用户名: 密码: 验证码:
岩体节理三维网络模拟优化及在甘肃北山芨芨槽岩块的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在岩体工程地质条件调查分析的基础上,对岩体所赋存的结构条件进行有效的描述和定量化分析,是进行岩体力学特性、岩体水力学特性及岩体工程性质判断的有效途径。本论文以中国高放废物处置库甘肃北山预选区芨芨槽岩块场址评价为背景,在系统地回顾岩体节理三维网络模拟技术和基于岩体节理三维模拟应用研究的已有成果和研究现状后,按照岩体节理调查-节理分析-节理三维网络模拟的研究思路,深入研究了岩体节理三维网络模拟技术和芨芨槽岩块岩体节理和场地特征。
     通过芨芨槽岩块岩体露头节理调查和钻孔岩芯编录获得大量的节理数据。本文以岩体节理数据为对象,分析了岩体节理几何特征,完善和优化了岩体节理三维网络模拟技术,论文主要研究内容包括:
     (1)圆形窗口法研究。圆形窗口法是估算节理迹长平均值和节理面密度值的有效方法。本文通过Monte Carlo法模拟节理采样过程,进行了圆形窗口取样大小和取样位置的研究,分析了采样过程中矩形窗口宽度与节理迹长平均值的相互关系,对圆形窗口法计算及节理采样提出了有益的建议。
     (2)岩体结构均质区划分。以地质力学为基础,利用构造断裂周围露头节理迹长平均值和节理面密度值的变化划分芨芨槽岩块岩体结构均质区。
     (3)节理产状优势组划分。运用改进模糊聚类方法代替传统方法进行节理优势组划分及确定产状优势方位,计算过程的程序化使得应用该方法分析大量产状数据时十分便利;所有的节理数据参与分组,计算结果更全面、更合理;通过隶属度值的修正,降低了孤立点节理产状数据对聚类结果的影响,使得优势组方位更为明显。
     (4)节理大小的研究。以Monte Carlo法模拟节理采样过程,假设全体节理迹长负指数和对数正态分布,分析了包容性节理迹长分布与全体节理迹长分布相互关系;以圆盘节理空间几何分布为基础,不假定节理直径的可能分布,提出一种新的数值方法估算节理直径分布。
     (5)节理密度研究。以近似水平露头节理分布为对象,通过不同阈值RQD值分析了岩体各向异性;提出一种新方法,在钻孔节理分布图上不同位置布置不同特征尺度测线,统计各测线的节理线密度,通过钻孔节理线密度变化估算岩体REV大小;通过节理间距的统计分析以及节理间距分布的研究,分析了岩体特征以及节理密集带形成过程;根据钻孔节理分布,分析了缓倾角原生节理形成机理及其特征;采用加权平均值方法估算岩体各优势组节理面密度;利用空间几何方法推导节理体密度大小计算公式,估算岩体各优势组节理体密度值。
     (6)岩体节理三维网络可视化实现。通过随机性构造节理和确定性原生节理模拟,实现了岩体节理三维网络可视化。
     本文完善和优化了岩体节理三维网络技术,建立了岩体节理三维网络模型,为以后的岩石质量评价、场地评价,以及核素迁移和洞室稳定性计算提供基础性数据和平台,具有重要意义。
It is important to quantitatively analyze and effectively describe the structural condition of rock mass. It is a valid way for determining the mechanical, hydraulic and engineering characteristics of rock mass. The study of the 3D joint network simulation in rock mass and its application is reviewed in detail. The paper bases on the site investigation of Jijicao block, Beishan, Gansu province, the pre-selected area of Chinese High Level Radioactive Waste. Followed the route from investigation of rock mass joints to the analysis of joint characteristics, and to 3D joint network simulation in the rock mass, the optimization of 3D joint network simulation, the characteristics of the rock mass joints and the properties of the site in Jijicao block are studied.
     A great deal of joint data is obtained from the joint survey and the borehole logging in Jijicao block. Attention is focused on the probability analysis of the joints geometry characteristics and the optimization of 3D joint network simulation in rock mass principally. The detail of my research is listed as following:
     (1) Study on the circular sampling window method
     By simulating the joint survey on outcrops, the Monte Carlo method is employed to determine the size and position of the circular window, and used to study the relationship of the width of the rectangular window and the mean joint trace length. Appropriate suggestions about the circular sampling window method and the joints survey are present.
