用户名: 密码: 验证码:
活性污泥合成PHAs的饥饿丰盛模式耦合磁场作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯(Polyhydrocylkanotes,PHAs)不但与化学塑料性质相似,而且具有生物相容性、可完全生物降解,因而作为一种非常有前景的合成塑料替代品而日益受到关注。但较高的生产成本使生物可降解塑料聚羟基脂肪酸酯的大规模使用受到限制。
     在所有利用微生物合成PHAs方法中,好氧瞬时供料法由于高的PHAs合成能力及可利用混合菌群(如活性污泥)和有机废弃物合成PHAs等特点,成为目前最具应用前景的技术。利用磁场的生物效应,耦合好氧瞬时供料工艺(饥饿-丰盛模式),将市政污泥污水处理厂的剩余活性污泥培养成具有高PHAs存储能力的微生物,同时,选用酸化常见产物乙酸、丙酸、丁酸为底物,进行磁场耦合饥饿-丰盛模式条件下的PHAs合成实验,分别考察了磁场强度、底物组成、C:N等因子的影响,并对各因子进行优化实验;采用现代化分析技术,阐述磁场与饥饿丰盛模式耦合作用的机理。
     研究结果发现,初始负荷及饥饿-丰盛期比例是驯化高PHAs存储能力微生物的关键因素。初始底物浓度为360mgCOD/1,逐渐增加浓度到6480mgCOD/1,饥饿-丰盛期比例为3:1时,微生物体内PHAs含量从8.74%增加到50.24%,且系统稳定运行。低初始浓度,有利于高存储能力微生物形成优势菌种。磁场耦合饥饿丰盛模式可以进一步提高微生物体内PHAs的含量,可达66.2%。
     微生物体内PHAs及HB、HV单体分别在不同磁场强度达到峰值,PHA含量在磁场强度为11mT时最高,在磁场强度为42mT时最低;而HB含量在磁场强度为7mT时达到最高,在磁场强度为42mT时最低;HV含量在磁场强度为21mT时达到最高,在磁场强度为42mT时最低。微生物中PHAs合成率随C:N的升高而上升,在C:N为100:1左右,达到峰值,而活性微生物产率随C:N比的上升呈下降趋势;磁场存在时,微生物中的PHAs合成率随C:N变化趋势没有改变,但合成率均有所提高。根据正交实验结果直观分析,各因素对实验结果的重要性依次为磁场强度、C:N、pH。最优化实验组合为磁场强度取12mT,NH_3-N浓度3.5mg/L(C:N为160:1)、初始pH值7.0。
     底物类型及组成比例对微生物中PHAs的合成率、单体HV/HB的比例具有显著的影响。以单一乙酸、丙酸、丁酸为底物时,乙酸和丁酸合成的是HB单体、丙酸合成的是HV单体。用乙酸作底物时,大部分的底物(约55%)是用来进行存储能量,而用于维持微生物生命活动的底物占20%左右,其余用来供应微生物的生长,即合成细胞质,而用丙酸和丁酸做底物时,约有25%左右的底物用来储存,一半左右的底物是用来供应细胞生长,其余用来维持微生物的生命活动。三种酸中,乙酸是最易合成PHAs的底物。
     磁场使微生物吸收底物后的能量分配比例发生了变化,磁场强度为7mT,以乙酸或丁酸为底物,微生物PHAs产量Y_(PHA)在磁场强度为7mT时达到峰值,分别为0.70(mgCOD/mgCOD)、0.28(mgCOD/mgCOD);丙酸为底物,PHA产量Y_(PHA)在磁场强度21mT时达到峰值,为0.31(mgCOD/mgCOD)。磁场对微生物吸收乙酸后的能量分配比例变化影响最大。
     底物中乙酸/丙酸与聚合物中HV/HB存在一定的对应关系,经拟合可知两者基本呈线性相关,磁场的存在使各直线的斜率发生变化。磁场为优化PHAs中HV、HB比例,从而为优化PHAs的性能,提供一条新路径。
     采用分子生态学技术(PCR-DGGE及16S rDNA鉴定)观察污泥中微生物群落特征的变化,结果表明,磁场强度使微生物群落特征发生了变化,在0mT磁场强度作用下,微生物群落以Leadbetterella byssophila属(屈挠杆菌属)占主导地位;在7mT磁场强度作用下,微生物群落以Unidentified bacterium,(AY34413)占主导地位;在21mT磁场强度作用下,微生物群落以Clostridium属、Alkaliphilus属(梭菌属)占主导地位;在42mT磁场强度作用下,微生物群落以Flavobacterium属(黄杆菌属)占主导地位。通过代谢通量分析可知,磁场影响PHAs合成的根本原因是它增加了碳源(乙酸)在代谢过程中向HB合成路径转化的量,在7mT时乙酰辅酶A进入合成HB途径的通量是进入TCA循环途径的2.7倍;而在42mT时乙酰辅酶A进入合成HB途径的通量是进入TCA循环途径的0.9倍;在0mT时乙酰辅酶A进入合成HB途径的通量是进入TCA循环途径的1.4倍。磁场为提高活性污泥中PHAs的合成率提供了一条新思路。
Polyhydroxyalkanoates (PHAs) have attracted increasing interest as an alternativeto petroleum-derived plastics for its similar mechanical properties to those ofpolypropylene, meanwhile, with the additional advantage of being completelybiodegradable, biocompatible, and produced from renewable resources. But the costof PHAs production is the major obstacle for large-scale commercial exploitation.
