用户名: 密码: 验证码:
基于双功能高分子设计制备有机-无机杂化固定化酶载体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计和制备有机-无机杂化载体是包括酶工程在内的诸多领域的研究热点和前沿。本文借鉴生物矿化思想,以充分发掘和合理拓展高分子材料的功能为出发点,筛选、设计并制备了同时具有成型功能和诱导矿化功能的高分子,基于双功能高分子制备不同结构的有机-无机杂化载体,并用于固定化酶研究。
     利用吸附-包埋相结合的方法制备碳酸钙-海藻酸杂化凝胶用于葡萄糖醛酸苷酶(GUS)的固定。将吸附GUS的碳酸钙颗粒包埋于海藻酸凝胶中,可有效抑制酶泄漏。同时海藻酸可调控无机组分碳酸钙的形貌,抑制其晶型转变,使之维持中孔结构和较强的吸附能力。固定于碳酸钙-海藻酸杂化凝胶的GUS显示出良好的循环使用稳定性和储存稳定性。
     选择生物高分子精蛋白(Pro),模拟硅藻细胞的细胞膜(高分子)-细胞壁(无机)结构,构建精蛋白-聚苯乙烯磺酸钠-氧化硅((PSS/Pro)n-1/Pro/Silica)杂化微囊用于固定化过氧化氢酶(CAT)。Pro在杂化微囊构建过程中实现两种功能:在CaCO3颗粒表面与PSS通过层层自组装(LbL)形成高分子囊膜;诱导仿生硅化,在最外层形成氧化硅外壳。研究发现,将LbL自组装与仿生硅化相结合制备的杂化微囊机械强度高,酶泄漏率低,是理想的固定化载体。
     通过氧化-氨化-还原系列反应对海藻酸进行氨化改性,合成双功能高分子Ⅰ型胺化海藻酸(NH2-Alg(Ⅰ))并诱导仿生硅化,制备Ⅰ型胺化海藻酸/氧化硅(NH2-Alg(Ⅰ)/silica)杂化凝胶固定化CAT。NH2-Alg(Ⅰ)在水溶液中自发形成胶束,改变合成条件(氧化剂比例、氨化剂类型)可调控胶束直径,并最终决定杂化凝胶的尺寸和形貌。通过改变pH值、NH2-Alg(Ⅰ)浓度、前驱体浓度、离子强度等条件可调控NH2-Alg(Ⅰ)/silica的生成量。包埋于杂化凝胶中的CAT对高温和极端酸碱环境的耐受能力提高,同时储存稳定性也增强。
     通过碳二亚胺接枝反应对海藻酸进行氨化改性,合成双功能高分子Ⅱ型胺化海藻酸(NH2-Alg(Ⅱ))并诱导仿生硅化,制备Ⅱ型胺化海藻酸/氧化硅(NH2-Alg(Ⅱ)/silica)杂化凝胶固定化醇脱氢酶(YADH)。通过在高分子主链上接枝多胺支链使NH2-Alg(Ⅱ)具备诱导仿生硅化的功能,加速前驱体的缩聚。氨化改性使海藻酸的凝胶化功能增强,NH2-Alg(Ⅱ)/silica杂化凝胶在磷酸盐缓冲液中的溶胀度从268%降低到50%。固定化酶的温度、pH、重复使用和储存稳定性得到全面提高。
Design and preparation of organic-inorganic hybrid carrier have become hot issue and research frontier in many areas including enzyme engineering. Inspired by biomineralization, aiming at fully exploring and rationally extend the function of polymer materials, in this study, a kind of polymer with shape-forming and biomimetic mineralization inducing ability was screened, designed and synthesized. Employing these bifunctional polymers, different structured organic-inorganic carriers were fabricated and utilized for enzyme immobilization.
     β-Glucuronidase (GUS) was immobilized in CaCO3-Alg hybrid gel by an adsorption-encapsulation method. Alginate showed a strong shape-forming ability and its hydrogel matrix effectively prevented the leakage of enzyme. Meanwhile, alginate helped to maintain the mesoporous structure and adsorption ability of CaCO3 through inhibiting the recrystallization process. As a result, GUS loading efficiency, recycling and storage stability were all improved significantly.
