Specific coronary drug-eluting stents interfere with distal microvascular function after single stent implantation in pigs. JACC Cardiovasc Interv.2010 Jul; 3 (7):723-730.
    28. van Beusekom HM, Sorop 0, van den Heuvel M, et al. Endothelial function rather than endothelial restoration is altered in paclitaxel-as compared to bare metal-, sirolimusand tacrolimus-eluting stents. Eurolntervention.2010 May;6(1):117-125.
    29. Wessely R, Schomig A, Kastrati A. Sirolimus and Paclitaxel on polymer-based drug-eluting stents:Similar but different. J Am Coll Cardiol 2006; 47:708-714.
    30. Motreffa P, Souteyranda G, Levesque S, et al. Comparative analysis of neointimal coverage with paclitaxel and zotarolimus drug-eluting stents, using optical coherence tomography 6 months after implantation. Arch Cardiaovasc Dis.2009; 102(8-9):617-624.
    31. Yong Xie, Masamichi Takano, Daisuke Murakami, et al. Comparison of Neointimal Coverage by Optical Coherence Tomography of a Sirolimus-Eluting Stent Versus a Bare-Metal Stent Three Months After Implantation. Am J Cardiol 2008; 102:27-31.
    32. Guagliumi G, Costa MA, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction:optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation.2011 Jan 25; 123 (3):274-281
    33. Guagliumi G, Sirbu V, Bezerra H, et al. Strut coverage and vessel wall response to zotarolimus-eluting and bare-metal stents implanted in patients with STsegment elevation myocardial infarction:the OCTAMI (Optical Coherence Tomography in Acute Myocardial Infarction) Study. JACC Cardiovasc Interv.2010 Jun;3(6):680-687.
    34. Kandzari DE, Leon MB, Popma JJ, et al. Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease:a randomized controlled trial. J Am Coll Cardiol,2006.48: 2440-2447.
    35. Kang KW, Ko YG, Shin DH, et al. Comparison of vascular remodeling in patients treated with sirolimus-versus zotarolimus-eluting stent following acute myocardial infarction. Clin Cardiol.2012 Jan; 35(1):49-54.
    36. Shin DI, Seung KB, Kim PJ, et al. Long-term coronary endothelial function after zotarolimus-eluting stent implantation. A 9 month comparison between zotarolimus-eluting and sirolimus-eluting stents. Int Heart J. 2008 Nov;49(6):639-652.
    37. Stefanini GG, Serruys PW, Silber S, et al. The impact of patient and lesion complexity on clinical and angiographic outcomes after revascularization with zotarolimus-and everolimus-eluting stents:a substudy of the RESOLUTE A11 Comers Trial (a randomized comparison of a zotarolimus-eluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol.2011 May 31:57(22):2221-2232.
    1. Katsumi Inoue, Kazuaki Mitsudo, Masakiyo Nobuyoshi. Comparative Pathologic Studies of Chronic Tissue Responses to Repeated Bare-Metal versus Drug-Eluting Stent Implantation within the Same or Different Types of Stents. Circulation.2008; 118:S_748.
    2. Gregg W. Stone, Stephen G. Ellis, Antonio Colombo, et al. Offsetting Impact of Thrombosis and Restenosis on the Occurrence of Death and Myocardial Infarction After Paclitaxel-Eluting and Bare Metal Stent Implantation. Circulation.2007; 115:2842-2847.
    3. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 2005:293:2126-30.
    4. Cutlip DE, Baim DS, Ho KK, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 2001; 103:1967-71.
    5. Flores-Rios X, Marzoa-Rivas R, Abugattas-de Torres JP, et al. Late thrombosis of paclitaxel-eluting stents:long-term incidence, clinical consequences and risk factors in a cohort of 604 patients. Am Heart J 2008; 155:648-53.
    6. Aloke V. Finn MD, Michael Joner MD, et al. Pathological Correlates of Late Drug-Eluting Stent Thrombosis. Strut Coverage as a Marker of Endothelialization. Circulation,2007,115:2435-2441.
    7. Aloke V. Finn; Gaku Nakazawa; et al. Vascular Responses to Drug Eluting Stents:Importance of Delayed Healing. Arterionscler Thromb Vase boil,2007,27:1500-1510.
    8. Michael Joner, Aloke V. Finn, Andrew Farb, et al. Pathology of Drug-El ut ing Stent s in Humans Delayed Healing and Late Thrombotic Risk. J Am Coll Cardiol,2006,48:193-202.