     Among the methods of industrial PHAs production, the aerobic dynamic feeding(ADF, feast" /"famine condition) approach is the most promising because of highPHAs accumulation, meanwhile, this method could substantially decreasing the costof PHAs and increasing their market potential for using activated sludge andrenewable sources obtained from waste organic carbon. The objective of this study isto accumulate activated sludge from municipal wastewater treatment plant to themicroorganism with high PHAs storage ability under the co-effect of aerobic dynamicfeeding (ADF, feast" /"famine condition) conditions and magnetic field. Acetate,butyrate and propionate, the common product of acidification, are used as thesubstrate. The impact factors such as magnetic field intensity, composition ofsubstrate and C:N are testified during the experiments. The possible mechanism isexplaned by the morden analytical techniques.
     The results show the substrate concentration of start-up and "feast" /"famine" ratioare the important factor for the activated sludge accumulation. The content of PHAsin biomass increased from 8.74% to 50.24% when the concentration increasedgradually to 6.48gCOD/l with the start-up concentration of 0.36gCOD/l and the"famine" /"feast" ratio was 3: 1, meanwhile, the system is stable. The lower substrateconcentration during start-up are benefit to the system with "steady-state" where thestorage microbial consortium will be the dominated one. The co-effect of magneticfield and ADF will enhance the content of PHAs far more. to be 66.2%.
     The static magnetic exposure definitely influenced the biosynthesis of PHAs andthe effect depended on the field intensity as following: under intensity of 11mT, themaximum PHAs synthesis occurred; under intensity of 21mT. the maximum HVsynthesis occurred: under intensity of 7mT. the maximum HB synthesis occurred, andunder intensity of 42mT, the minimum HB, HV, PHAs synthesis occurred. PHAs content increase with the ratio of C:N, and reach the maximum at the ratio of 100:1.But the active biomass decreased with the increase of C: N ratio. With the magneticexposure, PHAs content have an enhancement under differ ratio of C: N. According tothe results of orthogonal experiment, the influence order of each factor on PHAsproduction is magnetic field, C:N, intial pH. The best condition for PHAs synthesis ismagnetic intensity 12mT, NH_3-N concentration 3.5mg/L (C: N,160:1 ), initial pHvalue 7.0
     The polymer produced from either acetate or butyrate is the homopolymer of PHB.whereas the copolymer P(HB/HV) is formed when propionate is fed only or alongwith either acetate or butyrate. When acetate is fed solely, almost 55% of substrate isfor energy storage, 20% of substrate is for oxidation for energy production and theother is for growth. When propionate or butyrate is fed, almost 25% of substrate is forenergy storage. 50% of substrate is for growth and the other is for oxidation forenergy production. Obviously, acetate rather than butyrate and propionate is thesuitable substrate for energy storage.
     The static magnetic exposure and ADF has definitely infuenced the energydistrubition of substrate in microorganism. The PHAs production yield of acetate orbutyrate reach the maximum value of 0.7(mgCOD/mgCOD) or 0.28(mgCOD/mgCOD) under magnetic intensity of 7mT. And the PHAs production yieldof propionate reach the maximum value of 0.31(mgCOD/mgCOD) under themagnetic intensity of 21 mT.
