用户名: 密码: 验证码:
基于实验数据挖掘与细胞自动机的结构分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的结构分析技术,以有限单元法为代表,都是基于本构关系和机理的结构工作性能的研究,并应用于所有工程领域。然而,结构本身变异性导致的结构反应与理论分析结果的差别,是长期存在但又没有深入研究的问题。目前,对于变异性的研究,一般处理为随机的变异系数,再与结构的某些物理参数相结合。这样处理变异性的方法,虽然能反映结构的变异性,但是存在局限性和片面性,缘于这种方法只是经验与统计参数分析,并未给出基于理论与实验的结构变异性模型,自然在诸如砌体结构的一些有限元分析中,很难得到与试验结果接近的预测结果。
     本文通过对砌体结构实验与理论分析的结果观察研究发现:结构变异性不是完全随机的因素,过去按随机因素处理的变异性中存在确定性,而且这种确定性与结构构造(几何,约束)有关。因此,就激发了这样的想法:应用最新的分析理论,例如数据挖掘与细胞自动机等智能技术,对这种确定性进行提炼建模,然后反馈到现有分析技术中,改进分析方法,提高预测精度,达到更精确地预测结构反应的目的。
     首先,对大量不同几何尺寸,不同边界约束条件和不同受力方式的砌体墙板进行理论数值与试验结果的对比分析,重点考察了对比数值的趋势性与分布,从中显现了一个规律性,即在同一墙板或者任意几何与约束性质不同的墙板内的各个区域,如果结构内两个局部区域的相对位置类似、以及控制两个区域的约束类型类似,则相应的理论与试验数比值或者比值的局部分布模式就“相同”。据此,本文提出了结构局域性质的概念,以描述结构区域在相对位置与约束性质上的类似。这样,就有了结构局域性质数据挖掘的雏形,从而又提出了对于其它结构体系进行数据挖掘,获得局域性质系数的方法。
     进而,本文提出,将有限元分析计算的位移值与试验实测位移值的比值定义为局域性质系数。局域性质系数的意义体现在类似结构局部区域的性质类似,就是说,不同结构上的两个类似区域具有近似或相同的局域性质系数。因此,可以应用局域性质系数修正砌体墙板的有限元模型,具体做法:先将全局弹性模量与各个区域的局域性质系数相乘,使结构不同区域的弹性模量不同;再进行结构的有限元分析。通过三组试验墙板(竖向荷载作用墙板、横向荷载作用小墙、横向荷载作用墙板)的计算表明:应用局域性质系数进行结构的有限元分析,得到的分析结果更接近于试验结果,尤其是在墙板中间区域,有限元的结果与试验结果吻合更好。
     这样,通过简单数据挖掘得到了试验结构的各个局域性质系数,该方法能将结构一部分本是确定的“变异量”从原来的“随机量”中提取出来,使这部分确定性的结构性质定量地体现在结构分析中,使分析结果更真实地反映实际情况。
     接着,本文探讨了类似区域的性质以及匹配准则。由于在表现区域状态以及自动匹配类似区域上的困难,本文借用了ZHOU最早在砌体墙板分析中建立的细胞自动机应用技术,并将其拓展到其它结构体系,给出了相应的状态值的算法。也就是说,本文给出了一种计算各种结构局部区域状态值的统一公式,并通过聚类分析建立了类似区域的匹配准则。同时,为甄别类似区域匹配准则的适用范围,定义了结构相似度的概念,给出了结构相似度的计算公式,量化了匹配结果准确性的判断。
     最后,以算例验证上面提出的新概念新方法。除应用前三组试验墙板提炼的局域性质系数修正各自的有限元模型进行分析外,重新选择第四组试验墙板SB06作为基础板,预测横向荷载作用墙板的不同变形行为。由于基础板和待预测板的几何尺寸不一致,应用细胞自动机模型时,对传递函数初值和传递系数进行修正,提出长度和高度两个方向的修正系数公式。在基础板边界初始值和传递系数不变的情况下,通过修正系数调整待预测板的边界初始值和传递系数,从而匹配出两者间的类似区域,进而预测出其变形。
     应用智能技术进行结构分析,挖掘局域性质系数,匹配类似区域,修正有限元模型,这种方法不仅能预测出一种变形行为,还能通过调整传递系数实现多种变形行为的预测。
The traditional structural analysis techniques, such as the finite element method, study structural performances all based on the constitutive condition and mechanism, which are applied to all areas of engineering. However, an issue has existed for a long time, that is, the difference between the structural response caused by the variability of the structure itself and the corresponding analytical result has not been studied fully in theory. At present, the variability of a structure is generally treated as a random factor and then connected with some physical parameters of the structure. This method on dealing with variability can only reflect the variability of structure limitedly and one-sidedly. In other words, this treatment does not present the structural variability in basis of theory and mechanism and is only based on the experience with statistical parametric analysis. Hence, it is difficult for the FEA to predict the structural response of the masonry structure close to experimental ones.