    9. Lisette Okkels Jensen, Per Thayssen, DMSci, et al. Influence of a Pressure Gradient Distal to Implanted Bare-Metal Stent on InStent Restenosis After Percutaneous Coronary Intervention. Circulation. 2007:116:2802-2808.
    10. Maarten J. Suttorp, Gert J. Laarman, Braim M. Rahel, et al. Primary Stent ing of Totally Occluded Native Coronary Arteries II (PRISON II): A Randomized Comparison of Bare Metal Stent Implantation With Sirolimus-Eluting Stent Implantation for the Treatment of Total Coronary Occlusions. Circulation.2006; 114:921-928.
    11. Brendan Doyle, Charanjit S. Rihal, Crochan J.0'Sullivan, et al. Outcomes of Stent Thrombosis and Restenosis During Extended Follow-Up of Patients Treated With Bare-Metal Coronary Stents. Circulation. 2007:116:2391-2398.
    12. Radu M, J0rgensen E, Kelbsek H, et al. Optical coherence tomography at follow-up after percutaneous coronary intervention:relationship between procedural dissections, stent strut malapposition and stent healing. Eurolntervention.2011 Jul;7(3):353-361.
    13. Bartis P, Van Soest G, Sermys PW, et al. Intracoronary optical coherence tomography and the evaluation of stents [J]. Expert Rev Med Devices.2009, 6(2):157-167.
    14. Gerckens U, Lira VY, Grube E, Optical coherence tomography imaging in coronary drug-eluting stenting[J]. Rev Esp Cardiol.2005,58(12):1469.
    15. Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence tomography:optimisation of image acquisition and quantitative assessment of stent strut apposition. EuroInterv,2007,3:128-136.
    16. Kim JS, Fan C, Choi D, et al. Different patterns of neointimal coverage between acute coronary syndrome and stable angina after various types of drug-eluting stents implantation; 9-month follow-up optical coherence tomography study. Int J Cardiol.2009.
    17. Gutierrez-Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up:an optical coherence tomography substudy from the RESOLUTE A11Comers trial. Eur Heart J.2011 Oct;32(19):2454-63.
    18. Gogas BD, Radu M, Onuma Y, et al. Evaluation with in vivo optical coherence tomography and histology of the vascular effects of the everolimus-eluting bioresorbable vascular scaffold at two years following implantation in a healthy porcine coronary artery model: implications of pilot results for future pre-clinical studies. Int J Cardiovasc Imaging.2012 Mar;28(3):499-511.
    19. Kubo T, Nakamura N, Matsuo Y, et al. Virtual histology intravascular ultrasound compared with optical coherence tomography for identification of thin-cap fibroatheroma. Int Heart J.2011;52(3):175-179.
    20. Sdnchez-Elvira G, Coma-Canella I, Artaiz M, et al. Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography. Heart Int.2010 Dec 31; 5 (2):e12.
    21. Garcia-Garcia HM, Gonzalo N, Regar E, Serruys PW. Virtual histology and optical coherence tomography:from research to a broad clinical application. Heart.2009;95(16):1362-1374.
    22. Nagai H, Ishibashi-Ueda H, Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis. Catheter Cardiovasc Interv.2010May 1; 75 (6):961-963.
    23. Kawasaki M, Hat tori A, Ishihara Y, et al. Tissue characterization of coronary plaques and assessment of thickness of fibrous cap using integrated backseatter intravascular ultrasound. Comparison with histology and optical coherence tomography. Circ J.2010 Nov; 74 (12):2641-8.
    24. Souteyrand G, Levesque S, Ouchchane L, et al. Spatial distribution of neo-intimal hyperplasia 6 months after zotarolimus-eluting stent implantation, analysed by optical coherence tomography. Arch Cardiovasc Dis.2011 Mar; 104 (3):147-154.
    25. Kim JS, Kim BK, Jang IK, et al. Comparison of neointimal coVerage betwEen zotaRolimus-eluting stent and everolimus-eluting stent using Optical Coherence Tomography (COVER OCT). Am Heart J.2012 Apr; 163(4):601-7.
    26.26Gutierrez-Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up:an optical coherence tomography substudy from the RESOLUTE A11 Comers trial. Eur Heart J.2011 Oct;32(19):2454-63.