     The ratio of acetate/propionate has a linear relationship with the ratio of HV/HB.The magnetic field change the slope of line and it sounds the magnetic field provide anew optimized way to PHV/PHB and the characteristics of PHAs.
     Based on PCR-DGGE and 16S rDNA analysis, there have a change of microbialcommunity under different magnetic field. The microbial community are dominatedby Leadbetterella byssophila under no magnetic intensity, dominated by Unidentifiedbacterium, (AY34413 ) under magnetic intensity of 7mT, dominated by Clostridium,Alkaliphilus under magnetic intensity of 21mT. dominated by Flavobacterium undermagnetic intensity of 42mT. Based on metabolic flux analysis, we conclude that thereason of PHAs content in biomass improved by magnetic field is that the carbonsource (acetate) is in a state of flux during the metabolic process. There is 2.7times ofacetyl-CoA into PHB synthesis compared to TCA cycle under magnetic intensity of 7mT, and 0.9 times of acetyl-CoA into PHB synthesis compared to TCA cycle undermagnetic intensity of 42mT, and 1.4 times of acetyl-CoA into PHB synthesiscompared to TCA cycle under magnetic intensity of 0mT. The co-effect of staticmagnetic and "famine" /"feast" condition provide us a new method to improve thePHAs synthesis by activated sludge.
引文
1. Porier Y, Nawrath C, Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomersin bacteria and plants. Biotechnology, 1995, 13:142-151.
    2. Dio Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules, 1995, 23:4822-4828.
    3. Lee S Y, Choi J. Effect of fermentation performance on the economics of poly-(3-hydroxybutyrate) production by Alcaligenes latus. Polymer Degradation and Stability, 1998, 59:287-393.
    4. Lee S Y. Plastic bacteria progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology, 1996, 14:431-438.
    5. Lee B. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996, 49:1-14.
    6. Grothe E, Chisti Y. Poly (3-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fedbatch cultures. Bioprocess Engineering, 2000, 22:441-449.
    7. Saito Y. Soejima T. Production of biodegradable plastic from volatile acids using activated sludge. Environmental Systems Engineering, 1995, 52:145-154.
    8. Satoh H, Iwamoto Y, Mino T, et al. Activated sludge as a possible source of biodegradable plastic. Water Science and Technology, 1998, 38:103-109.
    9. Levantesi C, Serafim L S, Crocetti G R, et al. Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorous removal reactor. Environmental Microbiology. 2002, 4:559-569.
    10. Godbole S., Gote S., Latkar M., et al. Preparation and characterization of biodegradable poly-3-hydroxybutyrate - starch blend films. Bioresource Technology, 2003, 86:33 - 37.
    11. Beun J J, Dircks K, Van Loosdrecht M, et al. Poly-3-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 2002, 36:1167-1180.
    12. Wu G X, Guan Y T. Effects of SRT and carbon concentration on the PHB in the anaerobic/aerobic alternative operation SBR process. Environmental Science, 2005, 26:126-130.
    13. Chen G Q, Wu Q, Zhao K. et al. Research on biosynthesis of polyhydroxyalkanoates, Chinese Journal of Polymer Science. 2000, 18:389-396.
    14. Lee S Y. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996.49:1
    15.朱博超.聚羟基脂肪酸酯的合成和应用研究进展.现代塑料加工应用.2003.15:61-64.
    16. Sudesh K, Abe H, Doi Y. Process in Polymer Science. 2000, 25:1503-1555.
    17. Alias Z. Tan K P I, Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technology. 2005, 96, 1229 - 1234.
    18. Biby G D, Degradable plastics, http://www.icma.com/info/polymers, 2002.
    19. Shilpi K, Ashok K S. Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 2005, 40:607-619.
    20. Du G, Si Y, Yu J. Inhibitory effect of medium-chain-length fatty acids on synthesis of polyhydroxyalkanoates from volatile fatty acids by Ralstonia eutropha. Biotechnology Letters, 2001, 23:1613-1617.
    21. Fuechtenbusch B, Wullbrandt D, Steinbuechel A. Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from oil remaining from biotechnological rhamnose production. Applied Microbiology and Biotechnology. 2000, 53:167-172.
    22. Tsuje T, Tanaka K, Ishizaki A. Development of novel method for feeding a mixture of l-lactic acid and acetic acid in fed-batch culture of Ralstonia eutropha for poly-d-3-hydroxybutyrate production. Journal of Ferment Bioengineering, 2001, 91:545-550.
