用户名: 密码: 验证码:
聚(乳酸—羟基乙酸)共聚物纳米粒药物载体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇是从太平杉树树皮中提取的抗癌药物,具有高效、低毒、广谱等特性,能够治疗卵巢癌、乳腺癌、肺癌、食管癌、子宫内膜癌、膀胱癌等。由于其在水中以及许多药用溶剂中溶解度差,临床使用时需在紫杉醇注射液中加入聚氧乙烯蓖麻油,该溶剂副作用较大,常引起严重的过敏反应。因此,为了解决上述问题,研究者将紫杉醇制备成脂质体、微球和纳米粒等药物缓释剂型。
     本文选用生物相容性好、可生物降解的高分子材料——聚(乳酸-羟基乙酸)共聚物(PLGA)为载体材料,紫杉醇为模型药物,制备载紫杉醇PLGA纳米粒,研究内容主要包括:(1)采用改良的乳化溶剂挥发法制备空白PLGA纳米粒,以纳米粒粒径作为评价指标,考察乳化剂浓度、有机溶剂种类、有机溶剂挥发时间、超声乳化时间、水油相体积比、聚合物浓度、搅拌速度和温度等工艺因素对纳米粒制备的影响。(2)建立高效液相色谱法测定紫杉醇含量,绘制紫杉醇的标准曲线,验证其精密度和回收率。(3)采用改良的乳化溶剂挥发法制备载紫杉醇PLGA纳米粒,对其进行正交设计优化及表征,并研究纳米粒的表面形貌、表面电位、热稳定性、缓释性能,探讨药物释放规律和载药模式。(4)考察乳化剂浓度、搅拌速度、水油相体积比、聚合物浓度、材料性质和药物浓度对纳米粒包封率和载药量的影响,乳化剂浓度对纳米粒表面电位的影响,以及纳米粒载药量与缓释性能的相互关系。
     结果表明:综合单因素实验和正交实验的结果,确定最优制备工艺条件,可获得较理想的载药纳米粒,在扫描电镜下观察纳米粒呈规整球形,表面较光滑,分散性良好,载紫杉醇PLGA纳米粒平均粒径为210.1nm,有较窄的粒径分布,药物包封率为85.84%,载药量为6.31%,表面电位为-28.0mv,紫杉醇以分子无定形状态分散在纳米粒中;采用动态透析法研究紫杉醇PLGA纳米粒缓释性能,结果显示载药纳米粒有良好的缓释性能,体外释药曲线拟合证明药物缓释规律符合Weibull方程。
Paclitaxel, isolated from Pacific Ocean Yew Bark, is an efficient, low toxicity, broad-spectrum, anti-tumor drug. It can treat ovarian cancer, breast cancer, lung cancer, esophageal cancer, reproductive tissue tumors, endometrial cancer, leaching Pakistan tumors, bladder cancer. Paclitaxel has poor solubility in water and other commonly used drug solvents, so the Cremorphor EL was used as the solvents of Paclitaxel in clinical, although the solvent has many side effects, such as causing severe allergic reactions and so on. In order to solve these problems, the researchers have manipulated drug into different drug delivery systems, such as liposomes, microspheres and nanoparticles.
     This paper planed to prepare paclitaxel-loaded PLGA nanoparticles with biocompatible and biodegradable polymer——poly (lactic acid-glycolic acid) (PLGA) as the carrier material, and the anti-cancer drug paclitaxel as the model drug, the experimental works were carried out as followed. First, PLGA nanoparticles were prepared by modified emulsion solvent evaporation method with nanoparticle size as the evaluation. The experimental prescriptions and preparation were optimized based on single factor such as emulsifier concentration, organic solvent type, the timing of volatile organic solvents, ultrasonic time, aqueous to organic phase, polymer concentration, stirring speed and temperature. Second, we determine the drug contration by high performance liquid chromatography (HPLC), draw paclitaxel standard curve, verify precision and recovery. Third, paclitaxel-loaded PLGA nanoparticles were prepared by modified emulsion solvent evaporation method and optimized by orthogonal experimental method. The nanoparticles were determinated on zeta potential, surface morphology, thermal performance and release properties, while studying influencing factors on drug release properties. Last, we investigated the emulsifier concentration, stirring speed, aqueous to organic phase, polymer concentration, material properties and drug concentration on the encapsulation efficiency and drug loading. We also investigated the emulsifier concentration on zeta potential. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to characterize the nanoparticles for surface morphology and thermogram property. The high performance liquid chromatography (HPLC) was measured the drug concentration.