     Inspired by the delicate structure of diatom cell, a novel and facile method for preparing organic-inorganic composite microcapsules was developed by a synergy of layer-by-layer (LBL) self-assembly and biomimetic mineralization. Protamine (Pro), a natural bifunctional polymer, was chosen as both a positive layer component and an inducer for silicification, providing a simple and efficient approach to form the cell membrane-like multilayer with a complete, uniform and robust cell wall-like silica shell. Catalase (CAT) is captured in the CaCO3 templates via co-precipitation and encapsulated in the composite capsules followed by dissolution of the templates. The encapsulation efficiency, harsh condition tolerance and long-term storage stability of the encapsulated enzyme were all notably improved due to the shielding effect of the inorganic shell.
     A novel bifunctional polymer, NH2-Alg(Ⅰ), was synthesized through an oxidation-amination-reduction process. NH2-Alg(Ⅰ) was then employed to induce the biomimetic mineralization from a silica precursor, Na2SiO3. The size and morphology of the resultant NH2-Alg(Ⅰ)/silica hybrid hydrogel could be controlled by the reaction conditions of co-precipitation process. Next, NH2-Alg(Ⅰ)/silica hybrid hydrogel was utilized for CAT immobilization. The encapsulated CAT exhibited an encapsulating efficiency as high as 100% as well as significantly improved thermal, pH, storage stability.
     Another novel bifunctional polymer with both a shape-forming function and a silicification-inducing functions, NH2-Alg(Ⅱ), was synthesized through a carbodiimide process using EDC and NHS. NH2-Alg(Ⅱ) could form hydrogel and induce silicification simultaneously, generating a robust hybrid hydrogel with dense structure and homogenously dispersed silica particles. The impregnated silica particles remarkably reduced the swelling of alginate hydrogel from 268% to 50%. The enzyme YADH after encapsulation in the hybrid hydrogel exhibited improved temperature, pH, recycling and storage stability.
引文
[1] Fonseca L.P., Cardoso J.P., Cabral J.M.S., Immobilization studies of an industrial penicillin acylase preparation on a silica carrier, Journal of Chemical Technology and Biotechnology, 1993, 58: 27-37.
    [2] Aparicio J., Sinisterra J.V., Influence of the chemical and textural properties of the support in the immobilization of penicillin G-acylase from Kluyvena citrophila on inorganic supports, Journal of Molecular Catalysis, 1993, 80(2): 269-276.
    [3] Cabezas M.J., Salvador D., Sinisterra J.V., Stabilization-activation of pancreatic enzymes adsorbed on to a sepiolite clay, Journal of Chemical Technology and Biotechnology, 52(2): 265-274.
    [4] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359(6397): 710-712.
    [5] Grun? M., Unger K.K., Matsumoto A., Tsutsumi K., Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology, Microporous and Mesoporous Materials, 1999, 27(2-3): 207-216.
    [6] Jentys A., Kleestorfer K., Vinek H., Concentration of surface hydroxyl groups on MCM-41, Microporous and Mesoporous Materials, 1999, 27(2-3): 321-328.
    [7] Vinu A., Murugesan V., Hartmann M., Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: Influence of pH and aluminum incorporation, The Journal of Physical Chemistry B, 2004, 108: 7323-7330.
    [8] Braun S, Rappoport S, Zusman R, et a1, Biochemically active sol-gel glasses:the trapping of enzymes, Materials Letters, 1990, 10(1-2): 1-5.
    [9] Livage J., Coradin T., Roux C., Encapsulation of biomolecules in silica gels, Journal of Physics Condensed Matter, 2001, 13(33): 673-691.
    [10] Brinker C.J., Scherer G.W., Sol-gel Science: The physics and chemistry of sol-gel Processing, New York: Academic Press, 1990.
    [11] Licklider M., Kuhr W.G., On-line microreactors/capillary electrophoresis/ mass spectrometry for the analysis of proteins and peptides, Analytical Chemistry, 1995, 67(22): 4170-4177.
    [12] Kreiner M., Moore B.D., Parker M.C., Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation, Chemical Communications, 2001, 1096-1097.
    [13] Kreiner M., Parker M.C., Protein-coated microcrystals for use in organic solvents:application to oxidoreductases, Biotechnology Letters, 2005, 27: 1571-1577.
    [14] Humaira A., Qayyum H, Use of DEAE cellulose adsorbed and crosslinked white radish (Raphanus sativus) peroxidase for the removal ofα-naphthol in batch and continuous process, International Biodeterioration & Biodegradation, 2010, 64(1): 27-31.
    [15] Mini N., Bajpai S.K., Immobilization ofα-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study, Journal of Molecular Catalysis B: Enzymatic, 2008, 59(1-3): 134-139.
    [16] Maha K.C., Ines B., Sami B., Ana M.B., Youssef G., Physical immobilization of rhizopus oryzae lipase onto cellulose substrate: activity and stability studies, Colloids and Surfaces B: Biointerfaces, 2008, 66(2): 168-177.
