用户名: 密码: 验证码:
罗丹明、荧光素、尼罗红及尼罗兰衍生物的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别以罗丹明、荧光素、尼罗红和尼罗兰为母体,从改善罗丹明的荧光量子产率、大斯托克斯位移和引入活性基团方面对其结构进行修饰;从改善荧光素的荧光量子产率对pH值的敏感范围、对光敏感的基团、特异选择性和大斯托克斯位移方面对其结构进行修饰;从改善尼罗红和尼罗兰荧光量子产率和水溶性方面对其结构进行修饰。利用紫外-可见光谱和荧光光谱对这些衍生物进行性能检测,从中筛选出性能优异的荧光探针,并应用在荧光微球的制备、亚硝酸根离子的测定和细菌中聚羟基脂肪酸酯(PHAs)的检测方面。
     设计合成了性能优异的烯丙基罗丹明B、烯丙基荧光素、烯丙基尼罗红、不对称罗丹明和吡咯烷基罗丹明S五种荧光探针,并通过分散共聚和吸附的方法制备了五种聚苯乙烯基质的荧光微球。通过环境扫描电子显微镜、激光扫描共聚焦显微镜、荧光分光光度计、傅立叶转换红外光谱仪等仪器对制备的五种荧光微球进行了表征,发现这五种荧光微球具有良好的分散性、高且稳定的荧光强度。研究了这三种共聚荧光微球在四氢呋喃中的光谱性质,发现聚合在微球中的荧光探针具有和自由荧光探针一致的性质。并对这五种荧光微球和相应的荧光探针在乙醇中不同的荧光光谱,作了理论探讨。此外,在共聚荧光微球的表面引入了氨基功能基团,并测定了氨基的含量。
     设计合成了不对称结构的罗丹明衍生物,从中筛选出性能优异的荧光探针,它是N端刚化的7-羟基-1,2,3,4-四氢喹啉不对称罗丹明。在酸性介质中,发现它能和亚硝酸根离子进行反应,生成荧光强度低的产物,利用这种荧光淬灭的机理建立了测定亚硝酸根离子的方法。此方法简单,具有良好的重复性、高的灵敏度和选择性。使用此方法来检测水中痕量亚硝酸根离子,得到了满意的结果。
     设计合成了两种具有活性基团的酰胺类荧光素衍生物,以期在生物分析方面得到应用。光学性能研究的结果表明,酰胺类荧光素衍生物能提供多种吸收和发射最大值,具有良好的特异选择性和光稳定性,大的斯托克斯位移,并适合在酸性、中性和碱性环境下对生物体进行标记。
     设计合成了底环上有氯、溴和羧基的罗丹明衍生物,在此基础上能设计出含有活性基团、复杂结构和适合生物检测的罗丹明衍生物。合成了1-(5-荧光素)-2,4,6-三甲基吡啶鎓高氯酸盐,由于其结构中含有阳离子可与生物体内负电中心通过静电引力结合,有望通过进一步研究其荧光性能而在生物分析中得到应用。
     设计合成了含有活性基-羧基、氨基、羟基的尼罗红和尼罗兰衍生物,用来标记生物分子。合成的水溶性尼罗红比文献报道的收率高,尼罗兰衍生物能用作酸碱指示剂来测定细胞中的pH值。此外,水溶性好的双羧基尼罗兰和尼罗红,用来对细菌中的聚羟基脂肪酸酯进行染色,并通过荧光显微镜来鉴定聚羟基脂肪酸酯的胶束,从而建立了简单、快速、高灵敏的染色方法。
Based on rhodamine, fluorescein, nile red and nile blue in this thesis, respectively, rhodamine derivatives were designed and synthesized in order to modificate their fluorescence quantum yield, the large Stokes shift and incorporate reactive groups. Fluorescein derivatives were designed and synthesized in order to modificate pH-sensitive range, light-sensitive group, binding specificity and the large Stokes shift. Nile red and nile blue derivatives were designed and synthesized in order to modificate fluorescence quantum yield and water solubility. Then fluorescence properities of these derivatives were investigated by UV-vis spectra and fluorescence spectra, and the better fluorescent probes were selected and applied in the preparation of fluorescent microspheres,the determination of nitrite in water and the detection of polyhydroxyalkanoates of bacteria.
     Allyl rhodamine B, allyl fluorescein, allyl nile red, asymmetrical rhodafluor and pyrrolidinyl rhodamine S were designed and synthesized. And then they were used in the preparation of polystyrene-based fluorescent microspheres by the dispersion copolymerization and absorption method. These fluorescent microspheres were characterized by environmental scanning electron microscopy, laser scanning confocal microscopy, fluorescence spectrophotometry and fourier transform infrared spectrometer. They exhibited good dispersion and stable and high fluorescence intensity. Spectral properties of copolymerization fluorescent microspheres in tetrahydrofuran indicated these individual characteristics of labels should be maintained in the fluorescent microspheres. The differences of the fluorescent spectra between five fluorescent microspheres and their corresponding parent labels in ethanol had been investigated. Furthermore, copolymerization fluorescent microspheres were functionalized with amino groups, and the amount of amino groups was determined.
     A series of asymmetrical rhodamine derivatives were prepared and selected the better fluorescent probes. They were N steeled asymmetrical rhodamine containing 7-hydroxy-1,2,3,4-tetrahydroquinoline, which had a high fluorescence quantum yield and large Stokes shift. They can react with nitrite in an acidic medium to form a nitroso product, which had much lower fluorescence. Therefore, the method for trace nitrites was developed, which was simple, sensitive and selective. This method was applied to the determination of nitrite in tap water and lake water with satisfactory results.
     Two kinds of xanthamide fluorescein derivatives with active groups were prepared, which can be used in biological analysis. The results of their fluorescent properties showed that they can offer a wide variety of absorption and emission maximums. And they had excellent binding specificity and photostability and large Stokes shift. In addition, they can be employed as a biological fluorescence tag in acidic, neutral and alkaline environments.
     Rhodamine derivatives with chlorine, bromine and carboxyl group on the bottom ring were prepared. On this basis, the complicated rhodamine derivatives with reactive group can be designed from them, which would be suitable for biological detection.
     1-(Fluorescein-5-yl)-2,4,6-trimethylpyridinium perchlorate with positive charge was prepared, it can combine with biomolecules with negative charge through electrostatic attraction. It would be applied in biological applications by the fluorescence analysis.
     Nile red and nile blue derivatives with carboxyl or amino or hydroxyl group were synthesized, which were used to tag biological molecules. The dicarboxylic acid nile red had the better yield than that was reported, nile blue derivatives were found to be clear pH-dependent and could be used as acid-base indicators to measure intracellular pH. In addition, the dicarboxylic acid nile red and nile blue with good solubility in aqueous media were used to develop a simple, quick, safe, highly sensitive staining method to detect polyhydroxyalkanoates of bacteria, which was confirmed by fluorescence images of polyhydroxyalkanoates granules of bacteria.