     The results showed that the shape of nanoparticles were spherical, smooth surface, good dispersion, and the average size of paclitaxel-loaded PLGA nanoparticles was 210.1nm with narrow size distribution, the encapsulation efficiency was 85.84%, the drug loading was 6.31%, and the zeta potential was -28.0mv. The paclitaxel was dispersed in nanoparticles with molecular state. Indicators found that the process parameters, such as emulsifier concentration, stirring speed, aqueous to organic phase, polymer concentration, have greater impact on the encapsulation efficiency and drug loading. Experiment by dialysis method in vitro shows that the paclitaxel-loaded PLGA nanoparticles have good release properties. The in vitro release behavior of the paclitaxel- loading PLGA nanoparticles was fitted to Weibull equation.
引文
[1] Saltzmall W M, Fung L K. Polymeric implants for cancer chemotherapy [J]. Advanced Drug Delivery Reviews 1997, 26(2-3): 209-230
    [2]吉顺莉.紫杉醇PLGA口服纳米粒的制备及生物利用度的研究[D].镇江:江苏大学, 2010
    [3]王思玲,苏德森.胶体分散药物制剂[M],北京,人民卫生出版社, 2006: 45-55
    [4] Kumari A, Yadav S K, Yadav S C. Biodegradable polymeric nanoparticles based drug delivery systems [J]. Colloids and Surfaces B: Biointerfaces, 2010, 75(1): 1-18
    [5] Luan X, Bodmeier R. In situ forming microparticle system for controlled delivery of leuprolide acetate: Influence of the formulation and processing parameters [J]. European Journal of Pharmaceutical Sciences, 2006, 27(2-3): 143-149
    [6] Kakizawa Y, Nishio R, Hirano T, et al. Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles [J]. Journal of Controlled Release, 2009, 10(3): 198-206
    [7] Lucienne J J. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticales [J]. Drug Discovery Today, 2008, 13(23-24): 1099-1106
    [8] Olivier J C. Drug transport to brain with targeted nanoparticles [J]. NeuroRx, 2005, 2(1): 108-119
    [9] Jeong Y I, Na H S, Seo D H, et al. Ciprofloxacin-encapsulated poly (lactide-co-glycolide) nanoparticles and its antibacterial activity [J]. International Journal of Pharmaceutics, 2008, 352(1-2): 317-323
    [10] FeczkóT, Tóth J, Gyenis J. Comparison of the preparation of PLGA-BSA nano-and microparticles by PVA, poloxamer and PVP [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319(1-3): 188-195
    [11]张蕾,张阳德,翟登高,等.聚丙交酯乙交酯纳米粒的制备及生物学效能的研究[J].中国现代医学杂志, 2007, 17(11): 1326-1329
    [12] Tiwari, S B, Amiji, M M. A review of nanocarrier-based CNS delivery systems [J]. Current Drug Delivery, 2006, 3(2): 219-232(14)
    [13]盛文博,朱晓斐,苏佳灿.药物纳米微囊系统材料的选择及制备[J].中国组织工程研究与临床康复, 2010, 14(25): 4709-4712
    [14] Gabler F, Frauenschuh S, Ringe J, et al. Emulsion-based synthesis of PLGA- microspheres for the in vitro expansion of porcine chondrocytes [J]. Biomolecular Engineering, 2007, 24(5): 515-520
    [15] Kim I S, Lee S K, Park Y M, et al. Physicochemical characterization of poly (L-lactic acid) and poly (D, L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier [J]. International Journal of Pharmaceutics, 2005, 298(1): 255-262
    [16]陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物的研究进展[J].化工新型材料, 2002, 30(3): 11-15
    [17]刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展[J].航天医学与医学工程, 2001, 14(4): 308-312
    [18] Kang F, Singh J. Preparation in vitro release, in vivo absorption and biocompatibility studies of insulin-loaded microspheres in rabbits [J]. AAPS Pharmaceutical Sciences Technology, 2005, 6(3): 487-494
    [19] Legrand P, Lesieur S, Bochot A, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation [J]. International Journal of Pharmaceutics, 2007, 344(1): 33-43