    23. Wang F. Lee S Y. Poly (3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Applied Environmental Microbiology, 1997, 63:3703-3706.
    24. Grothe E, Moo-Young M. Chisti Y. Fermentation optimization for the production of poly(-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology, 1999,25:132-41.
    25. Grothe E. Chisti Y. Poly (4-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Engineering, 2000. 22:441-449.
    26. Bourque D. Ouellette B, Andre G, et al. Production of polybeta-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens. Applied Microbiology and Biotechnology. 1992, 37:7-12.
    27. Suzuki T, Yamane T, Shimizu S. Mass production of poly-betahydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Applied Microbiology and Biotechnology. 1986. 24:370-374.
    28. Song S. Hein S. Steinbuechel A. Production of poly (4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol Lett. 1999. 21:193-197.
    29. Park S J. Ahn W S. Green P R, et al. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli. Biotechnology Bioengineering. 2001. 74:81-86.
    30. Valentin H E. Dennis D. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. Journal Biotechnology. 1997, 58:33-38.
    31. Ramachander T V N. Rohini D. Belhekar A. et al. Synthesis of PHB by recombinant E.coli harboring an approximately 5 kb genomic DNA fragment from Streptomyces aureofaciens NRRL2209. International Journal of Biochemistry and Macromolecules, 2002. 31:63-69.
    32. Ahn W S, Park S J, Lee S Y. Production of poly (3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Applied Environmental Microbiology, 2000; 66:3624-7.
    33.郝晓地,朱景义,曹秀芹.利用混合菌群活性污泥法实现生物可降解塑料PHA的合成.生态环境,2005,14(6):967-971.
    34. Meesters K. Production of poly-3-hydroxyalkanoates from waste streams, Design Report, Delft University of Technology. 1998.
    35. Cech J S, Hartman P. Glucose induced breakdown of enhanced biological phosphate removal. Environmental Technology. 1990, 11:651-656.
    36. Chech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Research, 1993, 27:1219-1225.
    37. Comeau Y, Hal K J, Huncok R E W, et al. Biochemical model for enhanced biological phosphorus removal. Water Research, 1986, 20:1511-1521.
    38. Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of enhanced biological phosphate removal process. Water Research, 1998, 32:3193-3207.
    39. Satoh H, Mino T, Matsuo T. Uptake of organic substrate and accumulation of poly hydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in biological excess phosphorus removal process. Water Scienceand Technology, 1992, 26:933-942.
    40. Pereira H, Lemos P C, Reis M A M, et al. Model for carbon metabolism in biological phosphorus removal process based on in vivo C-NMR labeling experiments. Water Research, 1996,30: 2128-2138.
    41. Liu W T, Mino T, Nkamura K, et al. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in an anaerobic-aerobic activated sludge with minimized polyphosphate content. Journal of Fermentation Technology, 1994, 77:535-540.
    42.林东恩,张逸伟,沈家瑞.活性污泥合成生物可降解塑料的研究进展.环境科学与技术,2004,27(2):101-109.
    43. Ueno T, Satoh H, Mino T. et al. Production of biodegradable plastics. Polymer Preprint, 1993, 42:981-986.
    44. Saito Y, Soejima T, Tomozawa T, et al. Production of biodegradable plastics from volatile acids usingactivated sludge. Environmental Systems ngineering, 1995.52:145-154.
    45. Salehizadeh H, Van Loosdrecht M C M. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnology Advances, 2004, 22: 261-279.
    46. Serafim L S, Lemos P C, Oliveira R F, et al. Optimisation of polyhydroxybutyrate production by mixed cultures submittedto aerobic dynamic feeding conditions. Biotechnology Bioengineering, 2004, 87:145-160.
    47. Van Loosdrecht MCM. Pot M A, Heijnen J J. Importance of bacterial storage polymers in bioprocess. Water Science Technology, 1997. 35:41-47.
    48. Reis M A M, seraphim L S, Lemons P C, et al. Production of Polyhydroxyalkanoates by mined microbial cultures. Bioprocess Biosystem Engneering. 2003(25):377-385.