引文
[1]何立芳,林丹丽,李耀群。同步荧光分析法的应用及其新进展,化学进展,2004,16(6):879~885
    [2]许金钩。荧光分析法近年来的某些进展,岩矿测试,1992,11(1):52~55
    [3]夏之宁。光分析化学,重庆:重庆大学出版社,2004:112~128
    [4]赵瑜,李隆弟。罗丹明和荧光素类染料的固体基质室温磷光研究,分析化学,1996,24(7):745~749
    [5]Gao J X, Wang P, Giese R W. Xanthamide Fluorescent Dyes. Anal.Chem., 2002, 74: 6397~6401
    [6]Gordon G W, Berry G, Liang X H, et al. Fluorescence Resonance Energy Transfer as a Relative Measure of Molecular Interaction. Biophys. J., 1998, 74: A36~A36
    [7]Sadamoto R, Nitkura K, Sears P S, et al. Cell-Wall Engineering of Living Bacteria. J. Am. Chem. Soc., 2002, 124: 9018~9019
    [8]Pearce D A, Jotterand N, Carrico I S, Imperiali B. Derivatives of 8-Hydroxy-2-methylquinoline Are Powerful Prototypes for Zinc Sensors in Biological Systems. J. Am. Chem. Soc., 2001, 123 (21): 5160~5161
    [9]Weber G. Fluorescence in Biophysics: Accomplishments and Deficiencies. Methods Enzymol, 1997, 278: 1~15
    [10]Walkup G K, Burdette S C, Lippard S J , et al. A New Cell-Permeable Fluorescent Probe for Zn2+. J. Am. Chem. Soc., 2000, 122 (23): 5644~5645
    [11]Adamczyk M, Chan C, Fino J, et al. Synthesis of 5-and 6-Hydroxymethylfluorescein Phosphoramidites. J. Org. Chem., 2000, 65 (2): 596~601
    [12]刘欣,王红,张华山。生物分析中近红外荧光探针进展,分析科学学报,2001, 17(4):346~351
    [13]杨冰,李瑛,徐创霞等。有机荧光材料研究进展,化学研究与应用,2003,15(1):11~16
    [14]Dujols V, Ford F, and Czarnik A W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. J. Am. Chem. Soc., 1997, 119 (31): 7386~7387
    [15]Chandran S S, Dickson K A, and Raines R T. Latent Fluorophore Based on the Trimethyl Lock. J. Am. Chem. Soc., 2005, 127 (6), 1652~1653
    [16]Babcock D F, Pfeiffer D R. Independent Elevation of Cytosolic [Ca2+] and pH of Mammalian Sperm by Voltage-dependent and pH-sensitive Mechanisms. J. Biol. Chem., 1987, 262 (3): 15041~15047
    [17]Klonis N, Clayton A H, Voss EW Jr, et al. Spectral Properties of Fluorescein in Solvent-water Mixtures: Applications as a Probe of Hydrogen Bonding Environments in Biological Systems. Photochem. Photobiol., 1998, 67: 500~515
    [18]Daban J R, BartoloméS, Bermúdez A, et al. Rapid and Sensitive Staining of Unfixed Proteins in Polyacrylamide Gels with Nile Red. Edited by: Walker J M,The Protein Protocols Handbook, 2nd Edition. Humana Press Inc., Totowa, NJ: 243~249
    [19]Sutter M, Oliveira S, Sanders N N, et al. Sensitive Spectroscopic Detection of Large and Denatured Protein Aggregates in Solution by Use of the Fluorescent Dye Nile Red. J Fluoresc, 2007, 17: 181~192
    [20]张华山,王红,赵媛媛编著。分子探针与检测试剂,科学出版社,京.20002,163
    [21]郭尧君。荧光实验技术,北京:科学出版社,1983,2~7
    [22]彭采尔。分子发光分析法(祝大昌),上海:复旦大学出版社,1985: 38~40
    [23]陈国珍。荧光分析法,北京:科学出版社,1975: 16~28
    [24]黄晓峰,张远强,张英起。荧光探针技术,北京:人民军医出版社,2004: 4~10
    [25]Tan J, Yan X P. 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+. Talanta, 2008, 76: 9~14
    [26]Carreon J R, Roberts M A, Wittenhagen L M, et al. Synthesis, Characterization, and Cellular Uptake of DNA-Binding Rose Bengal Peptidoconjugates. Organic Letters, 2005, 7 (1): 99~102
    [27]Cai S X, Zhang H Z, Guastella J, et al. Design and Synthesis of Rhodamine 110 Derivative and Caspase-3 Substrate for Enzyme and Cell-Based Fluorescent Assay. Bioorganic & Medicinal Chemistry Letters, 2001, 11: 39~42
    [28]Nakamura K, Hanna H, Cai H, et al. Coumarin Substrates for Cytochrome P450 2D6. Fluorescence Assays. Anal. Biochem., 2001, 292 (2): 280~286
    [29]Zhao Y R, Zheng Q, Dakin K, et al. New Caged Coumarin Fluorophores with Extraordinary Uncaging Cross Sections Suitable for Biological Imaging Applications. J. Am. Chem. Soc., 2004, 126 (14): 4653~4663
    [30]Lecher H Z, Mario S, Willard J A, et al. Method of preparing 4-amino-1,8-naphthalic acid imides. US. Patent, 2474185, 1949
    [31]Chang S C, Utecht R E, Lewis D E. Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides. Dyes and Pigments, 1999, 43: 83~94
    [32]赵同丰,赵德丰,常玉威等。X-型1, 8-萘酰亚胺类活性荧光染料的研究,染料工业,1998,35(3):1~3
    [33]Mishra A, Behera R K, Behera P, et al. Cyanines during the 1990s: A review. Chem Rev, 2000, 100: 1973
    [34]Yue S T, Johnson L D, Huang Z, et al. Unsymmertic cyanine dyes with a cationic side chain. US. Patent, 5322130, 1994
    [35]Yarmoluk S M, Kryvorotenko D B, Kovalska V B, et al. Interaction of cyanine dyes with nucleic acids, XX: new methods for the preparation of fluorescent probes based on benzotiazol-4-[2,6-dimethylpyridinium]cyanine dyes. Dyes and Pigments, 2001, 48: 165~172
    [36]Haugland R P, Yue S T, Millurd P J. Cyclic-substituted unsymmetrical cyanine dyes. US. Patent, 5436134, 1995
    [37]沈永嘉。酞菁的合成与应用,北京:化学工业出版社,2000, 42~57
    [38]Bickar D, Reid P D. A high~affinity protein strain for western blots, tissue prints, and electrophoretic Gels. Anal Biochem, 1992, 203: 109~115
    [39]田禾,苏建华,孟凡顺。功能性色素在高新技术中的应用,北京:化学工业出版社,2000,280~287
    [40]Nakanishi J , Nakajima T, Ozawa T,et al. Imaging of Conformational Changes of Proteins with a New Environment-Sensitive Fluorescent Probe Designed for Site-Specific Labeling of Recombinant Proteins in Live Cells. Anal.Chem., 2001, 73 (13): 2920~2928
    [41]Ho N, Weissleder R, Tung C H. Development of water-soluble far-red fluorogenic dyes for enzyme sensing. Tetrahedron, 2006, 62: 578~585
    [42]Dela C J L, Blanchard G J. The influence of chromophore structure on intermolecular interaction. A study of selected Rhodamines in polar protic and aprotic solvents. J. Phys. Chem. A., 2002, 106 (44): 10718~10724
    [43]Stavrianopoulos J G, Elazar R. Labeling reagents comprising aphenylic analogs of rhodamine dyes. US. Patent, 200424355, 2004
    [44]Zhang Y Z, Haugland R P. Xanthylium dyes that are well retained in mitochondria. US. Patent, 5686261, 1997
    [45]Ghanadzadeh A, Zanjanchi M A. Self-association of rhodamine dyes in different host materials. Spectrochimica Acta Part A, 2001, 57 (9): 1865~1871
    [46]Ghanadzadeh A, Sariri R, Bahrpaima K. Aggregate formation of Rhodamine 6G in anisotropic solvents. Spectrochimica Acta Part A, 2001, 57 (1): 155~161
    [47]Meallier P, Moullet M, Chabaud F, et al. Phototchemistry of rhodamine 610. Dyes & Pigm, 1998, 36 (2): 161~167