     During experimental and theoretical analysis of masonry structure, it was found that structural variability is not completely caused by random factors, but it exists in certainty, which is affected by the structural geometrical property and boundary constraints or others. Therefore, an idea was inspired in this study: If it is possible that the latest intelligent techniques, such as data mining and cellular automata, are applied to model this certainty existed in variability, and then the model is back fed to the existing analytical methods, it can improve the analytical methods so that the predicted structural response is more accurate.
     First, a comparative analysis of their theoretical and experimental results is done to study the tendency and distribution of the comparative values for a large number of masonry wall panels inclusive of different configurations. From the study, a regularity emerges: for the various zones within the same wall panel or different wall panels with different configurations, if the relative positions of two local zones are similar, and the constraints governing the two zones are also similar, the ratio between theoretical and experimental values are basically the same; besides, the distribution patterns of the ratio values at local regions are also similar. Accordingly, this paper presents the concept of the structural local property, which describes the similarity of the relative positions of the zones and the structural constraints. In this way, a prototype of the structural local property is formed corresponding to data mining. Furthermore, the method is proposed to obtain the local property coefficient of other structural systems based on the data mining technology.
     Second, this paper defines the local property coefficient as the ratio of the displacement values of the finite element analysis to the corresponding experimental displacement values at measured points. The significance of coefficient is in the similar property relating to the similar local zones within structures, that is, two similar zones in different structures have the same local property coefficient. Therefore, the finite element model of masonry wall panel can be modified by the local property coefficients of all local zones. The way for the modification is: the global elastic modulus is multiplied by the local property coefficients of all zones, so that the elastic modulus of the structure in different zones is different; then, the modified elastic modulus is used in the FEA of the structure. By three sets of test wallets and wall panels, the vertically loaded wall panel, the laterally loaded wallette and the test of laterally loaded wall panel, the application of the local property coefficients in their FEA can make the analytical results closer to the experimental results, especially in the center zones of the wall panel。
     In this way, it obtains the various local property coefficients about test structures, through a simple data mining. This method can extract a part of“variance”of the structure which is considered random in the past analytical tasks; and this part of certainty of the structural“variance”property can reflect in the quantitative analysis of the structure and makes the analysis results more accurately embody the real situation.
     Third, the paper studies the property of the similar zone and the corresponding rule for matching zone similarity. As it is difficult to describe the regional states and to automatically match similar zones, this paper extends Zhou’s research results, the cellular automata model of masonry wall panel, to other structural systems and gives out the new algorithm of the zone state value. In other words, this paper presents a general formula for calculating the zone state value of various structures, and establishes the rule for matching similar zone by clustering analysis. Meanwhile, in order to discriminate the scope of rule for matching zone similarity, the concept of structural similarity level is proposed and the corresponding formula is given to compute the similarity level. Structural similarity level quantifies the accuracy of the matching results.
     Finally, it verifies the above new concept and new method by case study. Three sets of local property coefficients are applied to modify the corresponding finite element models. Besides, taking the fourth set of the test panel named Panel SB06 as the base panel, the FEA of the wall panel is done to predict the different deformation modes of other unknown panels. As the geometrical size of predicted panel different from that of the base panel, it is necessary to amend the initial values of the transfer function and transfer coefficients, in application of cellular automata model. This paper presents two formulas for modifying initial value in the directions of length and height. In the case of the constant boundary initial value and the transfer coefficient of the base panel, both values of the predicted panel are amended using the two formulas and then the similar zones between the two panels are matched using the proposed rule; thus, the deformation of unknown panel can be predicted accurately.
     The method that intelligent techniques are used to conduct data mining of local property of structures, to match zone similarity and improve the FEA model, can predict not only a deformation mode, but also a set of deformation modes by adjusting the values of the transition efficient.
引文
1 R. W. Clough. The Finite Element Method in Plane Stress Analysis. Proc. 2nd Conf Electronic Computation, ASCE, Pittsburg, Pasadena, 1960.
    2常兆中.混凝土砌块结构非线性地震反应分析及基于性能的抗震设计方法.中国建筑科学研究院博士学位论文. 2005: 2.
    3 V. Prakash, G. H. Powell, S. Campbell. DRAIN-2DX: Basic Program Description and User Guide. Report No. UCB/SEMM-1993/17, University of California, Berkeley, CA, 1993.