     (2) Partition of the structure homogeneities in rock mass
     In this paper, the circular sampling window method is employed to carry out to estimate the mean joint trace length and joint trace midpoint density around the both sides of the faults. According to the interference range of two faults,Jijicao block is accurately divided into three regions where the structure of rock mass is homogenous and two regions where are interferenced by the two faults.
     (3) Classification of the joint orientations
     Improved fuzzy clustering analysis by amending degree of membership is applied to classifying the joint orientations instead of the traditional analysis. Based on the improved fuzzy clustering algorithm, the program can deal with a large quantity of joint orientations. And degree of membership of some isolated joint orientation is modified to reduce their contribution for the results of fuzzy clustering analysis. The study shows that the results of fuzzy clustering analysis are reliable and reasonable. And the dominant orientations and classification are more precise.
     (4) Study on the joint size
     Based on the Monte Carlo method, the relationship of the included joint trace length and the total joint trace length is studied quantitatively by simulating the joint survey on outcrops. Furthermore, the joint size which presents the extension of the joint plane in space is involved. For the joint Poisson disc model, the joint size can be represented by the joint diameter. Warburton’s method is right theoretically, but its practicability is not good for using the joint probabilistic distribution. In this paper, a new method for estimating the joint diameter distribution is suggested without using the joint probabilistic distribution.
     (5) Study on the joint density
     With the joint survey on outcrops, we introduce the concept of general RQD which is used with different thresholds to determine anisotropy of rock mass. By means of analyzing the variation of the joint line density in borehole, a new method for estimating the REV size of rock mass is proposed. The characteristics of the rock mass and the formation process of the joint compact district are involved through the analysis of the joint spacing. And the formation mechanism of the primary joint is described. By the weighted average method, joint trace midpoint densities of the dominant joint sets are obtained. And based on the space geometric relationship, the calculation formula of joint volume density is deduced and joint volume densities of the dominant joint sets are obtained.
     Some new optimistically methods in some key techniques are used to make 3D joint network simulation in the rock mass more exact, and more beneficial to its application. 3D joint network simulation in the rock mass is a valid tool, which is applied in evaluation of rock mass quality, evaluation of site property, migration of nuclide and stability of surround rock in tunnels.
引文
1 黄润秋,许模等,复杂岩体结构精细描述及其工程应用[M],科学出版社,2004.
    2 Dershowitz, W.S. et al., Characterizing Rock Joint Geometry with Joint System Models, Rock Mech. and Rock Eng., 21 (1): 21-51, 1988.
    3 Irmay, S., Flow of Liquids Through Cracked Media, Bulletin, Water Resources Council, Israel, 5A (1): 84, 1955.
    4 Baecher, G. B. et al., Statistical Description of Rock Properties and Sampling, Proc. 18th U.S. Symposium on Rock Mechanics, 1977.
    5 Dershowitz, W.A., Multiphase Discrete Fracture Modeling in Support of Improved Oil Recovery from the North Oregon Basin, Wyoming.
    6 Dershowitz, W. S., Interpretation and Synthesis of Discrete Fracture Orientation, Size, Shape, Spatial Structure and Hydrologic Data by Forward Modeling, Proc., Fractured and Jointed Rock Masses, Tahoe, NV, 579-586, 1992.
    7 Robertson, A., the Interpretation of Geologic Factors for Use in Slope Theory, Proc., Symp. On the Theoretical Background to the Planning of Open Pit Mines, Johannesburg, South Africa, 55-71, 1970.
    8 Einstein, H. H. et al., Fracture System, Fracture Propagation and Coalescence, An International Conference on Geotechnical & Geological Engineering, Melbourne, Australia, 2000.
    9 Stanley M. Miller, A statisticla Method to Evaluate Homogeneity of Structural Populations, Methmatical Geology, 15 (2): 317-328, 1983.
    10 P. H. S. W. Kulatilake et al., Discontinuity Geometry Characterization in a Tunnel Close to the Proposed Permanent Shiplock Area of the Three Gorges Dam Site in China, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, Vol. 33, No. 3: 255-277, 1996.