    [48]Ferguson M W, Beaumont P C, Jones S E, et al. Excited state and free radical properties of rhodamine 123: a laser flash photolysis and radiolysis study. Phys.Chem. Chem. Phys, 1999, 1 (2): 261~268
    [49]Hee C K. Conjugates of sulforhodamine fluorophores with enhanced fluorescence. US. Panent, 5846737, 1998
    [50]Haugland R P, Singer V L, Yue S T. Xanthene dyes and their application as luminescence quenching compounds. US. Panent, 6399392, 2002
    [51]Keller R A, Ambrose W P, Goodwin P M, et al. Single-molecule fluorescence analysis in solution. Appl Spectrosc, 1996, 50 (7): 12A~32A
    [52]Kohn F, Hofkens J, Schryver D. Transient photokinetics of rhodamine 3B+ClO4/-in water: toluene mixtures. Chem Phys, 2000, 262 (2-3): 453~465
    [53]Renge I. A model of inhomogeneous broadening and pressure induced hole shifts in the optical spectra of organic chromophores in glasses. J Phys Chem A, 2001,105 (40): 9094~9103
    [54]Pevenage D, Auveraer M, Schryver D. Influence of the molecular structure on the lateral distribution of xanthene dyes in Langmuir-Blodgett films. Langmuir, 1999, 15 (24): 8465~8473
    [55]Houghten R A, Dooly C T, Appel J R. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library. Bioorganic & Medicinal Chemistry Lett, 2004, 14 (8): 1947~1951
    [56]Gee K R, Weinberg E S, Kozlowski D J. Caged q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorganic & Medicinal Chemistry Lett, 2001,11 (16): 2181~2183
    [57]Rucker V C, Shane F, Christian, et al. Sequence Specific Fluorescence Detection of Double Strand DNA. J. Am. Chem. Soc., 2003, 125, 1195~1202
    [58]Rucker V C, Dunn A R, Shantanu S, et al. Mechanism of sequence-specific fluorescent detection of dna by n-methyl-imidazole, n-methyl-pyrrole, andβ-alanine linked polyamides. J Phys Chem B, 2004, 108: 7490~7494
    [59]Rao T S, Zhang W, Xiao H, et al. Synthesis of novel tyrosinyl fret cassettes, terminators, and their potential use in dna sequencing, nucleosides. Nucleotides & Nucleic Acid, 2003, 22 (5~8): 1443~1445
    [60]Sando S, Hiroshi A, Kool E T. Quenched auto-ligating dnas: multicolor identification of nucleic acids at single nucleotide resolution. J. Am. Chem. Soc.,2004, 126: 1081~1087
    [61]Guilbault G. G. In Practical Fluorescence. Marcel Dekker Inc: New York, 1990, Chapter 1
    [62]Haugland R P. Handbook of Fluorescent Probes and Research Products. 9thed., Eugene: Molecular Probes Inc. 2002, 830~833
    [63]Jose M A, Luis B, Eva T, et al. Fluorescein Excited-state Proton Exchange Reaction: Nanosecond Emission Kinetics and Correlation with Steady-state Fluorescence Intensity. J. Phys. Chem. A, 2001, 105: 6320~6332
    [64]Song L, Hennink E J, Young T, et al. Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy. Biophys. J., 1995, 68 (6): 2588~2600
    [65]Song L, Varma C A G, Verhoeven J W, et al. Influence of the Triplet Excited State on the Photobleaching Kinetics of Fluorescein in Microscopy. Biophys. J., 1996, 70 (6): 2959~2968
    [66]Ming Wei Tsai, Duu Jong Lee, Juin Yih Lai. Mass transfer limit of fluorescent dyes during multicolor staining of aerobic granules. Appl Microbiol Biotechnol, 2008, 78: 907~913
    [67]Jose J and Burgess K. Syntheses and Properties of Water-Soluble Nile Red Derivatives. J. Org. Chem., 2006, 71: 7835~7839
    [68]Ghoneim N. Photophysics of Nile red in solution Steady state spectroscopy.Spectrochimica Acta Part A. 2000, 56: 1003~1010
    [69]Dutta A K, Kamada K, Ohta K. Spectroscopic studies of nile red in organic solvents and polymers. Journal of Photochemistry and Photobiology A: Chemistry 1996, 93, 57~64
    [70]Grofcsik A, Kubinyi M, Jones W J. Intermolecular photoinduced proton transfer in nile blue and oxazine 720. Chemical Physics Letters., 1996, 250: 261~265
    [71]Oliveira H P M, Camargo A J, Macedo L G.,et al. Synthesis, structure, electronic and vibrational spectra of 9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-Nmethacrylamid. Spectrochimica Acta Part A, 2002, 58: 3103~3111
    [72]Chen X W, Fang Wang, Zilin Chen. An electropolymerized Nile Blue sensing film-based nitrite sensor and application in food analysis. Analytica Chimica Acta, 2008, 623: 213~220
    [73]Frade V H J, Sousa M J, Moura J C V P et al. Synthesis, characterisation and antimicrobial activity of new benzo[a]phenoxazine based fluorophores. Tetrahedron Letters, 2007, 48: 8347~8352
    [74]Giacomo, Diaz, Barbara Batetta et al. Lipid droplet changes in proliferating and quiescent 3T3 fibroblasts. Histochem Cell Biol 2008, 129: 611~621
    [75]Soazig C, Delamarre, Hyun Joo chang, Carla Batt. Identification and characterization of two polyhydroxyalkanoate biosynthesis loci in Pseudomonas sp. strain 3Y2. Appl Microbiol Biotechnol, 2005, 69: 293~303
    [76]Okamoto A, Tainaka K, and Yoshimasa F. Nile Red Nucleoside: Design of a Solvatofluorochromic Nucleoside as an Indicator of Micropolarity around DNA. J. Org. Chem., 2006, 71 (9): 3592~3598
    [77]Plasek J, Sigler K. Slow fluorescent indicators of membrane potential a survey of different approaches to probe response analysis. J. Photochem. Photobiol. B: Biol., 1996, 33: 101~124
    [78]Guzikowski A P., Maleway J J, Christina T S R C S. New chiral modifiers in enantioselective heterogeneous catalytic hydrogenation of ethyl pyruvate over Pt/Al2O3: chiral amino alcohols derived from piperidine. Tetrahedron. Lett., 2000, 41: 4733~4735
    [79]Gaboury L, Viueneuve L, Giasson R, et al. Novel rhodamine derivatives for photodynamic therapy of cancer and in vitro purging of the leukemias. US. Patent, 5556992, 1996
    [80]Khare R, Daulatabad S R. A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B. Optics. Las. Tech., 2004, 36: 27~30
    [81]Mchedlov-Petrossyan N O, Shapovalov S A, et al. A New Application of Rhodamine 200 B (Sulfo Rhodamine B). Dyes and Pigments, 1995, 28 (1): 7~18
    [82]Sui X C, Zhang H Z, et. al. Design and Synthesis of Rhodamine 110 Derivative and Caspase-3 Substrate for Enzyme and Cell-Based Fluorescent Assay.Bioorg. Medi. Chem. Lett., 2001, 11: 39~42