    1. Nishinura RA, Edwards WD, Warnes CA, etal. Intravascular ultrasound imaging:in vitro validation and pathologic correlation [J]. J Am Coll Cardiol,1990,16 (1):145-154.
    2. Vince DG, Dixon Kj, Cothren RM, et al. Comparison of tex ture analysis methods for the characterization of coronary plaques in intravascular ultrasound images[J]. Comput Med Imaging Graph,2000,24(4):221-229.
    3. Elliott MR, Thrush AJ. Measurement of intravaseular ul asound images. Physiol Meas.1996,17:259-265.
    4. Brczinski ME, Teamey GJ, Weissman NJ, et al. Assessing atherosclemtie plague morphology:comparison of optical coherence tomography and high frequency intravaseular ultrasound. Heart,1996,77:397-403.
    5. Huang D, Swanson EA, Lin CP, et al. Optical Coherence Tomography. Science,1991,254:1178-1181.
    6. Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy:properties and demonstration of vascular pathology. Circula tion.1996; 93:1206-13.
    7. Tian F, Chen YD, Sun ZJ, et al. Evaluation of neointimal coverage of overlapping sirolimus-eluting stents by optical coherence tomography. Chin Med J (Engl).2009 Mar 20; 122 (6):670-4.
    8. Tannno M, Ichimura T, Saeki A. Device for measure the light wave of reflected image. In official Gazette for patient application (Kokoku) Japan,1994.
    9. Murakami D, Takano M, Yamamoto M, et al. Novel neointimal formation over sirolimus-eluting stents identified by coronary angioscopy and optical coherence tomography. J Cardiol.2009 Apr;53(2):311-3.
    10. Choma MA, Sarllnic MV, Yang CH, et al. Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Express, 2003, 11 2183-2189.
    11. Gonzalo N, Tearney GJ, Serruys PW, et al. Second generation optical coherence tomography in clinical practice. High-speed data acquisition is highly reproducible in patients undergoing percutaneous coronary intervention. Rev Esp Cardiol,2010,63:893-903.
    12. Takarada S, Imanishi T, Liu Y, et al. Advantage of next generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv,2010,75:202-206.
    13. GonzaloN, Escaned J, Alfonso F, et al. Is refined OCT guidance of stent implantation needed? Euro intervention Supplement,2010,6:145-153
    14. Tempi i n C, Meyer M, Muller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing:comparison with light and electron microscopy. EurHeart J,2010,31:1792-1801.
    15. Lee KS, Meemon P, Dallas W, et al. Dual detection full range frequency domain optical coherence tomography. Opt Lett,2010,35:1058-1060.
    16. HiroT, LeungCY, De Guzman S, et al. Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue[J]. Am Heajt J,1997,133:1-7.
    17. Rodriguez-Granillo GA, Garcia-Gareia HM, Valgimigli M, et al. In vivo relationship between compositional and mechanical imaging of coronary arteries. Insights from intravascular ultrasound radio frequency data analysis [J]. Am Heart J,2006,151 (5):1025.
    18. Pandian NG, Kreis A, Brockway B. Detection of intra arterial thrombus by high frequency two-dimentional ultrasound imaging in vitro and vivo studies. Am J Cardiol,1990.65:1280-1283.
    19. Siegel RJ, Ariani M, FishbeinMG, et al. Histopathological validation of angioscopy and intravascular ultrasound. Circulationo 1991,84: 109.117.
    20. Jang IK, Bouma BE, Rang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002:39:604-9.
    21. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation,2002,106:1640-1645.
    22. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. AM J cardiol,2006,97:1713-1717.
    23. (Virman R, Kolodgie FD, Burke AP, et al. Scheme for athrosclerotic lesions. Arterioscler Thromb Vase Biol,2000,20:1262-1275.
    24. Tobis J, Azarbal B, SI a vin L. Assessmen t of in termediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol,2007, 49:839-848.
    25. Takagi A, Tsurumi Y, Ishii Y, et al. Clinical potential of intravaseular ultrasound for physiological assessment of coronary stenosis. Relationship between quantitative ultrasound tomography and pressure derived fractional flow reserve. Circulation,1999,100:250-522.
    26. Briguori C, Anzuini A, Airoldi F, et al. Intravaseular ultrasound criteria for the assessment of the functional significan ce of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol,2001,87:136-141.