    11 Kulatilake, P.H.S.W. et al., Box Fractal Dimension as A Measure of Statistical Homogeneity of Jointed Rock Masses, Engineering Geology, 48 : 217-229, 1997.
    12 范留明,黄润秋等, 一种基于结构面密度的岩体结构均质区划分方法, 岩石力学与工程学报,
    22 (7): 1132-1136, 2003.
    13 Arnold, K. J., On Spherical Probability Distribution, Unpublished Ph. D. Dissertation, Mass. Inst. of Tech., 42 pp., 1941.
    14 Bingham, C., Distributions on the Sphere and on the Projective Plane, Unpublished Ph. D. Dissertation, Yale University, pp: 93. 1964.
    15 Fisher R.A. Dispersion on a Sphere [A]. Proceedings of Royal Soceity of London[C]. 1953, Series A, Vol., 217.
    16 P. H. S. W. Kulatilake, Bivariate Normal Distribution Fitting on Discontinuity orientation Clusters, Mathematical Geology, Vol. 18, No.2, 1986.
    17 Schmidt W., Gefügestatistik, Tschermaks Mineral. Petrol. Mitt, 38: 392-423, 1925.
    18 Starkey, J., The Contouring of Orientation Data Represented in Spherical Projection, Canadian Journal of Earth Sciences = Journal Canadien des Sciences de la Terre. Vol 14(2): p 268–277, 1977.
    19 Dershowitz et al., A Statistical Approach for Fracture Set Definition, 2nd NARMS, Rock Mechanics Tools and Techniques, Montreal, 1996; 1809-1813.
    20 田开铭,万力,各向异性裂隙介质渗透特性的研究与评价, 北京学苑出版社,1989.
    21 Klose. C.D., A New Clustering Approach for Partitioning Directional Data, 2004.
    22 Terzaghi R, Sources of Error in Joint Surveys, Geotechnique, Vol 15(3), p: 287–304, 1965.
    23 P. H. S. W. Kulatilake, T. H. Wu., Sampling Bias on Orientation of Discontinuities, RockMechanics and Rock Engineering, 17 : 243-253, 1984.
    24 P. H. S. W. Kulatilake, et al., Probabilistic Modelling of Joint Orientation, Int. J. for Numerical and Analytical Methods in Geomechanics, Vol, 14: 325-350, 1990.
    25 Epstein H H, The matematical Description of Certain Breakage Mechanisms Leading to The Logarithmico-normal Distribution, J. Frank. Inst., Vol, 244, p: 471–477. 1947.
    26 Baecher G B, Lanney N, Trace length biases in joint surveys, 1978.
    27 Rouleau A, Gale J E, Characterization of the Fracture System at Stripa with Emphasis on the Ventilation Drift: Technical information report no. 52. LBL-14875 SAC-52, A joint project of Swedish Nuclear Fuel Supply Co. Stockholm, Sweden and Lawrence Berkeley Laboratory, Earth Sciences Division, University of California, Berkeley, California, USA., 1985.
    28 Fujiwara A, Kamimoto G, Tsukamoto A, Destruction of basaltic bodies by high-velocity impact, Icarus. Vol 31(2): p 277–288, 1977.
    29 King G, The Accommodation of Large Strains in the Upper Lithosphere of the Earth and other Solids by Self-similar Fault Systems; the Geometrical Origin of B-value, Pure and Applied Geophysics, Vol 121(5–6): p 761–815, 1983.
    30 Turcotte D L, Fractals and Fragmentation, JGR, Journal of Geophysical Research, B. Vol 91(2): p 1921–1926, 1986.
    31 An L J, Sammis C G, Particle Size Distribution of Cataclastic Fault Materials from Southern California; a 3-D Study, Pure and Applied Geophysics, Vol 143(1–3): p 203–227, 1994.
    32 Dershowitz W, Wallmann P, Kindred S, Discrete Fracture Modelling for the Stripa Site Characterization and Validation Drift Inflow Predictions, Stripa Project Technical Report 91-16, Svensk K?rnbr?nslehantering, AB, 1991.