    [83]Ribou A C, Vigo J, Kohen E, et al. Microfluorometric study of oxygen dependence of (1”-pyrene butyl)-2-rhodamine ester probe in mitochondria of living cells. Journal of Photochemistry and Photobiology B: Biology, 2003, 70: 107~115
    [84]Claudine S V, Doizi D and Guillaumet G. Synthesis of isomers of rhodamine 575 and rhodamine 6G as new laser dyes. Tetrahedrons. Lett., 1999, 40: 4803~4806
    [85]Arden J, Deltau G, Huth V. Fluorescence and lasing properties of rhodamine dyes. J. Lumin, 1991, 48-49: 352~358
    [86]Tian H, Tang Y, Chen K. Bichromophoric rhodamine dyes and their fluorescence properties. Dyes and Pigments, 1994, 26: 159~165
    [87]Su J, Tian H, Chen K. Novel Trichromophoric Rhodamine Dyes and Their Fluorescence Properties. Dyes and Pigments, 1996, 31 (1): 69~77
    [88]Bergot B J, Chkerian V, Connell C, et al. Spectrally resolvable rhodamine dyes for nucleic acid sequence determination. US. Patent, 5366860, 1994
    [89]Liu J X, Diwu Z J, et. al. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths. Tetrahedron Letters, 2003, 44: 4355~4359
    [90]Khare R, Daulatabad S R. A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B. Optics. Las. Tech., 2004, 36: 27~30
    [91]Fernandez-Busquets X, Max M. Burger. Use of Rhodamine B Isothiocyanate to Detect Proteoglycan Core Proteins in Polyacrylamide Gels. Anal. Biochem., 1995, 227: 394~396
    [92]Swedlow H, Zhong J Z, et. al. Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence. Anal. Chem., 1991, 63: 2835~2841
    [93]Griep M A, Mchenry C S. Dimer of the .beta. subunit of Escherichia coli DNA polymerase III holoenzyme is dissociated into monomers upon binding magnesium (II). Biochem., 1988, 27: 5210~5215
    [94]Linda G. Lee, Ronald J. Graham, William E. Werner, et. al. Water-soluble rhodamine dye peptide conjugates. US. Patent, 6372907B1, 2002
    [95]Hirano T, Kikuchi K, Urano Y, et al. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs. J. Am. Chem. Soc., 2002, 124 (23): 6555~6562
    [96]王义琛,王流芳,王兴国等。二丙酸酯荧光素分解酶细胞化学测定方法研究,兰州大学学报,1984, 20(3):132~133
    [97]Jacobsen C N, Rasmussen J, Jakobsen M. Viability Staining and Flow Cytometic Detection of Listeria Monocytogenes. J. Microbiol. Method., 1997, 28: 35~39
    [98]Diaper J P, Edwards C. The Use of Fluorogenic Esters to Detect Viable Bacteria by Flowcytometry. J. App. Bact., 1994, 77: 221~228
    [99]Kawai M, Yamaguchi N, Nasu M. Rapid Enumeration of Physiologically Active Bacteria in Purified Water Used in the Pharmaceutical Manufacturing Process. J. Appl. Microbiol., 1999, 86: 496~504
    [100]Lyons A B, Hasbod J, Hodgkin P D. Flow Cytometric Analysis of Cell Division History Using Dilution of CFSE, a Stably Integrated Fluorescent Probe. Methods. Cell. Biol., 2001, 63: 375~398
    [101]Lyons A B. Divided We stand: Tracking Cell Proliferation with Carboxyfluorescein Diacetate Succinimidyl Ester. Immunol. Cell. Biol., 1999, 77: 509~515
    [102]Chitarra L G, Breeuwer P, van den Bulk RW, et al. Rapid Fluorescence Assessment of Intracellular pH as a Viability Indicator of Clavibacter Michiganensis. J. Appl. Microbiol., 2000, 88: 809~816
    [103]Hoefel D, Grooby W L, Monis P T, et al. A Comparative Study of Carboxyfluorescein Diacetate and carboxyfluorescein Diacetate Succinimidyl Ester as Indicators of Bacterial Activity. J. Microbiol. Method., 2003, 52: 379~388
    [104]Falck J R, Krieger M, Goldstein J L, et al. Preparation and Spectral Properties of Lipophilic Fluorescein Derivatives: Application to Plasma Low-Density Lipoprotein. J. Am. Chem. Soc., 1981, 103 (1): 7396~7398
    [105]Allaway G P. Testing Agents for Ability to Inhibit HIV-induced Cell Fusion-Using Dye labelled cells and Measuring the Resonant Energy Transfer Between Them to Identify Specific Inhibitors of Infection. WO. Patent, 9516789, 1995
    [106]Song A M, Zhang J H, Zhang M H et al. Spectral Properties and Structure of Fluorescein and it Alkyl Derivatives in Micelles. Collids and Surfaces A: physicochemical and engineering aspects, 2000, 167: 253~260
    [107]Dean R T, Dorn J C P. Dialkenoyl-Fluorescein Derivatives- Useful as Fluorescent Agents for Incorporation in Biological Systems. US. Patent, 4304720, 1981
    [108]Adamczyk M, Chen Y Y, Grote J. O-(Fluoresceinylmethyl)hydroxylamine (OFMHA): a Reagent for the Preparation of Fluorescent O-(Fluoresceinylmethyl)oxime (FMO)-Steroid Conjugates. Steroids, 1999, 64: 283~290
    [109]Banks P R, Paquette D M. Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis. Bioconjugate Chem., 1995, 6 (4): 447~458
    [110]Jiao G S, Han J W, Burgess K. Syntheses of Regioisomerically Pure 5- or 6-Halogenated Fluoresceins. J. Org. Chem., 2003, 68: 8264~8267
    [111]Banks R P, Paquette D M., Comparison of Three Common Amine Reactive Fluorescent Probes Used for Conjugation to Biomolecules by Capillary Zone Electrophoresis. Bioconjugate Chem, 1995, 6 (4): 447~485
    [112]Christopher T O, Susanne C, Eric F, et al. Efficient and Expedient Two-Step Pyranose-Retaining Fluorescein Conjugation of Complex Reducing Oligosaccharides: Galectin Oligosaccharide Specificity Studies in a Fluorescence Polarization Assay. Bioconjugate Chem, 2003, 14 (6): 1289~1297
    [113]Breeuwer P, Drocourt J L, Rombouts F M, et al. A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Ester. Appl. Environ. Microbiol., 1996, 62: 178~183
    [114]Riondet C, Cachon R, Wache Y, et al. Divies C. Measurement of the Intracellular pH in Escherichia Coli with the Internally Conjugated Probe 5-(and 6-) Carboxyfluorescein Succinimidyl Ester. Biotech. Tech., 1997, 11: 735~738
    [115]Tanaka K, Miura T, Umeawa N, et al. Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen. J. Am. Chem. Soc., 2001, 123 (11): 2530~2536
    [116]Phillip G M. Preparation of 5- and 6-(aminomethyl)fluorescein. Bioconjugate Chem., 1992, 3 (5): 430~431
    [117]Bragg P D and Hou C S. Composition, Function, and Spatial Arrangement in the Ca2+-and Mg2+-activated Adenosine Triphosphatases of Escherichia Coli and Salmonella Typhimurium. Arch. Biochem. Biophys., 1975, 167: 311~316