    [17] Wu S.C., Lia Y.K., Application of bacterial cellulose pellets in enzyme immobilization, Journal of Molecular Catalysis B: Enzymatic, 2008, 54(3-4): 103-108.
    [18] S. Rauf, A. Ihsan, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar and A.M. Khalid, Glucose oxidase immobilization on a novel cellulose acetate–polymethylmethacrylate membrane, Journal of Biotechnology, 2006, 121(3): 351-360.
    [19] Fradet H., Arnaud A., Rios G., Galzy P., Hydratation of nitriles using a bacterial nitrile-hydratase immobilized on DEAE-cellulose, Biotechnology and Bioengineering, 1985, 27(11): 1581-1585.
    [20] Karboune1 S., Amourache L., Immobilization of the epoxide hydrolase from Aspergillus niger, Biotechnology Letters, 2001, 23(19): 1633-1639.
    [21] Simionescu C., Popa M.I., Dumitriu S., Bioactive polymers XXX. Immobilization of invertase on the diazonium salt of 4-aminobenzoylcellulose, Biotechnology and Bioengineering, 1987, 29(3): 361-365.
    [22] Mitz M. A., Summaria L. J., Synthesis of biologically active cellulose derivatives of enymes, Nature, 1961, 189(4764): 576-577.
    [23] Davis T.A., Llanes F., Volesky B., Mucci A., Metal selectivity of Sargassum spp. and their alginates in relation to theirα-L-guluronic acid content and conformation, Environmental Science & Technology, 2003, 37(2): 261-267.
    [24] Bu H, Kj?niksen A.L., Knudsen K.D., Nystrom? B., Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condesation reaction, Biomacromolecules, 2004, 5(4): 1470-1479.
    [25] Ibáez J.P., Umetsu Y., Potential of protonated alginate beads for heavy metals uptake, Hydrometallurgy, 2002, 64(2): 89-99.
    [26] Rousseau I., Le Cerf D., Picton L., Argillier J.F., Muller G., Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads,European Polymer Journal, 2004, 40(12): 2709-2715.
    [27] Blandino A., Macias M., Cantero D., Immobilization of glucose oxidase within calcium alginate gel capsules, Process Biochemistry, 2001, 36: 601-606.
    [28] Zhang F.J., Cheng G.X., Gao Z., Li C.P., Preparation of porous calcium alginate membranes/microspheres via an emulsion templating method, Macromolecular Materials and Engineering, 2006, 291(5): 485-492.
    [29] Wan L.S.C, Heng P.W.S, Chan L.W., Drug encapsulation in alginate microspheres by emulsification, Journal of Microencapsulation, 1992, 9(3): 309-316.
    [30] Blandino A., Macías M., Cantero D., Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics, Journal of Bioscience and Bioengineering, 1999, 88(6): 68-689.
    [31]柴燚,梅乐和,姚善泾,液芯CMC-ALG微胶囊的制备、扩散性能及初步应用研究,膜科学与技术,2004,24(3):10-14, 19.
    [32]杨金水,刘葳,甲壳素/壳聚糖在酶固定化中的应用,2006,16(2):89-91.
    [33] Akkus C.S., Oz?top H.N., Immobilization of catalase on chitosan film, Enzyme and Microbial Technology, 2000, 26(7): 497-501.
    [34] Siso M.I.G., Lang E., Carren?-Gómez B., Becerra M., Otero Espinar F., Blanco Méndez J., Enzyme encapsulation on chitosan microbeads, Process Biochemistry, 1997, 32(3), 211-216.
    [35] Monier M., Ayad D.M., Wei Y., Sahan A.A., Immobilization of on horseradish peroxidase modified chitosan beads, International journal of biological macromolecules, In press, doi:10.1016/j.ijbiomac.2009.12.018.
    [36] Orrego C.E., Salgado N., Valencia J.S., Giraldo G.I., Giraldo O.H., Cardona C.A., Novel chitosan membranes as support for lipases immobilization: characterization aspects, Carbohydrate Polymers, 2010, 79: 9-16.
    [37] Cochrane F.C., Petach H.H., Hendersen W., Application of tris(hydroxymethyl) phosphine as a coupling agent for alcohol dehydrogenase immobilization, Enzyme and Microbiological Technology, 1996, 18: 373-378.
    [38] Wei X., Zhang M., Gorski W., Coupling the lactate oxidase to electrodes by ionotropic gelation of biopolymer, Analytical Chemistry, 2003, 75 (9): 2060-2064.