    49. Dionisi D, Majone M, Tandoi V. Beccari M. Sequencing batch reactor: influence of periodic operation on performance of activated sludges in biological wastewater treatment. Industrial and Engineering Chemistry Research, 2001. 40: 5110-5119.
    50. Satoh H, IwamotoY, Mino T. et al. Activated sludge as a possible source of biodegradable plastic. Water Science Technology, 1998, 37:579-982.
    51. Jo(?)o M L D, Paulo C L. Luisa S S, et al. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromolecular Bioscience. 2006, (11)6: 885-906.
    52. Beun J J, Paletta F, van Loosdrecht M C M. et al. Stoichiometry and kinetics of poly-β-Hy-droxybutyrate in aerobic, slow growing activated sludge cultures. Biotechnology Bioengineering, 2000, 67:379-389.
    53. Satoh T H, Mino T. Matsuo T. Recovery of biodegradable plastics from activated sludge process. Water Science Technology. 2000. 42: 351-356.
    54. Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnology Bioengineering, 2004, 85:569-579.
    55. Dionisi D, Majone M, Vallini V, et al. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnology Bioengineering, 2006, 93: 76-88.
    56. Dionisi D. Beccari M, Gregorio S. et al. Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. Journal of Chemical Technology and Biotechnology. 2005. 80:1306-1318.
    57. Lemos P C, Luisa S S, Maria A M R. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology, 2006. 122:226-238
    58. Van W R J. Ling Y. Milddelberg A P J. Productin of polyhydroxyalkanoates by mixed microbial cultures, Transactions of the Institution of Chemical Engineers A, 1998, 76: 417-426.
    59. Mino T, Liu W T, Satoh H, et al. Possible metabolism of polyphosphate accumulating organisms (PAOs) and glycogen non accumulating organisms (GAOs) in enhanced biological phosphate removal process. Proceedings, Belgium, 1996. 10:1769-1776.
    60. Bengtsson S, Werker A. Christensson M, et al.. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource Technology, 2008,99: 509-516.
    61. Chua A S M, Hiroo T, Hiroyasu S, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT) and acetate concentration in influent. Water Research, 2003, 37:3602-3611.
    62. Krishna C, Van Loosdrecht M C M. Effect of temperature on storage polymers and settle ability of activated sludge. Water Research, 1999, 33:2374-2382.
    63.谢光健,李家洲.利用有机废水生产聚羟基烷酸(PHAs)的进展.广东化工,2005,7:34-41.
    64.杨幼慧,伍朝晖,钟士清,等.食品工厂活性污泥积累生物降解塑PHA的研究.食品与发酵工业,2002,28:5-8.
    65. Loosdrecht V, Pot M A M, Heijnen J J. Importance of bacterial storage polymers in bioprocess. Water Science Technology, 1997, 35: 41-47.
    66. Majone M, Ramadori R, Beccari M. Biodegradable polymers from wastes by using activated sludges enriched by aerobic periodic feeding. AIDIC Conference Series, 1999, 4:163-170.
    67.张军,孙凡,陈德万.等.强稳恒磁场对离体牛肝过氧化氢酶构象及活力的影响.中国医学物理学杂志,2001,18:35-36.
    68.夏丽华,过继勋.磁场对羊草过氧化物酶的激活效应及同工酶分析.应用生态学报.2000.11:699-702.
    69.钟科军,曹祉祥.超氧化物歧化酶磁效应的研究.湖南大学学报(自然科学版),1999.26:18-23.
    70.范秋领,朱元保,和双娥,等.磁场影响枯草杆菌蛋白酶催化活性的研究.吉首大学学报(自然科学版),1998,19:47-50.
    71.贺华君,朱元保,钟科军.等.磁场对纤维素酶的活性及构象的影响.吉首大学学报(自然科学版),1998,19:41-46.
    72.李青彬,尹春玲,杨维春.低强度均匀磁场对过氧化氢酶催化活性的影响研究.化工时报,2006,(23)12:23-25.
    73.黄德盈,吴士筠.等.磁场对质粒PBR322DNA的影响.生物物理学报,1995,11:457-462.
    74.刘国民.贾建治.电磁场对微生物影响的研究.曲阜师范大学学报,2002,28:87-88.
    75. Charlet R, Sauvagea F, Grattepanche P, et al.Safety of the magnetic field generated by a neuronal magnetic stimulator: evaluation of possible mutagenic effects. Clinical Neurophysiology, 2003, 114: 581-588.