    [118]Lomants A J, Fairbanks G. Chemical Probes of Extended Biological Structures: Synthesis and Properties of Cleavable Protein Crosslinking Reagent Dithiobis(succinimidyl propionate). J. Mol. Biol., 1976, 104: 243~254
    [119]Wang H, Li J, Liu X, et al. N-Hydroxysuccinimidyl Fluorescein- O-acetate as a Fluorescent Derivatizing Reagent for Catecholamines in Liquid Chromatography. Analyt. Biochem., 2000, 281: 15~20
    [120]Wang H, Li J, Liu X, et al. N-hydroxysuccinimidyl Fluorescein- O-Acetate as a Highly Fluorescent Derivatizing Reagent for Aliphatic Amines in Liquid Chromatography. Anal. Chim. Acta., 2000, 423: 77~83
    [121]Cain A J. The use of Nile Blue in the examination of lipids. Q J Microsc Sci., 1947, 88: 383~392
    [122]Degelau A, Scheper T, Bailey J E, et al. Fluorometric measurement of poly-b-hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol, 1995, 42: 653~657
    [123]Fowler SD, Greenspan P. Application of Nile Red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections. J Histochem, 1985, 33: 833~836
    [124]Greenspan P, Mayer E P, Fowler S D. Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol, 1985, 100: 965~973
    [125]Kranz R G, Gabbert K K, Madigan M T. Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Appl Environ Microbiol, 1997, 63: 3010~3013
    [126]Ostle A G, Holt J G.. Nile Blue A as a fluorescent stain for poly-b-hydroxybutyrate. Appl Environ Microbiol, 1982, 44: 238~241
    [127]Patricia Spiekermann, Bernd H. A. Rehm et al. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbil, 1999, 171: 73~80
    [128]Daban J R., BartoloméS and SamsóM. Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry, 1991, 199: 169~174
    [129]Daban J R. Fluorescent labeling of proteins with Nile red and 2-methoxy-2,4-diphenyl-3(2H)-furanone: Physicochemical basis and application to the rapid staining of sodium dodecyl sulfate polyacrylamide gels and Western blots. Electrophoresis, 2001, 22: 874~880
    [130]陈安和。两种SDS-PAGE蛋白质染色新方法,生命的化学,l992,12(6):37~39
    [131]Sutter M, Oliveira S, Sanders N N, et al. Sensitive Spectroscopic Detection of Large and Denatured Protein Aggregates in Solution by Use of the Fluorescent Dye Nile Red. J. Fluoresc, 2007, 17: 181~192
    [132]Alba F J, Bermúdez A, Daban J R. Green-light transilluminator for the detection without photodamage of proteins and DNA labeled with different fluorescent dyes. Electrophoresis, 2001, 22: 399~403
    [133]Adkins S, and Burmeister M. Visualization of DNA in Agarose Gels as Migrating Colored Bands: Applications for Preparative Gels and Educational Demonstrations. Analytical Biochemistry, 1996, 240: 17~23
    [134]Yang Y, Hong H Y, Bai D G. Detection of DNA Using a Visible Dye, Nile Blue, in Electrophoresed Gels. Analytical Biochemistry, 2000, 280 (2): 322~324
    [135]Walkup G K, Imperiali B. Fluorescent Chemosensors for Divalent Zinc Based on Zinc Finger Domains. Enhanced Oxidative Stability, Metal Binding Affinity, and Structural and Functional Characterization. J. Am. Chem. Soc. 1997, 119: 3443~3450
    [136]Richieri G V, Ogata R T, Kleinfeld A M A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J. Biol. Chem. 1992, 267: 23495~23501
    [137]Hahn K M, Waggoner A S, Taylor D L. A calcium-sensitive fluorescent analog of calmodulin based on a novel calmodulin-binding fluorophore. J. Biol. Chem., 1990, 265: 20335~20345
    [138]Dunham T D, Farrens D L. Conformational Changes in Rhodopsin. J. Biol. Chem., 1999, 274: 1683~1690
    [139]Post P L, Trybus K M, Taylor D L. A genetically engineered, protein-based optical biosensor of myosin II regulatory light chain phosphorylation. J. Biol. Chem., 1994, 269: 12880~12887
    [140]Nakanishi J, Nakajima T, Sato M, Ozawa T, et al. Imaging of Conformational Changes of Proteins with a New Environment-Sensitive Fluorescent Probe Designed for Site-Specific Labeling of Recombinant Proteins in Live Cells. Anal. Chem., 2001, 73: 2920~2928
    [141]Kim S Y, Semyonov A N, Twieg R J, et al. Probing the Sequence of Conformationally Induced Polarity Changes in the Molecular Chaperonin GroEL with Fluorescence Spectroscopy. J. Phys. Chem. B, 2005, 109: 24517~24525
    [142]Black S L, Stanley W A, Filipp F V, et al. Probing lipid-and drug-binding domains with fluorescent dyes. Bioorganic & Medicinal Chemistry, 2008, 16: 1162~1173
    [143]Nagy K and Go1ktu1rk S. Effect of Microenvironment on the Fluorescence of 2-Hydroxy-Substituted Nile Red Dye:A New Fluorescent Probe for the Study of Micelles. J. Phys. Chem. A, 2003, 107: 8784~8790
    [144]Meinershagen J L and Bein T. Optical Sensing in Nanopores. Encapsulation of the Solvatochromic Dye Nile Red in Zeolites. J. Am. Chem. Soc., 1999, 121 (2): 448~449
    [145]Brousmiche D W, Serin J M, Frchet J M J, et al. Fluorescence Resonance Energy Transfer in Novel Multiphoton Absorbing Dendritic Structures. J. Phys. Chem. B, 2004, 108 (25): 8592~8600
    [146]Brousmiche D W, Serin J M, Frchet J M J, et al. Fluorescence Resonance Energy Transfer in a Novel Two-Photon Absorbing System. J. Am. Chem. Soc., 2003, 125 (6): 1448~1449
    [147]Martin-Brown S A, Fu Y, Saroja G, et al. Single-Molecule Studies of Diffusion by Oligomer-Bound Dyes in Organically Modified Sol?Gel-Derived Silicate Films, Anal. Chem., 2005, 77 (2), 486~494
    [148]Briggs M S J, Bruce I, Miller J N, et al. Synthesis of functionalised fluorescent dyes and their coupling to amines and amino acids. J. Chem. Soc., Perkin Trans., 1997, 1: 1051~1058
    [149]Ngeontae W, Xua C, Ye N, et al. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Analytica Chimica Acta, 2007, 599: 124~133
    [150]Chen X W, Wang F, Chen Z L. An electropolymerized Nile Blue sensing film-based nitrite sensor and application in food analysis. Analytica Chimica Acta, 2008, 623: 213~220
    [151]Vania H J F, Maria J S, Joao C V P, et al. Synthesis, characterisation and antimicrobialactivity Of new benzo[a]phenoxazine base fluorophores. Tetrahedron Letters, 2007, 48: 8347~8352
    [152]Haugland R P, Haugland R P, Brinkley J M, et al. Dipyrrometheneboron difluoride labeled fluorescent microparticles. US. Patent, 5723218, 1998.