    [39] Dumitriu S., Chornet E., Inclusion and release of proteins from polysaccharide-based polyion complexes, Advanced Drug Delivery Reviews, 1998, 31(3): 223-246.
    [40] Wei X., Zhang M., Gorski W., Coupling the lactate oxidase to electrodes by ionotropic gelation of biopolymer. Analytical. Chemistry. 2003, 75: 2060-2064.
    [41] Katchalski-Katzir E., Kraemer D.M., Eupergit C, a carrier for immobilization of enzymes of industrial potential, Journal of Molecular Catalysis B: Enzymatic, 2000, 10: 157-176.
    [42] Mateo C., Abian O., Fernandez-Lorente G., Pedroche J., Fernandez-Lafuente R., Guisan J. M., Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment, Biotechnology Progress, 2002, 18: 629-634.
    [43] Kirk O., Christensen M.W., Lipases from candida antarctica: unique biocatalysts from a unique origin, Organic Process Research and Development, 2002, 6: 446-451.
    [44] Petkar M., Lali A., Caimi P., Daminati M., Immobilization of lipases for non-aqueous synthesis, Journal of Molecular Catalysis B: Enzymatic, 2006, 39:83-90.
    [45] Lozinsky V.I., Galaev I.Y., Plieva F.M., Savina I.N., Jungvid H., Mattiasson B., Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnology, 2003, 21: 445-451.
    [46] Lozinski V. I., Plieva F. M., Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments, Enzyme and Microbial Technology, 1998, 23: 227-242.
    [47] Durieux A., Nicolay X., Simon J.P, Continuous malolactic fermentation by oenococcus oeni entrapped in lentikats, Biotechnology Letters, 2000, 22: 1679-1684.
    [48] Gr?ger, H., Capan, E., Barthuber, A., Vorlop, K.D., Asymmetric synthesis of an (R)-cyanohydrin using enzymes entrapped in lens-shaped gels., Organic letters, 2001, 3: 1969-1972.
    [49] Czichocki G., Dautzenberg H., Capine E., Vorlop K.-D., New and effective entrapment of polyelectrolyte-enzyme-complexes in LentiKats, Biotechnology Letters, 2001, 23: 1303-1307.
    [50]黄月文,罗宣干,卓仁禧,蜗牛酶在聚(N-异丙基丙烯酰胺)中的固定化及应用,功能高分子学报,1996,9(4):523-531.
    [51] Schmidt H., New type of non-crystalline solids between inorganic and organic materials, Journal of Non-Crystalline Solids, 1985, 73: 681-691.
    [52]袁定重,张秋禹,侯振宇,李丹,张军平,张和鹏.固定化酶载体材料的最新研究进展,材料导报,2006, 20: 69-72.
    [53] Schmidt H., Jonschker G., Goedicke S., Sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites, Journal of Sol-Gel Science and Technology, 2000, 19: 39-51.
    [54]李旭华,袁荞龙,王得宁,杂化材料的制备、性能及应用,功能高分子学报,2000,(13):211-213.
    [55]高延敏,汪萍,王绍明,陈立庄,缪文桦,聚合物基纳米复合材料的研究进展,材料科学与工艺, 2008, 16(4): 552-553.
    [56] Ribeiro C.C., Barrias C.C., Barbosa M.A., Calcium phosphate-alginate microspheres as enzyme delivery matrices, Biomaterials, 2004, 25(18): 4363-4373.
    [57] Ma L.J., Wen J.P., Biocomposite of double-walled carbon nanotube-doped alginate gel for biomaterial immobilization, Composites Science and Technology, 2008, 68(6): 1297-1303.
    [58]杨应奎,周兴平,毛联波,解孝林,Wing M.Y.,碳纳米管在聚合物基体中的分散与有序排列研究—(I)碳纳米管在聚合物基体中的分散,高分子材料科学与工程, 2005,21(6): 45-48.
    [59] Xu S.W., Jiang Z.Y., Lu Y., Wu H., Yuan W.K., Preparation and catalytic properties of novel alginate silica dehydrogenase hybrid biocomposite beads, Industrial & Engineering Chemistry Research, 2006, 45: 511-517.
    [60] Xu S.W., Lu Y., Li J., Jiang Z.Y., Wu H., Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate silica (ALG SiO2) hybrid gel, Industrial & Engineering Chemistry Research, 2006, 45: 4567-4573.
    [61] Dave B.C., Dunn B., Valentine JS, Sol-gel encapsulation methods for biosensors, Analytical chemistry, 1994, 66:1120A-1127A.