    33 Call R D, Savely J P, Nicholas D E, Estimation of Joint Set Characteristics from Surface Mapping Data, 1976.
    34 Cruden D, Ranalli G, Length Distribution of Strike-slip Faults and the Process of Breakage in Continental Crust, Canadian Journal of Earth Sciences = Journal Canadien des Sciences de la Terre, Vol 14(3): p 508–510, 1977.
    35 Priest, S. D., Hudson, J. A. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract, 1981, 18(3): 183-197.
    36 Pahl, P. H., Estimating the Mean Length of Discontinuity Traces, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 18, 221-228,1981.
    37 P. H. S. W. Kulatilake, Estimation of Mean Trace Length of Discontinuities, Rock Mechanics and Rock Engineering, 17: 215-232, 1984.
    38 Jae-Joon Song, et al., Estimation of Joint Length Distribution Using Window Sampling, International Journal of Rock Mechanics & Mining Sciences, 38 : 519-528, 2001.
    39 Zhang L, Einstein H H, Estimating the mean trace length of rock discontinuities, Rock Mechanics and Rock Engineering, 31(4):217—235, 1998.
    40 P. H. S. W. Kulatilake, T. H. Wu., Relation Between Discontinuity Size and Trace Length, Proceedings of The 27th U. S. Symposium on Rock mechanics, 1986.
    41 Warburton, P. M., A Stereological Interpretation of Joint Trace Data, International Journal of Rock Mechanics and Mining Sciences, 17 : 305-316, 1980
    42 Villaescusa, E., Taxim Likelihood Estimation of Joint Sizes for Trace Length Measurements, Rock Mechanics and Rock Engineering, 25: 67-87, 1992.
    43 黄国明等,复杂岩体结构的几何描述,成都理工学院学报,25(4).1998.
    44 Priest, S. D., Hudson, J. A., Discontinuity Spacing in Rock, Int. J. Rock Mech. Min. Sci. Geomech.Abstr. 13, 135-148, 1976.
    45 金曲生等,结构面密度计算法及其应用,岩石力学与工程学报,17(3):273-278,1998.
    46 Dershowitz, W. S., Herda, H. H, Interpretation of fracture spacing and intensity, In: Tillerson, J. R., Wawersik, W. R. (eds.), Proc., 33rd U.S. Symposium on Rock Mechanics, Balkema, Rotterdam, pp. 757-766, 1992.
    47 Oda, M, Febric Tensor for Discontinous Geological Materials, Soil and Foundations JSSMFE, 22 (4): 96-108, 1982.
    48 Kulatilake, T. H. Wu, The Density of Discontinuity Traces in Sampling Windows, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr, 21 (6): 345-347, 1984.
    49 潘别桐,井兰如,熊秉仁. 三斗坪坝基和船闸岩体结构概率模型模拟研究[R]. 武汉: 武汉地质学院水文地质与工程地质系, 1987.
    50 陈剑平,肖树芳,王清. 随机不连续面三维网络计算机模拟原理[M]. 长春: 东北师范大学出版社, 1995.
    51 邬爱清,周火明. 3-D 岩体结构模拟分析系统及三峡船闸高边坡岩体结构概化模型研究[R]. 武汉: 长江科学院, 1998.
    52 邬爱清,周火明,任放. 岩体三维网络模拟技术及其在三峡工程中的应用[J]. 长江科学院报. 1998, 15(6): 15-18.
    53 杜景灿. 基于结构面三维网络模拟确定岩体综合抗剪强度和连通率[Ph.D][D]. 北京: 清华大学水利系, 2002.
    54 Yu Q.C. Analyses for Fluid Flow and Solute Transport in Discrete Fracture Network[Ph.D][D]. Kyoto: Kyoto University, 2000.
    55 宋晓晨. 裂隙岩体渗流非连续介质数值模型研究及工程应用[D]. 南京: 河海大学, 2004.
    56 Meyer T., Einstein H.H. Geological stochastic modeling and connectivity assessment of fracture system in Boston area [J]. Rock Mechanics and Rock Engineering. 2002, 35(1): 23-44.
    57 Rouleau A., Gale E. Statistical Characterization of Fracture System in Stripa Granite,Sweden[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract. 1985,
    22(6): 353-367.
    58 袁绍国, 王震. 节理测量误差的来源及其分析[J]. 包头钢铁学院院报. 1998, 17(4): 253~257.