    4 R. Valles, A. Reinhorn, S. Kunnath, C. La, A. Madan. IDARC 2D Version 4.0: A Program for the Inelastic Damage Analysis of Buildings. Technical Report NCEER-96-0010, National Center for Earthquake Engineering Research, State University of New York, Buffalo, New York, 1996.
    5 S. K. Kunnath, A. M. Reinhorn, R. F. Lobo. IDARC Version 3.0: A Program for the Inelastic Damage Analysis of RC Structures. Technical Report NCEER-92-0022, National Center for Earthquake Engineering Research, State University of New York, Buffalo, New York, 1992.
    6李康宁,洪亮.结构三维弹塑性分析方法及计算机程序CANNY.四川建筑科学研究. 2001, 27(4): 1~6.
    7 F. McKenna. Object-Oriented Finite Element Analysis: Frameworks for Analysis, Algorithms and Parallel Computing. University of California, Berkeley, 1997.
    8施楚贤.砌体结构理论与设计.中国建筑工业出版社, 2003: 3~7.
    9施楚贤.砌体结构疑难释义.中国建筑工业出版社, 2000.
    10 R. S. Robert, L. R. Walter. Reinforced Masonry Resign. U.S. 1980: 2~8.
    11刘振宇,叶燎原,潘文.等效体积单元(RVE)在砌体有限元分析中的应用.工程力学. 2003, 20(2): 31~35.
    12王达诠,武建华.砌体RVE均质过程的有限元分析.重庆建筑大学学报. 2002, 24(4): 35~39.
    13孙伟民.预应力混凝土砌块砌体抗裂性能的有限元分析.四川建筑科学研究. 2003, 29(4): 88~91.
    14秦杰,朱炯.砌体房屋受地表变形的有限元分析.工业建筑. 2002, 32(5): 41~44.
    15全成华,唐岱新.配筋砌块砌体剪力墙抗剪性非线性分析.低温建筑技术.2002, 90(4): 49~50.
    16苏益声,郑宏宇,邓志恒.约束刚度对砌体结构中现浇楼板裂缝影响的试验分析.建筑结构. 2002, 32(10): 66~68.
    17李英民,韩军,刘立平. ANSYS在砌体结构非线性有限元分析中的应用研究.重庆建筑大学学报. 2006, 28(5): 90~96.
    18 U. Fayyad, P. S. Synth, Uthurusamy. Advances in Knowledge Discovery and Data Mining. MIT Press, 1996.
    19 J. W. Han, M. Kamber. Data Mining: Concepts and Techniques. Academic Press. 2000.
    20王桂芹,黄道.数据挖掘技术综述.电脑应用技术. 2007, 69: 9~14.
    21王锐,马德涛,陈晨.数据挖掘技术及其应用现状探析.电脑应用技术. 2007, 69: 20~23.
    22李丹丹.数据挖掘技术及其发展趋势.电脑应用技术. 2007, 69: 38~40.
    23佟强.科学数据网格中数据挖掘技术研究.中国科学院博士学位论文. 2006:
    1~7.
    24吴绍春.地震预报中的数据挖掘方法研究.上海大学博士学位论文. 2005:1~9.
    25 R. Agrawal, R. Srikant. Mining Sequential Patterns. Eleventh International Conference on Data Engineering, Taipei, Taiwan. 1995: 3~14.
    26 R. Srikant, R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. In Proceedings of the 5th Int. Comf. Extending Database Technology. 1996, 1057: 3~17.
    27 T. R. Mlichael, R. C. Paul. Concepts from Time Series. In Proceedings of the Fifteenth National Conference on Artificial Intelligence. 1998: 739~745.
    28 V. N. Vapnik. Book Review: The Nature of Statistical Learning Theory. Technometrics. 1996, 38(4): 400.
    29 J. R. Quinlan. Introduction of Decision Trees. Machine Learning. 1986, 1(1): 81~106.
    30 J. R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA, Morgan Kaufmann, 1993.
    31 J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975.
    32 D. Heckerman. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery. 1997, 1(1): 79~119.
    33 I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools andTechniques with Java Implementations. China Machine Press, 2003.
    34 S. Wolfram. University and Complexity in Cellular Automata. Physical D: Nonlinear Phenomena, 1984, 10(1): 1~35.
    35 T. Toffoli, N. Margolus. Cellular Automata Machines. The MIT Press, Cambridge, Massachusetts, 1987.
    36 S. Wolfram. Statistical Mechanics of Cellular Automata. Review Modern Physics, 1983, 55(3): 601~644.
    37 A. W. Burks. Essay on Cellular Automata. Uni. of Illinois Press, Urbana, IL, 1970.
    38 J. Von Neumann. Theory of Self-Reproduction Automata. University of Illinois Press, Urbana, IL, 1966.
    39 P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, S. Chattopadhyay. Additive Cellular Automata. Theory and Application, IEEE Computer Society-Wiley, 1997.