    [153]Qiu G M, Xu Y Y, Zhu B K, et al. Novel, Fluorescent, Magnetic, Polysaccharide-Based Microsphere for Orientation, Tracing, and Anticoagulation: Preparation and Characterization. Biomacromolecules, 2005, 6: 1041~1047
    [154]Fonseca T, Relogio P, Martinho J M G et al. Preparation and Surface Characterization of Polymer Nanoparticles Designed for Incorporation into Hybrid Materials. Langmuir, 2007, 23: 5727~5734
    [155]Wang L, Lofton C, Popp M, et al. Using Luminescent Nanoparticles as Staining Probes for Affymetrix GeneChips. Bioconjugate Chem., 2007, 18: 610~613
    [156]Chandler M B, Chandler D J. Microparticles attached to nanoparticles labeled with fluorescent dye. US. Patent, 6268222, 2001
    [157]Zhang Y Z, Kemper C R and Haugland R P. Microspheres with fluorescent spherical zones. US. Patent, 5786219, 1998
    [158]Cheung S W. Methods of making fluorescent microspheres. US. Patent, 5194300, 1993
    [159]Wosnick J H, Liao J H, and Swager T M. Layer-by-Layer Poly(phenylene ethynylene) Films on Silica Microspheres for Enhanced Sensory Amplification. Macromolecules, 2005, 38: 9287~9290
    [160]Keegan M E, Falcone J L, Leung T C, et al. Biodegradable Microspheres with Enhanced Capacity for Covalently Bound Surface Ligands. Macromolecules, 2004, 37: 9779~9784
    [161]Insin N, Tracy J B, Lee H, et al. Nanoscience under Glass: The Versatile Chemistry of Silica Nanostructures. ACS Nano., 2008, 2: 179~183
    [162]Chen C A, Yeh R H and Lawrence D S. Design and Synthesis of a Fluorescent Reporter of Protein Kinase Activity. J. Am. Chem. Soc., 2002, 124: 3840~3841
    [163]Black S L, Stanley W A, Filipp F V, et al. Probing lipid-and drug-binding domains with fluorescent dyes. Bioorganic & Medicinal Chemistry, 2008, 16: 1162~1173
    [164]Bandichhor R, Petrescu A D, Vespa A, et al. Synthesis of a New Water-Soluble Rhodamine Derivative and Application to Protein Labeling and Intracellular Imaging. Bioconjugate Chem., 2006, 17: 1219~1225
    [165]Kim S Y, Semyonov A N, Twieg R J, et al. Probing the Sequence of Conformationally Induced Polarity Changes in the Molecular Chaperonin GroEL with Fluorescence Spectroscopy. J. Phys. Chem. B., 2005, 109: 24517~24525
    [166]Hoekstra D., Boer T, Klappe K et al. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry, 1984, 23: 5675~5681
    [167]Woodroofe C C, Lim M H, Bu W et al. Synthesis of isomerically pure carboxylate- and sulfonate-substituted xanthene fluorophores. Tetrahedron, 2005, 61: 3097~3105
    [168]Meinershagen J L and Bein T. Optical Sensing in Nanopores. Encapsulation of the Solvatochromic Dye Nile Red in Zeolites. J. Am. Chem. Soc., 1999, 121: 448~449
    [169]Tsyalkovsky V, V Klep, Ramaratnam K, et al. Fluorescent Reactive Core–Shell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chem. Mater., 2007, 20: 317~325
    [170]Nakamura M and Ishimura K. Using a one-pot synthesis, thiolorganosilica nanoparticles (NPs) made from (3-mercaptopropyl)trimethoxysilane. Langmuir, 2008, 24: 5099~5108
    [171]Anthony J. P. Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size. Macromolecules, 1990, 23: 3109~3117
    [172]Xu Z S, Deng Z W, Hu X X, et al. Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization with Microwave Irradiation. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 2368~2376
    [173]Cho M S, Yoon K J, Song B K. Dispersion poly-merization of acrylamide in aqueous solution of ammonium sulfate : synthesis and characterization. J. Appl. Polym. Sci., 2002, 83: 1397~1405
    [174]Tian H, He Y J, Chang C P, et al. Synthesis and spectral properties of novel laser copolymers based on modified rhodamine 6G and 1,8-naphthalimide. J. Mater. Chem., 2000, 10: 2049~2055
    [175]Hurd C D and Schmerling L. Alkenyl Derivatives of Fluorescein. J. Am. Chem. Soc., 1937, 59: 112~117
    [176]Lee L G, Benson S C, Rosenblum B B, et al. US Pat. 0112781, 2005
    [177]Tseng C M, Lu Y Y and Aasser M S E. Uniform polymer by dispersion polymerization in alcohol. Journal of Polymer Science:Part A: Polymer Chemistry Edition, 1986, 24: 2995~3007
    [178]Lok K P and Ober C K. Particle size control in dispersion polymerization of polystyrene. Can. J. Chem., 1985, 63: 209~216
    [179]Huang J, Zhang H and Hou J. Preparation of micron-size crosslinked microspheres by dispersion copolymerization of polystyrene/2,2-oxy-bisethanoldiacrylate. Reactive Functional Polymers, 2002, 53: 1~9
    [180]Okubo M, Minami H and Yamamoto Y. Penetration/release behaviors of various solvents into/from micron-sized monodispersed hollow polymerparticles. Colloids and Surface A: Physiochemical Engineering Aspects. 1999, 153: 405~411
    [181]Ding X B, Sun Z H and Wan G X. Preparation of thermosensitive magnetic particles by dispersion polymerization. Reactive Functional Polymers, 1998, 38: 11~15
    [182]Okubo M, Katayama Y and Yamymoto Y. Preparation of micron-size monodisperse polymer microspheres having crosslinked structures and vinyl groups. Colloid and Polymer Science, 1991, 269: 217~221
    [183]Rickey D B, Warren T F and Frank J M. Surface modification of colloidal silica.Langmuir, 1990, 6: 792~801
    [184]Kim D S, Park H B and Jang J Y. Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cells. Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43: 5620~5631
    [185]Zhang Y, Li Y and Yan X P. Aqueous Layer-by-Layer Epitaxy of Type-II CdTe/CdSe Quantum Dots with Near-Infrared Fluorescence for Bioimaging Applications. Small, 2009, 5: 185~189
    [186]Parab K, Venkatasubbaiah K, and Jkle F. Luminescent Triarylborane-Functionalized Polystyrene: Synthesis, Photophysical Characterization, and Anion-Binding Studies. J. Am. Chem. Soc., 2006, 128: 12879~12885
    [187]Chen Z H, Bouffard J, Kooi S E, et al. Highly Emissive Iptycene#Fluorene Conjugated Copolymers: Synthesis and Photophysical Properties. Macromolecules, 2008, 41: 6672~6676
    [188]Fleming C N., Jang P, Meyer T J, et al. Energy Migration Dynamics in a Ru(II)- and Os(II)-Based Antenna Polymer Embedded in a Disordered, Rigid Medium. J. Phys. Chem. B, 2004, 108: 2205~2209