    [62] Edmiston P.L.,Wambolt C.L.,Smith M.K., Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses, Journal of Colloid and Interface Science, 1994, 163: 395-406.
    [63] Brennan J.D., Using intrinsic fluorescence to investigate proteins entrapped in sol-gel derived materials, Applied Spectroscopy, 1999, 53: 106A-121A.
    [64] Rottman C., Ottolenghi M., Zusman R., Doped sol-gel glasses as pH sensors, Materials Letters, 1992, 13: 293-298.
    [65] Uchida N., Ishiyama N., Kato Z., Chemical effects of DCCA to the sol-gel reaction process, Journal of Materials Science,1994,29: 5188-5192.
    [66] Nikoli? L.j., Radonji? L.j., Effect of drying control chemical additives in sol-gel-glass monolith processing, Ceramics Intemational, 1994, 20: 309-313.
    [67] Sanchez C, In M, Molecular design of alkoxide precursors for the synthesis of hybrid organic-inorganic gels , Journal of Non-Crystalline Solids,1992,147-148:1-12.
    [68]谭学才,翟海云,李荫等,基于溶胶-凝胶壳聚糖/SiO2杂化材料的安培型葡萄糖生物传感器,高等学校化学学报,2004,(259):1645-1647.
    [69] Tsaia H.C., Doong R.A., Preparation and characterization of urease-encapsulatedbiosensors in poly(vinyl alcohol)-modified silica sol–gel materials, Biosensors and Bioelectronics, 2007, 23(1): 66-73.
    [70] Lin T.Y., Wu C.H., Brennan J.D., Entrapment of horseradish peroxidase in sugar-modified silica monoliths: toward the development of a biocatalytic sensor, Biosensors and Bioelectronics, 2007, 22: 1861-1867.
    [71] Zhang, Z., Chen, Y., D'souza, R., Brennan, J.D., Brook, M.A., Biocompatible macroporous silica monoliths with entrapped proteins,Transactions-7th World Biomaterials Congress, 2004, 1323.
    [72] Wang B., Zhang J., Cheng G., Dong, S., Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film, Analytica Chimica Acta, 2000, 407:111-118.
    [73] Wang G., Xu J.J., Chen, H.Y., Lu Z.H, Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix, Biosensors and Bioelectronics, 2003, 18: 335-343.
    [74]杨磊,沈高扬,傅丽君,无机-有机核壳结构纳米复合粒子研究进展,广东化工,2009,36(190):42-44.
    [75]赵雯,卢婷利,张宏,陈涛,核壳结构有机/无机复合微球的制备与应用进展,材料导报,2009,23(4):106-109.
    [76] Robinson P.J., Dunnill P., Lilly M.D., The properties of magnetic supports in relation to immobilized enzyme reactors, Biotechnology and Bioengineering, 15(3): 603-606.
    [77]曾力希,刘琳琳,杨旭,邓乐,新型磁性高分子多孔微球固定化木瓜蛋白酶活性与稳定性研究,2007,30(1):101-106.
    [78] Jiang Y., Jiang Y.J., Zhang Y.F., Li J., Zhang L., Jiang Z.Y., Biosilica-coatedκ-carrageenan microspheres for yeast alcohol dehydrogenase encapsulation, Journal of Biomaterials Science, Polymer Edition, 2007, 18(12): 1517-1526.
    [79] Fujiwara M., Shiokawa K., Hayashi K., Morigaki K., Nakahara Y., Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres), Journal of Biomedical Materials Research Part A, 2007, 81, 103-112.
    [80] Taqieddin E., Amiji M., Parrinello M., Enzyme immobilization in novel alginate-chitosan core-shell microcapsules, Biomaterials, 2004, 25: 1937-1945.
    [81] Mann S., Biomineralization: principles and concepts in bioinorganic materials chemistry, New York: Oxford University Press, 2001.
    [82]欧阳健明,生物矿物及其矿化过程,化学进展,2005,(17):749-756.
    [83] Mann S., Molecular recogenition in biomineralization, Nature, 1988, 332(6160): 119-124.
    [84] Robert A., Berner, Calcium carbonate concretions formed by the decomposition of organic matter, Science, 1968, 159(3811): 195-197.
    [85] Giuseppe F., Shira A., Steve W., Lia A., Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science, 1996, 271(5245): 67-69.
    [86] Belcher A.M., Wu X.H., Christensen R.J., Hansma P.K., Morse D.E., Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature, 1996, 381: 56-58.