    76. Henry L, Narendra P. Singh magnetic-field-induced DNA strand breaks in brain cells of the rat. Environmental Health Perspectives, 2004, 112(6):687-694.
    77.曹宏,赵国林,张承烈.生物磁学在农作物生产中的应用.植物生理学通讯.1999,35(2):325-330.
    78. Simonov A N, Livshits V A, Kuznetsov A N. Effect of constant magnetic field on the formation of bilayer lipid membranes. Biofizika, 1986, 31: 777-782.
    79. Blank M, Soo L. Frequency dependence, of Na, K-A TPase function in magnetic fields. Bioelectrochemistry and Bioenergetics. 1997, 42:231-234.
    80. Okuno K, Fujinami R, Ano T. Disappearance of growth advantage instationary phase (GASP) phenomenon under a high magnetic field. Bioelectrochemistry, 2001 ,53:165-169.
    81.徐卫辉,石歆莹,邓国础,等.核磁共振对水稻超微结构的影响.激光生物学,1994,1:400-403.
    82. Tsuchiya K, Okuno K, Ano T, et al. High magnetic field enhances stationary phase-specific transcriptionactivity of E. coli.Bioelectrochemistry and Bioenergetics, 1999, 48:383-387.
    83. Kazuhiro N, Kazumasa O, Takashi A. et al. Effect of high magnetic field on the growth of Bacillus Subtilismeasured in a newly develed superconducting magnet biosystem. Bioelectrochemistry and Bioenergetics, 1997, 43:123-128.
    84. Shizaki Y, Horiuchi S I, Okuno K, et al. Twelve.exposure to inhomogeneous high magnetic field after logarithmicgrowth phase is sufficient for drastic suppression of E. coli death. Journal of Bioelectrochemistry, 2001, 54:101-105.
    85. Iwasakaa M, Ikehatab M, Miyakoshic J, et al. Strong static magnetic field effects on yeast proliferation and distribution. Journal of Biochemistry, 2004, 65:59-68.
    86. Elena P, Maria C A , Wally B. Antibacterial effect of a magnetic field on Serratia marcescens and related virulence to Hordeum vulgare and Rubus fruticosus callus cells. Comparative Biochemistry and Physiology Part B, 2002, 132: 359-365.
    87.许喜林,郭祀远.李琳.动态磁场对微生物的作用.华南理工大学学报(自然科学版),2006.32:47-50.
    88.张小云,张晓鄂.恒定强磁场对Hela细胞生长分裂的影响.科学通报.1989,24:1901-1904.
    89. Agnieszka T, Marta, J R. The effect of magnetic field onwastewater treatment with activated sludge method. Journal of Environment Protection Engineering, 2004. 30:155-160.
    90. Hattori S. Watanabe M, Osono H, et al. Effects of an external magnetic field on the sedimentation of activatedsludge. World Journal of Microbiology and Biotechnology, 2001, 17:279-285.
    91. Hu X, Dong H Y, Qiu Z N, et al. The effect of high magnetic field characterized by kinetics: Enhancingthe biodegradation of acid red 1 with a strain of Bacillus sp. International Biodeterioration and Biodegradation, 2007, 60:293-298.
    92. Hulya Yavuza, Serdar S C. Effects of magnetic field on activity of activated sludge. Enzyme and Microbial Technology, 2000, 26: 22-27.
    93. Jung J, Sanji B. Godbole S. et al.. Biodegradation of phenol. A comparative study with and without applying magnetic fields. Journal of Chemical Technology and Biotechnology, 1993, 556: 73-76.
    94. Mauricy A M, Joa~o B F M, Alexandre S, et al. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnology Progress. 2004, 20, 393-396.
    1.国家环境保护总局,水和废水监测分析方法.北京:中国环境科学出版社,2002.
    2.刘艳玲,任南琪,刘敏,等.气相色谱法分析厌氧反应器中的挥发性脂肪酸(VFA).哈尔滨建筑大学学报,2000,33:31-34.
    3.陈庆今,刘焕彬,胡勇.气相色谱测厌氧消化液挥发性脂肪酸的快速法研究.中国沼气,2003.21:3-5.
    4.李小玲,张海洋,陈红等.表面响应曲面法优化微生物中聚β-羟基丁酸酯提取条件的研究.分析化学,2007,35(3):419-422.