    40王真理,李幼铭.细胞自动机地震波模拟的并行化算法.地球物理学报. 1999, 42(3): 410~415.
    41沈成武,唐小兵,杨吉新.平面桁架力学分析的细胞自动机方法初探.武汉交通科技大学学报. 2000, 24(2): 105~108.
    42杨吉新,沈成武,陈定方.细胞自动机方法解小挠度薄板弯曲问题.力学季刊. 2002, 23(2): 260~264.
    43刘劲松,许云,乌达巴拉,刘福田,郝天珧.细胞自动机用于地震偏移数值模拟试验.地球物理学进展. 2004, 19(3): 621~624.
    44李纲,刘杰,傅征祥,刘桂萍.运用细胞自动机模型模拟强震前地震活动时间演化过程.地震. 2004, 24(1): 34~41.
    45吕海波,赵艳林,韦克宇,杨军平.细胞自动机的原理及其在混凝土碳化模型中的应用.桂林工学院学报. 2006, 26(02): 191~195.
    46朱守彪,蔡永恩,刘杰,石耀霖.利用三维细胞自动机模拟地震动活性.北京大学学报(自然科学版). 2006, 42(2): 206~210.
    47 N. Wiener, A. Rosenbluth. The Mathematical Formulation of the Problem of Conduction of Impulses in a Network of Connected Excitable Elements, Specifically in Cardiac Muscle. Arch Inst Cardiol Mex. 1946, 16: 205~265.
    48 S. U. Random. Processes and Transformations. In Proceedings of the International Congress of mathematics. 1952, (2): 85~87.
    49 J. Kari. Theory of Cellular Automata: A Survey. Theoretical Computer Science. 2005, 334(1-3): 3~33.
    50 S. Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-Wekey Publishing Company. 1994.
    51 S. Wolfram. A New Kind of Science. Wolfram Media. 2002.
    52 K. Preston, M. J. B. Duff. Modern Cellular Automata. Theory and Applications. Plenum Press, New York. 1994.
    53 B. B. Lowekamp, L. T. Watson, M. S. Cramer. The Cellular Automata Paradigm for the Parallel Solution of Heat Transfer Problems. Parallel Algorithms and Applications. 1995, 9: 119~130.
    54 Z. Girdal, B. Tatting. Cellular automata for Design of Truss Structures with Linear and Nonlinear Response. Proceedings of the 41st AIAA /ASME/ASCE/ ASH Structures, Structural Mechanics and Materials Conference. Atlanta, USA, 2000: 1580~1591.
    55 J. Wahle, L. Neubert, J. Esser, M. Schreckenberg. A Cellular Automaton Traffic Flow Model for Online Simulation of Traffics. Parallel Computing. 2001, 27: 719~735.
    56 A. Engenio, M. Rassetti. A Cellular Automaton for Elasticity Equations. International Journal of Modern Physics B, 1996, 10(2): 203~218.
    57 E. Kita, T. Toyoda. Structural Design Using Cellular Automaton. Department of Mechano-Information Systems. Nayoya University. 1997.
    58 I. López, R. Salvador, J. Alarcón, F. Moreno. Architectural Design for a Low Cost FPGA-Based Traffic Signal Detection System in Vehicles. VLSI Circuits and Systems III. 2007, 5.
    59 M. Mamei, A. Roli, F. Zambonelli. Emergence and Control of Macro-Spatial Structures in Perturbed Cellular Automata, and Implications for Pervasive Computing Systems. 2005: 337~347.
    60李菁菁,邵培基,黄亦潇.数据挖掘在中国的现状和发展研究.管理工程学报, 2004, 18(3): 10~15.
    61 Q. M. Cheng, T. L. Jason, Wang. DNA Sequence Classification Via an Expectation Maximization Algorithm and Neural Networks: A Case Study. Systems, Man and Cybernetics, Part C: Applications and Review. IEEE Transactions on, 2001, 31(4): 468~475.
    62 G. Adomavicius, A.Tuzhilin. Using Data Mining Methods to Build Customer Profiles. Computer, 2001, 34(2): 74~82.
    63 M. Syeda, Q. Z. Yan, Y. Pan. Parallel Granular Neural Networks for Fast Credit Card Fraud Detection. Fuzzy Systems. Proceedings of the 2002 IEEEInternational Conference. 2002, 1: 572~577.
    64 Bhandari, Inderpal, Colet. Advanced Scount: Data Mining and Knowledge Discovery in NBA Data. Data Mining and Knowledge Discovery, 1997, 1(1): 121~125.