    59 谷德振. 岩体工程地质力学基础[M]. 北京: 科学出版社, 1979.
    60 王贵宾,冒海军,殷黎明. 中国高放废物处置库甘肃北山预选区 BS01、BS03 号钻孔周围节理调查及三维模拟研究[R]. 武汉: 中国科学院武汉岩土力学所, 2004.
    61 王贵宾,殷黎明,梅涛,包宏涛. 中国高放废物处置库甘肃北山预选区岌岌采石场岩体节理调查和研究[R]. 武汉: 中国科学院武汉岩土力学研究所, 2006.
    62 苏锐. 甘肃北山旧井地段钻孔声波电视测量和钻孔水质测量[R]. 北京: 核工业北京地质研究院, 2001.
    63 宗自华. 甘肃北山旧井地段断裂构造及其分形特征研[D]. 北京: 核工业北京地质研究院, 2004.
    64 陈剑平等,随机不连续面三维网络计算机模拟原理,东北师范大学出版社,1995.
    65 Dershowitz, W. S. et al., Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement, U.S. Department of Energy National Oil and Related Programs, 2000.
    66 杨春和,包宏涛,王贵宾等.岩体节理平均迹长和迹线中点面密度估计[J].岩石力学与工程学报,2006,25(12): 2475-2480.
    67 王贵宾,杨春和,包宏涛等.岩体节理平均迹长估计[J].岩石力学与工程学报, 2006,25(12): 2589-2592.
    68 孙玉科,古迅等,赤平极射投影在岩体工程地质力学中的应用,科学出版社,1980.
    69 王渭明, 李先炜. 裂隙岩体优势结构面产状反演[J].岩石力学与工程学报,2004, 23(11): 1832-1835.
    70 周玉新, 周志芳, 孙其国. 岩体结构面产状的综合模糊聚类分析[J]. 岩石力学与工程学报, 2005, 24(13): 2 283-2 287.
    71 Hammah R E,Curran J H. Fuzzy cluster algorithm for the automatic identification of joint sets [J]. Int. J. Rock. Mech. Min. Sci.,1998,35 (7) :889–905.
    72 Sirat M,Talbot C J. Application of artificial neural networks to fracture analysis at the Aspo HRL,Sweden :Fracture sets classification [J]. Int. J. Rock. Mech. Min. Sci.,2001,38 (5) :621–639.
    73 王贵宾. 岩体节理三维模拟及渗透张量分析[D]. 武汉: 中国科学院岩土力学研究所, 2006.
    74 R. Jimenez-Rodriguez, N. Sitar. A spectral method for clustering of rock discontinuity sets. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 1052–1061.
    75 贾洪彪. 岩体结构面三维网络模拟优化及其在地质工程中的应用研究[D]. 武汉:中国地质大学,2006.
    76 Zadeh L A, Fuzzy sets, Information and Control, 8(1965):338-353.
    77 Ruspini E H, A new approach to clustering, Information and Control, 1969, 15 (1):22-32.
    78 陈鸣钊,张志烈,樊宝康编著. 模糊数学及其应用[M]. 南京:河海大学出版社,1999.
    79 范雷, 王亮清, 唐辉明. 节理岩体结构面产状的动态聚类分析[J]. 岩土力学,2007,28(11):2405-2408.
    80 Bezdek J C, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    81 Bezdek J C, Hathaway R J, Optimization of fuzzy clustering criteria using genetic algorithm, FU ZZ-IEEE’94, 19 94,589-594.
    82 Stefen 0 K H, et al. Recent developments in the interpretation of data from the joint surveys in rock masses (A). Proceeding of 6th Regional Conference for Africa on Soil Mechnics and Foundation Engineering. Durban, South Africa, 1975.
    83 韩爱果,聂德新. 岩体结构研究中统计区间长度的确定[J]. 地球科学进展, 2004,19(增刊):
    296-299.
    84 万天丰. 古构造应力场[M]. 北京:地质出版社, 1988.
    85 周济元. 地质力学引论[M]. 成都:成都科技大学出版社, 1989.
    86 王驹, 陈伟明,金远新等,高放废物地质处置甘肃北山预选区选址和场址评价研究-向阳山-新场 5 万地质调查研究报告报告[R]. 北京:核工业北京地质研究院,2006.