    5. Braunegg G, Sonnleitner B, Lafferty R M. A rapid gas chromatographic method for the determination of poly-h-hydroxybutyric acid in microbial biomass. Eur Journal Applied Microbiology Biotechnology, 1978, 6: 29-37.
    6. Comeau Y, Hall K J, Oldham W K. Determination of poly-hhydroxybutyrate and Poly-hydroxyvalerate in activated sludge by gas-liquid chromatography. Applied Environmental Microbiology, 1998, 54: 2323-2327.
    7. Hiroyadu S, Williams D R, Frederic A. et al. Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage, Water Science and Technology, 1996, 34:9-16
    8. Bengtsson S, Werker A, Christensson Met al. Production of polyhydroxyal- kan oates by activated sludge treating a paper mill wastewater, Bioresource Technology, 2008, 99(3): 509-16.
    9.郑维,权春善,朴永哲,范圣第.一种快速提取细菌总DNA的方法研究.中国生物工程杂志,2006,26(4):75-80。
    10. Lane D J, 16S/23S rRNA sequencing, In E. Stackebrandt and M. Goodfellow. Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, England. 1991 : 115-175.
    11. Kumar S, Tamura K, Jakobsen 1 B, et al. MEGA2: Molecular Evolutionary Genetics Analysis Software, Bioinformatics, 2001, 17(12): 1244-1245.
    12. Thompson J D, Gibson T J, Plewniak F, el al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Research, 1997, 25(24): 4876-4882.
    1. Dionisi D, Majone M, Vallini V, et al. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnology and bioengineering, 2006, 93:76-88
    2. Majone M, Massanisso P, Carucci A, et al. Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Science and Technology. 1996, 34(5): 223-232.
    3. Joa(?)o M L D, Luisa S S, Paulo C L, et al. Mathematical modelling of a mixed culture cultivation process for the production of polyhydroxybutyrate. Biotechnology and ioengineering, 2005,92:209-222
    4. Beun J J, Paletta F, Van Loosdrecht M C M, et al. Stoichiometry and kinetics of poly--hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnology and bioengineering, 2000,67 (4):380-388.
    5. Hulya Yavuz, Serdar S C. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology, 2000, 26: 22-27
    6. Jung J, Sofer S. Enhancement of phenol biodegradation by south magnetic field exposure. Journal of Chemical Technology and Biotechnolog, 70: 299-303
    1. Hu X, Dong H Y, Qiu Z N, et al. The effect of high magnetic field characterized by kinetics: enhancing the biodegradation of acid red 1 with a strain of Bacillus sp. International Biodeterioration and Biodegradation, 2007, 60: 293-298.
    2. Jung J, Sanji B, Godbole S, et al. Biodegradation of phenol. A comparative study with and without applying magnetic fields. Journal of Chemical Technology and Biotechnology, 1993, 556: 73-76.
    3. Mauricy A M, Joa~o B F M, Alexandre S, et al. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnology Progress. 2004, 20, 393-396.
    4. Serafim L S, Lemos P C, Oliveira R F. et al. Optimisation of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 2004, 87(2): 145-160.
    5. Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnology and Bioengineering, 2004, 85: 569-579.
    6. Wang Y J, Hua FL, Tsang Y F, et al. Short communication synthesis of PHAs from waster under various C:N ratios. Bioresource Technology, 2007, 98: 1690-1693.
    7. Chua A S M, Hiroo T, Hiroyasu S, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT) and acetate concentration in influent. Water Research, 2003, 37:3602-3611.
    8. Zhang T, Liu Y, et al. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process. Biotechnology and Bioengineering, 2005, 92 (2): 173-182.
    9. Charles Polk and Elliot Postow. CRC handbook of biological effects of electromagnetic fields, CRC Press. 1986, 169-196.
    10.张军,孙凡,陈德万,等.强稳恒磁场对离体牛肝过氧化氢酶构象及活力的影响.中国医学物理学杂志.2001,18:35-36.
    11. Blank M E. Electromagnetic Fields: Biological Interactions and Mechanisms. Advances in Chemistry, 1995,250-251.
    12. Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiology Review, 1990.54(4):450-472.
    1.金大勇,顾国维,杨海真.生物降解塑料聚羟基烷酸(PHA)的研究进展.氨基酸和生物资源,2004.26(3):30-32.
    2.朱博超.聚羟基脂肪酸酯的合成和应用研究进展,现代塑料加工应用,2003,15:61-64.