    [189]Yang M J, Koutsos V, and Zaiser M. Interactions between Polymers and Carbon Nanotubes: A Molecular Dynamics Study. J. Phys. Chem. B, 2005, 109: 10009~10014
    [190]江兵兵,张洪涛。分散聚合法制备微米级聚苯乙烯微球,胶体与聚合物,2000,18(1):31~34
    [191]洪军,徐冬梅,孙汉文等。用于α-胰凝乳蛋白酶固定化的氨基超顺磁纳米凝胶的光化学合成与表征.高等学校化学学报,2007,28(1):177~182
    [192]何晓晓,王柯敏,谭蔚泓等。基于氨基化SiO2纳米颗粒的新型基因载体,科学通报,2002,47(18):1365~1370
    [193]贾之慎,李秀玲。酸碱电导滴定法测定壳聚糖脱乙酰度,分析化学研究简报,2002,30(7):846~848
    [194]Todoroki K, Hayama T, Ijiri S, et al. Rhodamine B amine as a highly sensitive fluorescence derivatization reagent for saccharides in reversed-phase liquid chromatography. Journal of Chromatography A, 2004, 1038: 113~120
    [195]Meng Q H, Yu M J, Zhang H F, et al. Synthesis and application of N-hydroxysuccinimidyl rhodamine B ester as an amine-reactive fluorescent probe. Dyes and Pigments, 2007, 73: 254~260
    [196]Gee K R, Weinbergb E S and Kozlowski D J. Caged Q-Rhodamine Dextran: A New Photoactivated Fluorescent Tracer. Bioorganic & Medicinal Chemistry Letters, 2001, 11: 2181~2183
    [197]Ravi S. Harapanhalli, Aloka M. Roy, S. James Adelstein, and Amin I. Kassis. [125I/127I/131I]Iodorhodamine: Synthesis, Cellular Localization, and Biodistribution in Athymic Mice Bearing Human Tumor Xenografts and Comparison with [99mTc]Hexakis(2-methoxyisobutylisonitrile). J. Med. Chem., 1998, 41 (12), 2111~2117
    [198]Brinkley J M, Haugland R P, Singer V L. Fluorescent Microparticles with Controllable Enhanced Strokes Shift. US. 5326692, 1994
    [199]Shen M Q, Shi Y and Tao Q Y. Synthesis of Fluoran Dyes with Improved Properties. Dyes and Pigments, 1995, 29 (1): 45~55
    [200]Clark M A, Hilderbrand S A and Lippard S J. Synthesis of fluorescein derivatives containing metal-coordinating heterocycles. Tetrahedron Letters, 2004, 45: 7129~7131
    [201]Matthew A C, Kathryn D, Jyoti T, et al. Synthesis and Metal-Binding Properties of Chelating Fluorescein Derivatives. Org. Lett., 2003, 5 (12): 2051~2054
    [202]Khanna P L, Colvin W. Unsymmetrical Fluorescein Derivatives. US. Patent, 4439356, 1984
    [203]Whitaker J E, Haugland RP, Prendergast F G. Spectral and Photophysical Studies of Benzo[c]xanthene Dyes: Dual Emission pH Sensors. Anal. Biochem., 1992, 194: 330~344
    [204]Haugland R P, Whitaker J E. New Spiro-benzo(c)xanthene-iso:Benzofuranone Compounds-Useful as Fluorescent Dyes, pH Indicators. US. Patent, 4945171, 1990
    [205]Whitaker J E, Haugland R P, Ryan D, et al. Fluorescent Rhodol Derivatives: Versatil, Photostable Label and Tracers. Anal. Biochem, 1992, 207: 267~279
    [206]Burden E H J The toxicology of nitrates and nitrites with particular reference to the potability of water supplies. A review. Analyst, 1961, 86: 429~433
    [207]Wolff I A and Wassennan A E. Nitrates, Nitrites, and Nitrosamines. Science, 1972, 7: 15~19
    [208]Davis J, Moorcroft M J, Wilkins S J, et al. Electrochemical Detection of Nitrate at a Copper Modified Electrode Under the Influence of Ultrasound. Electroanalysis, 2000, 12: 1363~1367
    [209]Wen Z H and Kang T F. Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta, 2004, 62: 351~355
    [210]Markusova K, Arkusova M, and Fedurco M. Vitamin B12 as coordinating agent for the voltammetric determination of nitrite in natural water. Anal. Chim. Acta, 1991, 248: 109~115
    [211]Connolly D and Paull B. Rapid determination of nitrate and nitrite in drinking water samples using ion-interaction liquid chromatography. Anal. Chim. Acta, 2001, 441: 53~62
    [212]Jimidar M., Hartmann C., Cousment D., et al. Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection. J. Chromatogr. A, 1995, 706: 479~492
    [213]Jackson P E and Haddad P R. Capillary electrophoresis of inorganic ions and low-molecular-mass ionic solutes. Trends Anal. Chem., 1993, 12: 231~238
    [214]Okemgbo A A, Hill H H, Siems W F, et al. Reverse Polarity Capillary Zone Electrophoretic Analysis of Nitrate and Nitrite in Natural Water Samples. Anal. Chem., 1999, 71: 2725~2731
    [215]Burakhama R, Oshimab M, Grudpan K, et al. Simple flow-injection system for the simultaneous determination of nitrite and nitrate in water samples. Talanta, 2004, 64: 1259~1265
    [216]Huang K J, Wang H, Guo Y H, et al. Spectrofluorimetric determination of trace nitrite in food products with a new fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4’-diaminophenyl) -difluoroboradiaza-s-indacene. Talanta, 2006, 69: 73~78
    [217]Gao F, Zhang L, Wang L, et al. Ultrasensitive and selective determination of trace amounts of nitrite ion with a novel fluorescence probe mono[6-N(2-carboxy-phenyl)]-β-cyclodextrin. Anal. Chim. Acta, 2005, 533: 25~29
    [218]Zhang X, Wang H, Fu N N, et al. A fluorescence quenching method for the determination of nitrite with Rhodamine 110. Spectrochim. Acta Part A, 2003, 59: 1667~1672
    [219]Zhan X Q, Li D H, Zheng H, et al. Fluorimetric determination of nitrogen oxides in the air by a novel red-region fluorescent reagent. Talanta, 2002, 58: 855~860
    [220]Ohta T, Arai Y, and Takitani S. Fluorometric determination of nitrite with 4-hydroxycoumarin. Anal. Chem., 1986, 58: 3132~3135
    [221]Dombrowski L J and Pratt E J. Fluorometric Method for Determining Nanogram Quantities of Nitrite Ion. Anal. Chem., 1972,44: 2268~2272
    [222]Jiao C X, Niu C G, Huan S Y, et al. A reversible chemosensor for nitrite based on the fluorescence quenching of a carbazole derivative. Talanta, 2004, 64: 637~643
    [223]Wang H, Yang W, Liang S C, et al. Spectrofluorimetric determination of nitrite with 5,6-diamino-1,3-naphthalene disulfonic acid. Anal. Chim. Acta, 2000, 419: 169~173
    [224]Greenway G M, Haswell S J, and Petsul P H. Characterisation of a micro-total analytical system for the determination of nitrite with spectrophotometric detection. Anal. Chim. Acta, 1999, 387: 1~10
    [225]Niedzielski P, Kurzyca I, and Siepak J. A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta, 2006, 577: 220~224