    65 E. F. Codd, S. B Codd, C. T. Salley. Beyond Decision Support. Computer World, 1993, 27(30): 87~89.
    66 Y. Cai, N. Cercone, J. Han. Attribute-oriented Induction in Relational Database. Knowledge Discovery in Databases, MA: AAA/MIT Press, 1991. 213~228.
    67陈红梅,王丽珍.面向属性的量化归纳.计算机研究与发展, 2001, 38(2): 150~156.
    68周生炳,张钹,成栋.基于规则面向属性的数据库归纳的无回溯算法.软件学报, 1999, 10(7): 673~678.
    69蒋嵘,李德毅,范建华.数值型数据的泛概念树的自动生成方法.计算机学报, 2000, 23(5): 470~476.
    70余正环,过泉生,俞蓓华.自备电厂的火电厂值长监视与管理平台系统.宝钢技术, 1997, 4: 28~32.
    71肖利,金远平,徐宏炳.一个新的挖掘广义关联规则算法.东南大学学报, 1997, 27(11): 76~81.
    72毛国君,刘椿年.基于项目序列集操作的关联规则挖掘算法.计算机学报, 2002, 25(4): 417~422.
    73程岩,黄梯云.粗糙集中定量关联规则的发现及其规则约简的方法研究.管理工程学报, 2001, 15(3): 73~77.
    74苑森淼,程晓青.数量关联规则发现中的聚类方法研究.计算机学报, 2000, 23(8): 867~871.
    75倪志伟,蔡庆生,方瑾.用神经网络来挖掘数据库中的关联规则.系统仿真学报, 2000,12(6): 685~687.
    76陆建江.数据库中布尔型及广义模糊型加权关联规则的挖掘.系统工程理论与实践, 2002, 2: 28~32.
    77程继华,施鹏飞.多层次关联规则的有效挖掘算法.软件学报, 1998, 9(12): 937~941.
    78肖利,金远平,徐宏炳.基于多维标度的快速挖掘关联规则.软件学报. 1997, 10(7): 749~753.
    79陆建江,宋自林,钱祖平.挖掘语言值关联规则.软件学报. 2001, 12(4): 607~611.
    80陆建江,钱祖平,宋自林.正态云关联规则在预测中的应用.计算机研究与发展, 2000, 37(11): 1317~1320.
    81肖利,王能斌,徐宏炳.挖掘转移规则:一种新的数据挖掘技术.计算机研究与发展,1998 ,35 (10) :902~906.
    82程继华,施鹏飞.概念指导的关联规则的挖掘.计算机研究与发展, 1999, 36(9): 1092~1096.
    83谢志鹏,刘宗田.概念格与关联规则发现.计算机研究与发展, 2000, 37(12): 1415~1421.
    84慕春棣,戴剑彬,叶俊.用于数据挖掘的贝叶斯网络.软件学报, 2000, 11(5): 660~666.
    85宫秀军,刘少辉,史忠植.一种增量贝叶斯分类模型.计算机学报, 2002, 25 (6): 645~650.
    86季文,周傲英,张亮.一种基于遗传算法的优化分类器的方法.软件学报, 2002, 13(2): 245~249.
    87时施仁,史忠植.基于CBR的中心渔场预报.高技术通讯, 2001, 5: 64~68.
    88周水庚,周傲英,金文. FDBSCAN:一种快速DBSCAN算法.软件学报, 2000, 11(6): 735~744.
    89周水庚,周傲类,曹晶.基于数据分区的DBSCAN算法.计算机研究与发展, 2000, 37(10): 1153~1159.
    90郭建生,赵奕,施鹏飞.一种有效的用于数据挖掘的动态概念聚类算法.软件学报, 2001, 12(4): 582~591.
    91魏藜,宫学庆,钱卫宁.高维空间中的离群点发现.软件学报, 2002, 13(2): 280~290.
    92俞蓓,王军,叶施仁.基于近邻方法的高维数据可视化聚类方法.计算机研究与发展, 2000, 37(6): 714~720.
    93陈宁,陈安,周龙骧.大规模交易数据库的一种有效聚类算法.软件学报, 2001, 12(4): 475~484.
    94曹加恒,张凯,舒风笛.多媒体数据挖掘的相关媒体特征库方法.武汉大学学报, 2000, 46(5): 571~574.
    95周海燕.空间数据挖掘的研究.中国人民解放军信息工程大学博士学位论文. 2003: 1~25.
    96王一清.基于数据挖掘技术的行业级保险反欺骗系统研究.北京交通大学硕士学位论文. 2008: 1~12.
    97耿志强.流程工业粒度数据挖掘技术研究与应用.北京化工大学博士学位论文.2005: 1~35.