    [20] Zhang J Y, Shen Z G, Zhong J, et al. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants [J]. International Journal of Pharmaceutics, 2006, 323(1-2): 153-160
    [21] Govender T, Stolnik S, Garnett M C, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug [J]. Journal of Controlled Release, 1999, 57(2): 171-185
    [22]王希,张文强,邱蔚芬,等.乳酸-羟基乙酸共聚物缓释微球的制备、性能及应用[J].中国组织工程研究与临床康复, 2009, 13(12): 2353-2356
    [23]武玉敏,李大伟.溶剂蒸发法在微球制备中的应用[J].食品与药品, 2005, 7(3): 43-47
    [24]凌友,黄岳山,梁常艳.乳酸-羟基乙酸共聚物纳米粒的研究进展[J].中国组织工程研究与临床康复, 2008, 12(10): 1899-1902
    [25] Choi S H, Park T G. G-CSFloading biodegradable PLGA nanoparticles prepared by asingle oil-in-water emulsion method [J]. International Journal of Pharmaceutics, 2006, 311(1-2): 223-228
    [26] Tewes F, Munnier E, Antoon B, et al. Comparative study of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66(3): 488-492
    [27]吴玉彬,韩相恩.聚(乳酸-羟基乙酸)共聚物PLGA缓释微球的制备及其缓释性能研究[J].甘肃石油和化工, 2009(2): 29-34
    [28]朱健琦,陈涛,林嘉平,等.多响应性聚肽共混胶束的药物控释性能[J].功能高分子学报, 2008, 21: 348-352
    [29] Esmaeili F, Ghahremani M H, Esmaeili B, et al. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution [J]. International Journal of Pharmaceutics, 2008, 349(1-2): 249-255
    [30]白洁,何应.喷雾干燥技术在蛋白、多肽类药物微球制备中的应用[J].药学进展, 2007, 31(7): 298-302
    [31]陈英杰,许向阳,周建平.乳酸-羟基乙酸共聚物微球的研究进展[J].中国医药大学学报, 2007, 38(2): 186-189
    [32]潘吉铮.聚乳酸微球载体的结构与控释性能关系及模型[D].广州:华南理工大学, 2004
    [33] Dong Y, Feng S S. Poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy [J]. International Journal of Pharmaceutics, 2007, 342(1-2): 208-214
    [34] Allemann E, Leroux J C, Gurrnay R, et al. In vitro extended release properties of drug-loaded poly (D, L-lactic acid) nanoparticles produced by a salting-out procedure [J]. Pharmaceutics Research, 1993, 10(12): 1732-1737
    [35] Elvassore N, Bertucco A, Caliceti P. Prodution of insulin-loaded polyethylene glycol)/ poly (L-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques [J]. Journal of pharmaceutical Sciences, 2001, 90(10): 1628-1636
    [36] Choi S W, Kim J H. Design of surface-modified poly (D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone [J]. Journal of Controlled Release, 2007, 122(1): 24-30
    [37] Carino G P, Jacob J S, Mathiowitz E. Nanosphere based oral insulin delivery [J]. Journal of Controlled Release, 2000, 65(1-2): 261-269
    [38] Song X, Zhao Y, Wu W, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency [J]. International Journal of Pharmaceutics, 2008, 350(1-2): 320-329
    [39]王丹.多肽及蛋白类药物微球的载体材料、制备以及突释现象[J].中国组织工程研究与临床康复, 2008, 12(10): 1931-1934
    [40]钱军民,张兴,吕飞,等.聚合物微球制备及在药物缓释/控释中的应用[J].精细石油化工进展, 2002, 3(2): 22-25
    [41] Felder C B, Vorlaender N, Gander B, et al. Microencapsulated enterotoxigenic Escherichia coli and detached fimbriae for peroral vaccination of pigs [J]. Vaccine, 2001, 19(7-8): 706-715
    [42] McQueen C E, Boedeker E C, Reid R H, et al. Pili in microspheres protect rabbits from diarrhoea induced by E. coli strain RDEC-I [J]. Vaccine, 1993, 11(1): 201-206
    [43] O' Hagan D T, Jeffery H, Davis S S. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable micropaticles [J]. Vaccine, 1993, 11(9): 956-959
    [44] Mizers D, Dupuis M. Plasmid DNA absorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells [J]. Gene therapy, 2000, 7(24): 2105-2012
    [45] Celle B M, Menei P, Benoit J P. Preparation and characterization of 5-Fluorouracil- loaded microparticles as biodegradable anticancer drug carriers [J]. The Journal of Pharmacy Pharmacol, 1995, 47(2): 108-114