    87 Laslett G.M. Censoring and edge effects in areal and line transect and line transects sampling of rock joint traces [J]. Mathematical geology. 1982, 14(2): 125-139.
    88 Song JJ, Lee CI. Estimation of joint length distribution using window sampling. Int J Rock Mech Min Sci 2001;38:519–528.
    89 Song JJ. Estimation of a joint diameter distribution by an implicit scheme and interpolation technique. Int J Rock Mech Min Sci 2006;43:512–519.
    90 Chiles J P and Marsilyde G. Stochastic model of fractures systems and their use in flow and transport modeling. In: Jocob Bear,Chin-Fu Tsang & Ghislain de Marsily ed. Flow and Contaminant Transport in Fractured Rock. Paris: Academic Press Inc., 1993, 169-141.
    91 杜时贵. 岩石质量指标(RQD)的各向异性分析[J]. 工程地质学报,1996,4(4):48~54.
    92 王国欣,王旭东,肖树芳. 广义RQD在岩体各向异性中的应用研究[J]. 吉林大学学报(地球科学版), 2002, 32(3),258~260.
    93 Bear J.Dynamics of Fluids in Porous Media[M].New York:American Elsevier,1972.
    94 Witherspoon P.A. An investigation of laminar flow in fractured porous rocks. University of California, Berkalay,California,1970.
    95 Long JCS,Witherspoon PA.The relationship of the degree of interconnection to permeability in fractured networks. Journal of Geophysical Research. 1985,90(B4):3087-3097.
    96 Oda M. Permeability tensor for discontinuous rock masses. Geotechnique,1985,35(4):483-495.
    97 Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986,22(13):1845-1856.
    98 周创兵, 熊文林. 论岩体的渗透特性. 工程地质学报. 1996,4(2):69-74.
    99 庞作会, 基于节理网络模型的岩体 REV 数值估算与无网格伽辽金法.中科院武汉岩土力学研究所博士论文.1998.
    100 周创兵等,论岩体表征单元体积 REV-岩体力学参数取值的一个基本问题.工程地质学报,1999,7(4)332-337.
    101 ISRM. Suggested methods for the quantitative description of in discontinuities rock mass discontinuities [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract. 1978, 15: 319-368.
    102 Priest S.D., Hudson J.A. Discontinity Spacings in Rock [J]. International Journal of Rock Mechanics and Mining Sciences. 1976, 13: 135-148.
    103 杜时贵. 岩体节理面的力学效应研究现代地质. 1994, 8(2):198-207.
    104 朱志澄, 宋鸿林. 构造地质学. 武汉:中国地质大学出版社, 1990.
    105 吴晓涵. 面向对象结构分析程序设计[M]. 北京: 科学出版社, 2002.
    106 徐晓刚,高兆发,王秀娟. Visual C++ 入门与提高[M]. 北京: 清华大学出版社, 1999.
    107 和平鸽工作室. OpenGL 三维图形系统开发与实用技术[M]. 北京,重庆: 清华大学出版社,重庆大学出版社, 2003.
    108 李春雨. 计算机图形学理论与实践[M]. 北京: 北京航空航天大学出版社, 2004.
    109 何渝. 计算机常用数值算法与程序(C++版)[M]. 北京: 人民邮电出版社, 2003.
    110 Cacas M.C., Ledoux E., et al. Modeling fracture flow with a stochastic discrete fracture network:Calibration and valibration,1. The flow model [J]. Water Resource Research. 1990, 26(3).
    111 Cacas M.C., Ledoux E., et al. Modeling fracture flow with a stochastic discrete fracture network:Calibration and valibration,2. The transport model [J]. Water Resource Research. 1990, 26(3): 491-500.
    112 王恩志. 岩体裂隙的网络分析和渗流模型[J]. 岩石力学与工程学报. 1993, 12(3): 214-221.
    113 张有天,刘中. 降雨过程裂隙网络饱和/非饱和、非恒定渗流分析[J]. 岩石力学与工程学报. 1997, 16(2): 104-111.
    114 高惠璇. 统计计算[M]. 北京: 北京大学出版社, 1995.
    115 Press W.H., Teukolsky S.A., Vetterling W.H. Numerical Recipes in C [M]. Cambridge University Press, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700