    27. Fernandes MR, SilvaGV, Caixeta A, et al. Assessing Intermediate Coronary Lesions:Angiographie Prediction of Lesion Severity on Intravaseular Ultrasound. J Invasive Cardiol,2007,19:412-416.
    28. Sano K, Mintz GS, Carlier SG, et al. Assessing intermediate left main coronary lesions using intravaseular ultrasound. Am Heart J,2007,154: 983-988.
    29. Nishioka T,Amanullah AM, Luo H, et al. Clinical validation of intravaseular ultrasound imaging for assessment of coronary stenosis severity:comparison with stress myocardial perfusion imaging. J Am Coll Cardiol,1999,33 (7):1870-8.
    30. Jasti V, Ivan E, Yalamanchili Vo el al. Correlations betwin fractional flow reserve and intravaseular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation,2004,110:2831-2836.
    31. Abdou SM, Wu CJ. Treatment of aortocoronary dissection complicating anomalous origin right coronary artery and chronic total intervention with intravascular ultrasound guided s ten ting. Catheter Cardiovasc Interv.2011 Nov 15; 78(6):914-919.
    32. Muhammad KI, Lombardi WL, et al. Subintimal guidewire tracking during successful percutaneous therapy for chronic coronary total occlusions: insights from an intravascular ultrasound analysis. Catheter Cardiovasc In terv.2012 Jan 1; 79 (1):43-48.
    33. BanerjeeS, Master R, Brilakis ES. Intravascular ultrasound-guided true lumen re-entry for successful recanalization of chronic total occlusions. J Invasive Cardiol.2010 Dec;22(12):608-610.
    34. Krishnamurthy VN, Eliason JL, Henke PK, et al. Intravascular ultrasound-guided true lumen reentry device for recanalization of unilateral chronic total occlusion of iliac arteries:technique and follow-up. Ann Vase Surg.2010 May;24(4):487-497.
    35. Rathore S, Katoh O, Tuschikane E, et al. A novel modification of the retrograde approach for the recanalization of chronic total occlusion of the coronary arteries intravascular ultrasound-guided reverse controlled antegrade and retrograde tracking. JACC Cardiovasc Interv. 2010 Feb:3 (2):155-164.
    36. Colombo A,Hall P, Nakamura S, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance [J]. Circulation,1995,91:1676-1688.
    37. Uren NG, Schwarzacher SP, Metz JA, et al., for the POST Registry Investigators. Predictors and outcomes of stent thrombosis:an intravascular ultrasound registry. Eur Heart J 2002;23:124-32.
    38. Radu M, Jorgensen E, et al. Optical coherence tomography at follow-up after percutaneous coronary intervention:relationship between procedural dissections, stent strut malapposition and stent healing. Eurolntervention.2011 Jul; 7(3):353-361.
    39. Guagliumi G, Costa MA, Sirbu V, et al. Strut coverage and late malapposition with paclitaxel-eluting stents compared with bare metal stents in acute myocardial infarction:optical coherence tomography substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) Trial. Circulation.2011 Jan 25;123(3):274-281.
    40. Kim WH, Lee BK, Lee S, et al. Serial changes of minimal stent malapposition not detected by intravascular ultrasound:follow-up optical coherence tomography study. Clin Res Cardiol.2010 Oct; 99 (10):639-644.
    41. Hou JB, Liu HM, Ma LJ, et al. Morphologic characteristics of late stent malapposition after drug-eluting stents implantation by optical coherence tomography follow-up. Chin Med J (Engl).2010 Mar 5:123(5):581-584.
    42. Santos MC, Lin T, Barlis P. In-stent restenosis associated with stent malapposition:seven year optical coherence tomography findings. Int J Cardiol.2011 Feb 17; 147(1):149-151.
    43. Bouki KP, Chatzopoulos DN, Katsafados MG, et al. Late acquired stent malapposition detected by optical coherence tomography examination. Int J Cardiol.2009 Nov 12; 137(3):e77-8.
    44. Radu M, Jorgensen E, Kelbaek H, et al. Optical coherence tomography at follow-up after percutaneous coronary intervention:relationship between procedural dissections, stent strut malapposition and stent healing. EuroIntervention.2011 Jul; 7(3):353-361.
    45. Bouma BE, Tearney GJ, Yabushita H, et al. Evaluation of intracoronary stent ing by intravascular optical coherence tomography[J]. Heart,2003, 89(3):317-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700