    [87] Miyamoto H., Miyashita T., Okushima M., Nakano S., Morita T., Matsushiro A., A carbonic anhydrase from the nacreous layer in oyster pearls, Proceedings of the National Academy of Sciences of the United States of America, 1996, 18: 9657-9660.
    [88] Zhong C., Chu C.C., Acid polysaccharide-induced amorphous calcium carbonate (ACC) films: colloidal nanoparticle self-organization process, Langmuir, 2009, 25: 3045-3049.
    [89] Yang L., Zhang X.Y., Liao Z.J., Cao Y., Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization, Journal of Inorganic Biochemistry, 2003, 97: 377-383.
    [90] RoquéJ., Molera J., Vendrell-Saz M., SalvadóN., Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and Mytilus edulis acidic organic proteins aqueous solutions, Journal of Crystal Growth, 2004, 262: 543-553.
    [91] Guillemet B., Faatz M., Gro¨hn F., Wegner G., Gnanou Y., Nanosized amorphous calcium carbonate stabilized by poly(ethyleneoxide)-b-poly(acrylic acid) block copolymers, Langmuir, 2006, 22: 1875-1879.
    [92] Wang X.Q., Sun H.L., Xia Y.Q., Chen C.X., Lu J.R., Lysozyme mediated calcium carbonate mineralization, Journal of Colloid and Interface Science, 2009, 322: 96-103.
    [93] Unuma H., Hiroya M., Ito A., Deposition of bone-like hydroxyapatite on the surface of silk cloth with the aid of immobilized urease, Journal of Materials Science: Materials in Medicine, 2007, 18: 987-990.
    [94] Cai W.Y., Xu Q., Zhao X.N., Zhu J.J., Chen H.Y., Porous gold-nanoparticle-CaCO3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry , Chemistry of Materials, 2006, 18(2): 279-284.
    [95] Shana D., Zhua M., Xuea H., Cosnierb S., Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles, Biosensors and Bioelectronics, 2007, 22(8): 1612-1617.
    [96] Erich W. S., Dmitry V. V., McShane M.J., Sukhorukov G.B., Real-timeassessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase, Biomacromolecules, 2006, 7 (3): 710-719.
    [97] Ghamguia H., Mileda N., Karra-chaabounia M., Gargouri Y., Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study, Biochemical Engineering Journal, 2007, 37(1): 34-41.
    [98] Azevedoa H.S., Leonora I.B., Alvesa C.M., Reisa R.Y., Incorporation of proteins and enzymes at different stages of the preparation of calcium phosphate coatings on a degradable substrate by a biomimetic methodology, Materials Science and Engineering C, 2005, 25: 169-179.
    [99] Leonor I.B., Alves C.M., Azevedo H.S., Reis R.L., Effects of protein incorporation on calcium phosphate coating, Materials Science and Engineering C, 2009, 29: 913-918.
    [100] Zhang L., Jiang Y.J., Jiang Z.Y., Sun X., Shi J.F., Li L., Li J., Biomimetic fabrication of hydroxyapatite polysaccharide formate dehydrogenase composite capsules for efficient CO2 conversion, Journal of Biomaterials Science, Polymer Edition, 2009, 20: 1661-1674.
    [101] Blakemore R, Magnetotactic Bacteria, Science, 1975, 190(4212): 377-379.
    [102] Schüler1 D., Frankel R.B., Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications, Applied Microbiology and Biotechnology, 1999, 52: 464-473.
    [103] Matsunaga T., Kamiya S., Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization, Applied Microbiology and Biotechnology, 1987, 26(4): 328-332.
    [104] Matsunaga T., Nakayama H., Okochi M., Takeyama H., Fluorescent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG-microarray, Biotechnology and Bioengineering, 2001, 73(5): 400-405.
    [105] Sun Q, Vrieling E G, Van Santen R A, Sommerdijk N A J M, Bioinspired synthesis of mesoporous silicas, Current Opinion in Solid State and Materials Science, 2004, 8(2): 111-120.
    [106] Hildebrand M, Doktycz M J, Allison D P, Application of AFM in understanding biomineral formation in diatoms, Pflügers Archiv European Journal of Physiology, 2008, 456:127-137.
    [107] Shimizu K, Cha J, Stucky G D, Morse D E, Silicatein alpha: cathepsin L-like protein in sponge biosilica, Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6234-6238.
    [108] Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D,Morse D E, Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro, Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361-365.
    [109] Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E, Efficient catalysis of polysiloxane synthesis by silicateinαrequires specific hydroxyl and imidazole functionalities, Angewandte Chemie International Edition, 1999, 38(6): 779-782.