    3. Serafim L S, Lemos P C, Oliveira R F, et al. Optimisation of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnotogy and Bioengineering. 2004, 87(2): 145-160.
    4. Lemos C, Viana C, Sagueiro E N, et al. Effect of carbon source on the formation of polyhydroxyalkanoates by a phosphate accumulating mixed culture. Enzyme Microbial Technology, 1998, 22:662-71.
    5. Henze M, Harremoes P, La C J. et al. Wastewater Treatment: Biological and Chemical Processe. 1995.
    6. Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding, Biotechnology and Bioengineering, 2004, 85: 569-579.
    7. Lemos P C, Luisa S S, Maria A M. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding, Journal of Biotechnology, 2006, 122:226-238
    8. Takehiro U, Yamane Y I, Watanabe M, et al. Stimulation of porphyrin production by application of an external magnetic field to a photosynthetic bacterium, rhodobacter sphaeroides. Journal of Bioscience and Bioengineering, 2003, 95(4): 401-404.
    9. Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiology Review, 1990.54(4):450-472.
    10. Dionisia D, Renzia V, Majonea M, et al. Storage of substrate mixtures by activated sludges under dynamic conditions in anoxic or aerobic environments. Water Research, 2004, 38: 2196 - 2206.
    1.许燕滨,李珣,等.磁场对两株厌氧除铬(Ⅵ)菌生长的影响.电镀与涂饰,2005,7:121-128.
    2. Zhang T, Liu Y, et al. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process. Biotechnology and Bioengineering, 2005, (92): 173-182.
    3.魏春,陈宁.代谢网络定量分析研究进展.生物技术通报,2002(13)3:234-238.
    4. Bengtsson S, Werker A, Christensson M, et al. Production of polyhydroxyalkan- oates by activated sludge treating a paper mill wastewater. Bioresource Technology, 2008, 99: 509-516.
    5.郑维,权春善,朴永哲,范圣第.一种快速提取细菌总DNA的方法研究.中国生物工程杂志,2006,26(4):75-80.
    6. Lane D J. 16S/23S rRNA sequencing, In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Academic Press, Chichester, England.1991, 115-175.
    7. Thompson J D, Gibson T J, Plewniak F, et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Resesrch, 1997, 25(24): 4876-4882.
    8. Kumar S, Tamura K, Jakobsen I B , et al. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17(12): 1244-1245
    9. Shi H d, Shiraishi M, Shimizu K. Metabolic Flux analysia for biosynthesis of poly (3-hydroxybuttyric acid) in Alcaligenes eutrophus from various carbon source. Journal of Fermentation and Bioengineering. 1997 (84): 579-587.
    10. Beun J J, Dircks K, Van Loosdrecht M C M, et al. Poly-3- hydroxyl butyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 2002 (36) :1167-1180.
    11. Luisa S S, Paulo C L, Rui O, Maria A M. Optimization of Poly- hydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 2004, 87:145-160.
    12. Katie A T, Mark N, Ralf CR. The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnology and Bioengineering, 2003, 82:238-250.
    13. Lemos P C, Serafim L S, Reis M. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology. 2006.22:226-238.
    14. Xing H, Hai-Yan D, Zu-Nan Q, et al. The effect of high magnetic field characterized by kinetics:Enhancing the biodegradation of acid red 1 with a strain of Bacillus sp. International Biodeterioration & Biodegradation. 2007.60:293-298.
    15. David C A, Victor H P, Oselys R J, et al. Effect of the extremely low frequency magnetic field on nisin production by Laetococcus lactis subsp, lactis using cheese whey permeate. Process Biochemistry. 2006, 41:1967-1973.
    16. Hulya Yavuz, Serdar S. C. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology. 2000, 26: 22-27.
    17. Blank M, Soo L. Frequency dependence of cytochrome oxidase activity in magnetic fields. Bioelectrochemistry and Bioenergetics. 1998,46:139-143.
    18. Blank M. Soo L, Papstein V. Effects of low frequency magnetic fields on Na, K-ATPase activity. Bioelectrochemistry and Bioenergetics, 1995.38: 267-273.
    19. Buchachenko L, Lukzen N, Pedersen J. On the magnetic field and isotope effects in enzymatic phosphorylation. Chemical Physics Letters, 2007, 434: 139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700