    [46] Motokazu, lwata, Tanaka T, et al. Selection of the solvent system for the preparation of poly (D, L-lactic-co-glycolic acid) microspheres containing tumor mecrosis factor-alpha [J]. International Journal of Pharmaceutics, 1998, 160(1): 145-156
    [47] Lorigan P C, Crosb Y T, Coleman R E. Currentdrug treatment guidelines for epithelia lovarian cancer [J]. Drugs, 1996, 51(4): 571-584
    [48] Liang H F, Chen C T, Chen S C, et al. Paclitaxel-loaded poly (glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer [J].Biomaterials, 2006, 27(9): 2051-2059
    [49] Tije A J, Verweij J, Loos W J, et a1. Pharmacological effects of formulafion vehicles: implications for cancer chemotherapy [J]. Clinical Pharmacokinet, 2003, 42(7): 665-85
    [50] Gelderblom H, Verweij J, Nooter K, et a1. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation [J]. European Journal of Cancer, 2001, 37(13): l590-1598
    [51] Zhang Z, Feng S S. Nanoparticles of poly (lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release [J]. Biomaterials, 2006, 27(2): 262-70
    [52] Farnaz Esmaeili, Fatemeh Atyabi, Rassoul Dinarvand, et al. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution [J]. International Journal of Pharmaceutics, 2008, 349(2): 249-255
    [53] Si Shen Feng. Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer [J]. Biomaterials. 2008, 29(4): 475-486
    [54]何伍,刘洋.紫杉醇新剂型及研究进展[J].世界临床药物. 2009, 30(5): 297-300
    [55] Lee S, Seo D, Kim H W, et al. Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1-->2)-(beta-D-glucopyranosyl), by cyclic-(1-->2)–beta–D-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (beta-cyclodextrins) [J]. Carbohydr Research, 2001, 334(2): 119-126
    [56]殷殿书,葛志强,刘昌孝,等.紫杉醇透明质酸冻干制剂的制备和药动学研究[J].中草药, 2005, 36(2): 192-195
    [57] Krasavage W J, Terhaar C J. D-α-tocopheryl poly (ethylene glycol) 1000 succinate: acute toxicity, subchronicfeeding, reproduction and teratologic studies in the rat [J]. J Agric Food Chem, 1977, 25(2): 273-278
    [58] Dintaman J M, Silverman J A. Inhibition of p-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) [J]. Pharmaceutical Research, 1999, 16(10): 1550-1556
    [59]刘程,周汝忠.食品添加剂实用大全[M].北京:北京工业大学出版社, 1994: 181
    [60]李家诗,张琰,陈杰,等.功能化纳米粒子作为药物载体的研究[J].化学学报, 2009,67(19): 2205-2209
    [61]易承学,余江南,徐希明.纳米药物载体在中药制剂研发中的应用[J].中国中药杂志, 2008, 33(16): 1936-1940
    [62]吴承尧,权静,李树白,等.高分子药物载体的应用及研究趋势[J].化学世界, 2009, 9: 560-563
    [63] Khin Y W, Feng S S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs [J]. Biomaterials, 2006, 27: 2285-2291
    [64] Kai-Hong Huang, Zhao-Hua Zhu, Jian-Hua Liu, et al. Preparation and release efficiency of polylactic acid nanoparticle [J]. Chinese Journal of Cancer, 2005, 24: 1023-1026
    [65] E K Park, S B Lee, Y M Lee. Preparation and characterization of methoxy poly (ethylene glycol)/poly (caprolactone) amphipilic block copolymeric nanospheres for tumor- specific folate-medizted targeting of anticancer drugs [J]. Biomaterials, 2005, 26: 1053-1061
    [66]李艳妍,李立新,孙智辉,等.含紫杉醇PLGA缓释微球的研制及理化性质[J].中国生物制品学杂志, 2007, 20(5): 365-368
    [67] Zhenghong Xu, Wangwen Gu, Jun Huang, et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery [J]. International Journal of Pharmaceutics, 2005 288(2): 361-368
    [68] Y Dong, S S Feng. Polymeric micelle for tumor pH and folate-mediated targeting [J]. Journal of Controlled Release, 2003, 91(1): 103-113
    [69]陈钢,何军,易军.醋酸地塞米松固体脂质纳米粒的制备及表征[J].中国医药工业杂志, 2008, 39(4): 261-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700