    [110] Kr?ger N, Deutzmann R, Sumper M, Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, 1999, 286(5442): 1129-1132.
    [111] Sumper M, A phase separation model for the nanopatterning of diatom biosilica, Science, 2002, 295: 2430-2433.
    [112] Roth K.M., Zhou Y., Yang W.J., Morse D.E., Bifunctional Small Molecules Are Biomimetic Catalysts for Silica Synthesis at Neutral pH, Journal of the American Chemical Society, 2005, 127 (1), 325-330.
    [113] D.H. Adamson, D.M. Dabbs, C.R. Pacheco, M.V. Giotto, D.E. Morse, I.A. Aksay, Non-peptide polymeric silicateinαmimic for neutral pH catalysis in the formation of silica, Macromolecules, 2007, 40 (16), 5710-5717.
    [114] Rodríguez F, Glawe D D, Naik R R, Hallinan K P, Stone M O, Study of the chemical and physical influences upon in vitro peptide-mediated silica formation, Biomacromolecules, 2004, 5(2): 261-265.
    [115] Tomczak M M, Glawe D D, Drummy L F, Lawrence C G, Stone M O, Perry C C, Pochan D J, Deming T J, Naik R R, Polypeptide-templated synthesis of hexagonal silica platelets, Journal of the American Chemical Society, 2005, 127(36): 12577-12582.
    [116] Belton D J, Patwardhan S V, Perry C C, Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect, Chemical Communications, 2005, 3475-3477.
    [117] Belton D J, Patwardhan S V, Annenkov V V, Danilovtseva E N, Perry C C, From biosilicification to tailored materials: optimizing hydrophobic domains and resistance to protonation of polyamines, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 5963-5968.
    [118] Patwardhan S V, Clarson S J, Perry C C, On the role(s) of additives in bioinspired silicification, Chemical Communications, 2005, 1113-1121.
    [119] Belton D, Patwardhan S V, Perry C C, Spermine, spermidine and their analogues generate tailored silicas, Journal of Materials Chemistry, 2005, 15: 4629-4638.
    [120] Coradin T, Mercey E, Lisnard L, Livage J, Design of silica-coated microcapsules for bioencapsulation, Chemical Communications, 2001,2496-2497.
    [121] Allouche J, Boissière M, Hélary C, Livage J, Coradin T, Biomimetic core-shell gelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites, Journal of Materials Chemistry, 2006, 16(30): 3120-3125.
    [122] Shchipunov Y A, Karpenko T Y, Bakunin I Y, Burtseva Y V, Zvyagintseva T N, A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides, Journal of Biochemical and Biophysical Methods, 2004, 58(1): 25-38.
    [123] Boissière M, Meadows P J, Brayner R, Hélary C, Livage J, Coradin T, Turning biopolymer particles into hybrid capsules: the example of silica/alginate nanocomposites, Journal of Materials Chemistry, 2006, 16: 1178-1182.
    [124] Ivnitski D., Artyushkova K., Rincón R.A., Atanassov P., Luckarift H.R., Johnson G.R., Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-Catalyzed Direct Electron Transfer, Small, 2008, 4(3): 357-364.
    [125] Luckarift H.R., Ku B.S., Dordick J.S., Spain J.C., Silica-immobilized enzymes for multi-step synthesis in microfluidic devices, Biotechnology and Bioengineering, 2007, 98: 701-705.
    [126] Luckarift H R, Dickerson M B, Sandhage K H, Spain J C, Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small, 2006, 2: 640-643.
    [127] Cole K E, Ortiz A N, Schoonen M A, Valentine A M, Peptide and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation, Chemistry of Materials, 2006, 18: 4592-4599.
    [128] Regan M R, Banerjee I A, Immobilization of invertase in germania matrix and a study of its enzymatic activity, Journal of Sol-Gel Science and Technology, 2007, 43: 27-33.
    [129] Jiang Y., Jiang Y., Yang D., Zhang L., Zhang Y., Li J., Jiang Z., Facile synthesis and novel application of zirconia catalyzed and templated by lysozyme, Industrial and Engineering Chemistry Research, 2008, 47: 1876-1882.
    [130] Betancor L., Luckarift H.R., Bioinspired enzyme encapsulation for biocatalysis, Trends in Biotechnology, 2009, 26(10): 566-572.