    98 M. Ester, K. H. Peter, J. Sander. Algorithms and Applications for Spatial Data Mining. Invited Chapter for Geographic Data Mining and Knowledge Discovery, Research Monographs in GIS, Taylor and Francis. 2001, 1~32.
    99傅传国,高娃.砌体结构.科学出版社,2005.
    100汪剑辉,张洪梅,谢清粮,高永红.防护工程内砖墙模型内水平冲击试验研究.中国土木工程学会防护工程分会第九次学术年会论文集. 2004, 26(6): 511~515.
    101 G. C. Zhou. Application of Stiffness/Strength Corrector and Cellular Automata in Predicting Response of Laterally Loaded Masonry Panels. PhD Thesis, University of Plymouth, UK. 2002.
    102 A. W. Hendry. The Lateral Strength of Unreinforced Brickwork. The Structural Engineer. 1973, 51(2): 43~50.
    103 A. W. Hendry, A. M. A. Kheir. The Lateral Strength of Certain Brickwork Panels. Proceedings 4th International Brick Masonry Conference, Bruges. 1976.
    104 A. W. Hendry. Masonry Research in the UK 1960~95. Masonry International. 1996, 9(3): 71~74.
    105 A.W. Hendry. The Future of Masonry Research in the UK. Masonry International, 1997, 10(3): 63~65.
    106 A. W. Hendry, B. P. Sinha, S. R. Dacies. Design of Masonry Structures. E & FNSPON, An Imprint of Chapman & Hall. 1997.
    107 A. W. Hendry. Structural Masonry. Second Edition. Macnillan Press Ltd. 1998.
    108 B. A. Haseltine, H. R. Hodgkinson. Wind Effects on Brick Panel Walls-Design Information. Proceedings of the. 3rd International Brick Masonry Conference, Essen, Germany. 1973.
    109 H. W. H. West, H. R. Hodgkinson, W. F. Webb. The Resistance of Clay Brick Walls to Lateral Loading. Technical Note, No. 176. The British Ceramic Research Association. 1971.
    110 H. W. H. West, H. R. Hodgkinson, W. F. Webb. Lateral Loading Tests on Walls with Different Boundary Conditions. Proceedings of the. 3rd International Brick Masonry Conference, Essen, Germany. 1973, 180~186.
    111 H. W. H. West, H. R. Hodgkinson, W. F. Webb. The Resistance of Clay Brick Walls to Lateral Loading, Part 2. Technical Note, No. 226. The British Ceramic Research Association. 1974.
    112 H. W. H. West, H. R. Hodgkinson, B. A. Haseltine. Design of Lateral Loaded Wall Panels. Technical Note, No. 242. The British Ceramic Research Association. 1975.
    113 B. A. Haseltine, H. W. H. West. Design of Laterally Loaded Wall Panels: Part 2. Technical Note, No. 248. The British Ceramic Research Association. 1976.
    114 H. W. H. West. The Flexural Strength of Clay Masonry Determined from Wallettes Specimens. Technical Note, No. 247. The British Ceramic Research Association. 1976.
    115 H. W. H. West, H. R. Hodgkinson, B. A. Haseltine. The Lateral Resistance of Walls with one Free Vertical Edge. Proceedings 5th International Brick Masonry Conference, Washington, United State. 1979.
    116 H. W. H. West, H. R. Hodgkinson, J. F. Goodwin, B. A. Haseltine. The Resistance to Lateral Loads of Walls Built of Calcium Silicate Bricks. Proceedings of the 5th International Brick Masonry Conference, Technical Note 288. Washington, United State. 1979.
    117 H. W. H. West. The Development of Masonry. Masonry International. 1998, 11(3).
    118 B. P. Sinha. A Simplified Ultimate Load Analysis of Laterally Loaded Model Brickwork Panels of Low Tensile Strength. The Structural Engineer. 1978, 56(4).
    119 S. Y. A. Ma, I. M. May. Masonry Panels under Lateral Loads. Report No. 3, Dept of Engineering, University of Warwich. 1984.
    120 L. R. Baker. Brickwork Panels subject to Face Wind Loads. M. Eng. Sc. Thesis, University of Melbourne. 1972.
    121 L. R. Baker. Structural Action of Brickwork Panels subject to Wind Loads. Journal Australian Ceramic Society. 1973, 9(1).
    122 L. R. Baker. Lateral Loading of Masonry Panels. Structural Design of Masonry. Cement and Concrete Association of Australia. Sydney. 1980.
    123 L. R. Baker. An Elastic Principal Stress Theory for Brickwork Panels in Flexure. Proceedings 6th International Brick Masonry Conference, Rome. 1982.