    [226]Alonso M C B and Prego R. Determination of silicate, simultaneously with other nutrients (nitrite, nitrate and phosphate), in river waters by capillary electrophoresis. Anal. Chim. Acta, 2000, 416: 21~27
    [227]Kulka M and Manske R H. The nitration of some quinoline derivatives. Can. J. Chem., 1952, 30: 720~724
    [228]Field G. and Hammond P R. Method for preparation of 7-hydroxy-1,2,3,4-tetrahydroquinoline from 1,2,3,4-tetrahydroquinoline. US. Patent, 5283336, 1994
    [229]Ge F Y, Yan X L, Yan F Y, et al. New Fluorescent Labels:4-and 7-Chlorofluorescein. Journal of Fluorescence, 2005, 15 (6): 829-833
    [230]Karstens T and Kobs K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem., 1980, 84, 1871~1872
    [231]Demas J N, Crosby G A. Measurement of photoluminescence quantum yields. J. Phy. Chem., 1971, 75: 991~1024
    [232]Oliveira H P, Camargo A J, Macedo L G, et al. Synthesis, structure, electronican vibrational spectra (Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 3103~3111
    [233]李隆弟,郑用熙。发光量子产额的测量,分析试验室,1990,9(3):46~54
    [234]Shen M, Shi Y, Tao Q, Synthesis of fluoran dyes with improves properties, Dyes and Pigments. 1995, 29: 45~55
    [235]罗惠萍,潘建林,陆问礼。压、热敏染料中间体二苯甲酮衍生物的合成,精细化工,1992,9:47~48
    [236]罗惠萍,潘建林,陆问礼。2-羧基-4’-二乙氨基-2'-羟基二苯甲酮的合成研究,浙江大学学报(自然科学版),1994,28:349~354。
    [237]郁美娟,孟庆华,郑一宁等。新型罗丹明类荧光标记探针的研究(I)-氨基标记产物的质子化互变异构,染料与染色,2004,41(4):187~190
    [238]郁美娟,张海风,赖奕坚等。新型罗丹明类荧光标记探针的研究(Ⅱ),罗丹明B-N-羟基琥珀酰亚胺酯的合成与标记应用,染料与染色,2004,41(5):249~251
    [239]郁美娟,孟庆华,任吉存等。基于生命体系中氨基键合标记的荧光探针研究进展,染料与染色,2004,4l(3):137~144
    [240]Todoroki K, Hayama T, Ijiri S, et al. Rhodamine B amine as a highly sensitive fluorescence derivatization reagent for saccharides in reversed-phase liquid chromatography. Journal of Chromatography A, 2004, 1038: 113~120
    [241]Axelrod H D, and Engel N A. Fluorometric determination of subnanogram levels of nitrite using 5-aminofluorescein. Anal. Chem. 1975, 47: 922~924
    [242]Helaleh M I H and Korenaga T. Fluorometric determination of nitrite with acetaminophen. Microchem J, 2000, 64: 241~246
    [243]Mousavi M F, Jabbari A, Nouroozi S. A sensitive flow-injection method for determination of trace amounts of nitrite. Talanta, 1998, 45: 1247~1253
    [244]Li J S H, Wang H, Zhang X, et al. Spectrofluorimetric determination of total amount of nitrite and nitrate in biological sample with a new fluorescent probe. 1,3,5,7-tetramethyl-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacence. Talanta, 2003, 61: 797~802
    [245]Nguyen T and Francis M B. Practical Synthetic Route to Functionalized Rhodamine Dyes. Org. Lett., 2003, 5 (18): 3245~3248
    [246]Lohse J, Nielsen P E, Harrit N, et al. Fluorescein-Conjugated Lysine Monomers for Solid Phase Synthesis of Fluorescent Peptides and PNA Oligomers. Bioconjugate Chem., 1997, 8: 503~509
    [247]Adamczyk M, Grote J, Moore J A. Chemoenzymatic Synthesis of 3‘-O-(Carboxyalkyl)fluorescein Labels. Bioconjugate Chem., 1999, 10 (3): 544~547
    [248]Brown L, Halling P J, Johnston G A, et al. The synthesis of some water insoluble dyes for the measurement of pH in water immiscible solvents. J.Chem. Soc. Perkin Trans., 1990, 1: 3349~3353
    [249]Packard B., Edidin M, Komoriya A. Site-directed labeling of a monoclonal antibody: targeting to a disulfide bond. Biochemistry, 1986, 25 (12): 3548~3552
    [250]李桂兰和苗贞智。N-羟基丁二酰亚胺的合成,河南化工,1995,5:18
    [251]Hirschfeld T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Applied Optics, 1976, 15 (12): 3135~3139
    [252]Jiao G S, Thoresen L H, Burgess K. Fluorescent, Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Molecules in One Experiment. J. Am. Chem. Soc., 2003, 125 (48): 14668~14669
    [253]Gee K R, Weinbergb E S and Kozlowskib D J. Caged Q-Rhodamine Dextran: A New Photoactivated Fluorescent Tracer. Bioorganic & Medicinal Chemistry Letters, 2001, 11: 2181~2183
    [254]Kitamura S and Doi Y. Staining Method of Poly(3-Hydroxyalkanoic Acids) Producing Bacteria by Nile Blue.Biotechnology Techniques, 1994, 8: 345~350
    [255]Takagi Y and Yamane T. Replica Technique for Screening Poly(3-Hydroxyalkanoic Acid)-Producing Bacteria by Nile Blue Staining. Journal of Fermentation and Bioengineering, 1997, 83: 121~123
    [256]Kerstens S, Mugnier C, Murray B S. Influence of Ionic Surfactants on the Microstructure of Heat-Setβ-Lactoglobulin-Stabilized Emulsion Gels. FOBI, 2006, 1: 133~143
    [257]Cain A J. The use of Nile Blue in the examination of lipids. Q J Microsc Sci 1947, 88: 383~392
    [258]Degelau A, Scheper T, Bailey J E, et al. Fluorometric measurement of poly-b-hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol, 1995, 42: 653~657
    [259]Fowler S D and Greenspan P. Application of Nile Red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections.J Histochem, 1985, 33: 833~836
    [260]Greenspan P, Mayer E P, Fowler S D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol, 1985, 100: 965~973
    [261]Kranz R G, Gabbert K K, Madigan M T. Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Appl Environ Microbiol, 1997, 63: 3010~3013
    [262]Ostle A G, Holt J G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol, 1982, 44, 238~241
    [263]Spiekermann P, Rehm B H, Kalscheuer R, et al. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol, 1999, 171: 73~80
    [264]高勇,新型单克隆抗体荣光探针染料的合成及免疫荧光组织化学应用,西北大学博士学位论文。
    [265]Maag H, Locher R, Daly J J, et al. 94. 5-(N-Arylnortropan-3-yl)-and 5-(N-Arylpiperidin-4-yl)-2,4-diaminopyrimidines. Novel Inhibitors of Dihydrofolate Reductase. Helvetica Chimica Acta, 1986, 69: 887~897
    [266]Bak T, Rasala D, Gawinecki R. An improved method for preparation of 4-aryl-2,6-diphenylpyrylium perchlorates and their reaction with ammonia and methylamine. Org Prep Proced Int, 1994, 26(1): 101~109
    [267]Coe B J, Harri J A, Harrington L J, et al. Enhancement of molecular quadratic hyperpolarizabilities in Ruthenium (Ⅱ) 4,4’-bipyridinium complexes by N-phenylation. Inorg. Chem., 1998, 37: 3391~3399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700