    124 L. R. Baker. A Principal Stress Failure Criterion for Brickwork in Bi-Axial Bending. Proceedings 6th International Brick Masonry Conference, Rome. 1982.
    125 J. A. James. An Investigation of the Lateral Load Resistance of Walls of Unreinforced Brickwork without Precompression. Report W/LAT/1, Building Development Laboratories, Perth. 1978.
    126 S. J. Lawrence. Design of Masonry Panels for Lateral Loading. Some Interim Recommendations. Technical Record No. 460, Experimental Building Station,Chatswood, NSW. 1980.
    127 S. J. Lawrence. Behaviour of Brick Masonry Walls under Lateral Loading. Vols 1 and 2. PhD Thesis, University of New South Wales, UK. 1983.
    128 A. Cajdert, A. Losberg. Lateral Strength of Reinforced Brick Walls: Design for Wind Loads. Proceedings 4th International Brick Masonry Conference, Bruges. 1976.
    129 A. Cajdert. Laterally Loaded Masonry Walls. Publication 80:5, Chalmers University of Technology, Goteborg. 1980.
    130 D. A. Gairns. Flexural Behaviour of Concrete Blockwork Panels. Master of Building Science Thesis, University of Melbourne, Victoria, Australia. 1983.
    131 C. C. E. Candy. The Energy Line Method for Predicting Ultimate Lateral Pressure on Masonry Wall Panels. Proceedings 8th, International Brick Masonry Conference, Ireland. 1988.
    132 S. J. Lawrence, J. P. Lu. An Elastic Analysis of Laterally Loaded Masonry Walls with Openings. International Symposium on Computer Methods in Structural Masonry, Swansea, UK. 1991: 39~48.
    133 S. J. Lawrence. Out-of-Plane Lateral Load Resistance of Clay Brick Panels. Australia Structural Engineering Conference, Sydney, Australia. 1994.
    134 S. J. Lawrence. The Behaviour of Masonry in Horizontal Flexure. 7th Canadian Masonry Symposium. Canada. 1995.
    135 S. J. Lawrence, R. J. Marshall. The New AS3700 Approach to Lateral Load Design. 5th Australia Masonry Conference, Gladstone, Queensland, Australia. 1998.
    136 J. J. Brooks, L. R. Baker. The Modulus of Elasticity of Masonry. Masonry International. 1998, 12(2): 58~63.
    137 V. L. Chong. The Behaviour of Laterally Loaded Masonry Panels with Openings. PhD Thesis, University of Plymouth, UK. 1993.
    138 R. B. Duarte. The Design of Unreinforced Brickwork Panels with Openings under Lateral Pressure. Masonry International. 1998, 11(3).
    139 J. S. Lee, G. N. Pande, J. Middleton, Kralj. Numerical Modelling of Brick Masonry Panels subject to Lateral Loadings. Computer and Structures. 1996, 61(4): 735~745.
    140 A. Mathew, B. Kumar, B. P. Sinha, R. F. Pedreschi. Analysis of Masonry Panel under Biaxial Bending Using ANNs and CBR. Journal of Computing in CivilEngineering, ASCE. 1999, 13(3): 170~177.
    141 N. Davey, F. G. Thomas. The Structural Uses of Brickwork. Structural and Building Paper, Inst. of Civil Engineering, No. 24. 1950, 19~20.
    142 F. G. Thomas. The Strength of Brickwork. The Structural Engineer. 1953, 31(2): 35~36.
    143 H. C. Plumer, J. A. Blume. Reinforced Brick Masonry and Lateral Force Design. Structural Clay Products Institute, 131, Washington. 1953.
    144 D. G. Grenley, L. E. Cattaneo, E. O. Pfrang. Effect of Edge Load on Flexural Strength of Clay Masonry Systems Utilizing Improved Mortars. Designing Engineering and Constructing with Masonry Products. Houston, Texas, Gulf Publishing. 1969.
    145 P. B. Lourenco. Anisotropic Softening Model for Masonry Plates and Shells. Journal of Structural Engineering, ASCE. 2000, 126(9):1008~1016.
    146 P. B. Lourenco. An Anisotropic Macro-Model for Masonry Plates and Shells: Implementation and Validtion. University of Technology, Delft, Netherlands. 1997.
    147 C. F. Sui, M. Y. Rafiq, D. Easterbrook, G. Bugmann, G. C. Zhou. An Investigation into More Accurate Prediction of the Behavior of Masonry Panel subjected to Lateral Loads. Proceedings of the 7th International Masonry Conference, Paper 19 (CD-ROM), ISSN 0950 9615. London, UK. 2006.
    148 C. F. Sui, M. Y. Rafiq, D. Easterbrook, G. Bugmann, G. C. Zhou. An Investigation into Numerical Model Updating of Masonry Panels subjected to Lateral Load. Proceedings of the 7th International Masonry Conference, Paper 33 (CD-ROM), ISSN 0950 9615. London, UK. 2006.
    149 C. F. Sui, M. Y. Rafiq, D. Easterbrook, G. Bugmann, G. C. Zhou. Uniqueness Study of Updating the FEA Model of Laterally Loaded Masonry Panel by Genetic Algorithm. Proceedings of the 7th International Masonry Conference, Paper 36 (CD-ROM), ISSN 0950 9615. London, UK. 2006.
    150 C. F. Sui, M. Y. Rafiq, D. Easterbrook, G. Bugmann, G. C. Zhou. Using Timoshenko Formula to Modify the Experimental Error of Masonry Panels. Proceedings of the 7th International Masonry Conference, Paper 47 (CD-ROM), ISSN 0950 9615. London, UK. 2006.
    151 G. C. Zhou, M. Y. Rafiq, G. Bugmann and D. J. Easterbook. Cellular Automata Model for Predicting the Failure Pattern of Laterally Loaded Masonry Panels. Journal of Computing in Civil Engineering, ASCE. 2006, 20(6): 400~409.
    152郝文化. ANSYS土木工程应用实例.中国水利水电出版社. 2005.
    153 W. Samarasinghe, A. W. Page, A. W. Hendry. A Finite Element Model for the In-Plane Behaviour of Brickwork. Proc. Inst. Civ. Engrs. Part 2, 1983, 73.
    154陈惠发, A. F.萨里普.混凝土和土的本构方程.中国建筑工业出版社. 2004.
    155杨吉新,王乘,沈成武.元胞单元法.固体力学学报. 2004, 2(25): 203~207.
    156沈成武,戴诗亮,杨吉新,唐小兵.平面弹性力学中的细胞自动机方法.清华大学学报. 2001, 41(11): 35~38.
    157 Z. Gurdal, T. Tatting. Cellular Automata for Design of Truss Structures with Linear and Non-Linear Response. Proceedings of the 41st AIAA/ASME/ASCE/ AHS/ASC Structure, Structure Dynamic and Materials Conference. Atlanta, GA, 2000, 4: 3~6.
    158 T. Tatting, Z. Gurdal Cellular Automata for Design of Two-Dimensional Continuum Structure. 8th AIAA/USAF/NASA/ISSMO Symposium on Multi-disciplinary and Optimization, 2000, 9: 6~8.
    159冯夏庭,周辉,李明田.岩石破坏过程的细胞自动机方法.全球华人中青年学者岩石力学与工程学术论坛论文集.武汉, 2001: 139~143.
    160 M. T. Li, X. T. Feng, H. Zhou. Cellular Automata Simulation of the Interaction Mechanism of Two Crack in Rock under Uniaxial Compression. International Journal of Rock Mechanics & Mining Sciences. 2004, 41: 452.
    161 F. Montheillet, P. Gilormini. Predicting the Mechanical Behavior of Two-Phase Materials with Cellular Automata. Int J Plasticity, 1996, 12(4): 561~ 574.
    162 J. Oda, J. L. Liu. Optimum Stiffener Design of Plate Using Cellular Automata. Transactions of the Japan Society of Mechanical Engineers, 1998, 64(626): 2435~ 2440.
    163 J. Bernsdorf, F. Durst, M. Schafer. Comparison of Cellular Automata and Finite Volume Techniques Simulation of Incompressible Flows in Complex Geometries. Int J Meth Fluids, 1999, 29: 251~264.
    164石云平.数据挖掘与统计学的关系研究.理论与方法. 2009, 28(6): 21~23.
    165 T. Hastie, R. Tibshiranir, J. Friedman著.范明,柴玉梅译.统计学习基础——数据挖掘、推理与预测.电子工业出版,北京. 2004.
    166魏瑜,陆静.数据挖掘与统计学的关系浅析.沿海企业与科技, 2005, 9: 182~183.
    167牛力.数据挖掘中的统计分析技术应用研究.广西师范大学学报(哲学社会科学版), 2002, (S1): 622, 722, 822, 922.
    168马江洪,张文修,徐宗本.数据挖掘与数据库知识发现:统计学的观点.工程数学学报, 2002, 19(13): 1~13.
    169孙蕾.让枯燥的统计学变得生动.统计教育, 2005, 7: 22~24.
    170樊冬梅.统计与数据挖掘的关系探讨.中国市场, 2006, 35: 32~33.
    171 A. N. Fried. The Experimental Results in University of Kingston. 2003.
    172彭高辉,王志良.数据挖掘中的数据预处理方法.华北水利水电学院学报. 2008, 29(6): 61~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700