    [131]张羽飞.仿生固定化酶制备及其催化特性研究,博士学位论文,天津,天津大学,2008
    [132]姜艳军.仿生固定化酶制备及其催化特性研究,博士学位论文,天津,天津大学,2009
    [133] Hosoda N., Sugawara A., Kato T., Template effect of crystalline poly(vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin films,Macromolecules, 2003, 36 (17): 6449-6452.
    [134] Cha J N, Stucky G D, Morse D E, Deming T J, Biomimetic synthesis of ordered silica structures mediated by block copolypeptides, Nature, 2000, 403 (6767): 289-292.
    [135] Wei H., Shen Q., Zhao Y., Wang D., Xu D., Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and/or polypyrrolidone, Journal of Crystal Growth, 2004, 260(3-4): 545-550.
    [136] Liang P., Zhao Y., Shen Q., Wang D., Xu D., The effect of carboxymethyl chitosan on the precipitation of calcium carbonate, Journal of Crystal Growth, 2004, 26(4): 571-576.
    [137] Patwardhan S V, Maheshwari R, Mukherjee N, Kiick K L, Clarson S J, Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: An example of a polylysine macromolecular "switch", Biomacromolecules, 2006, 7(2): 491-497.
    [138] Patwardhan S V, Mukherjee N, Steintz-Kannan M, Clarson S J, Bioinspired synthesis of new silica structures, Chemical Communications, 2003, 1122-1123.
    [139] Tomczak M M, Glawe D D, Drummy L F, Lawrence C G, Stone M O, Perry D J, Pochan C C, Deming D J, Naik R R, Polypeptide-templated synthesis of hexagonal silica platelets, Journal of the American Chemical Society, 2005, 127: 12577-12582.
    [140] Leng B, Chen X, Shao Z, Ming W, Biomimetic synthesis of silica with chitosan -mediated morphology, Small, 2008, 4 (6): 755-758.
    [141]尹俊发,魏晓奕,杨更亮,有机聚合物整体柱的制备与应用的研究进展, Chinese Journal of Chromatography, 2007, 25(2): 142-149.
    [142] Jandera P., Urban J., Moravcov′a D., Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography, Journal of Chromatography A, 2006, 60-73.
    [143] Janderaa P., Urbana J., Skerikovaa V., Langmaiera P., Kubickovaa R., Planetab J., Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography, Journal of Chromatography A, 2010, 22-33.
    [144] Soykeabkaew N., Sian C., Gea S., Nishino T., Peijs T., All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose, Cellulose, 2009, 16 (3): 435-444.
    [145]陈卢松,黄争鸣,薛聪, TiO2改性PC纳米纤维增强PMMA透光复合材料,无机材料学报,2009, 24: 469-474.
    [146] Peng F.B, Lu L.Y., Sun H.L., Wang Y.Q., Liu J.Q., Jiang Z.Y., Hybrid organic-inorganic membrane: solving the tradeoff between permeability andselectivity, Chemistry of Materials, 2005, 17: 6790-6796.
    [147] Chen W.J., Su Y.L., Zhang L., Shi Q., Peng J.M., Jiang Z.Y., Journal of Membrane Science, 2010, 348(1-2): 75-83.
    [148] Ma Z.Q., Cheng P., Zhao T.S., A palladium-alloy deposited Nafion membrane for direct methanol fuel cells, Journal of Membrane Science, 2003, 215: 327-336.
    [149] Mu S.C., Tang H.L., Wan Z.H., Pan M., Yuan R.Z., Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barrie, Electrochemistry Communications, 2005, 7: 1143-1147.
    [150] Liang K.Z., Qi J.S., Mu W.F., Liu Z.X., Conductometric immunoassay for interleukin-6 in human serumbased on organic/inorganic hybrid membrane-functionalized interface, Bioprocess and Biosystems Engineering, 2009, 32:353-359.
    [151] Coradin T., Livage J., Mesoporous alginate/silica biocomposites for enzyme immobilization, Comptes Rendus Chimie, 2003, 6: 147-152.
    [152] Yadav G.D.,Jadhav S.R., Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate:Transesterification in non-aqueous medium, Microporous and Mesoporous Materials, 2005, 86: 215-222.
    [153] Xu S.W., Lu Y., Jiang Z.Y., Silica nanotubes-doped alginate gel for yeast alcohol dehydrogenase immobilization, Journal of Molecular Catalysis B:Enzymatic, 2006, 43: 68-73.
    [154] Volodkin D.V., Larionova N.I., Sukhorukov G.B., Protein encapsulation via porous CaCO3 microparticles templating, Biomacromolecules, 2004, 5: 1962-1972.
    [155] M.F. Butler, N. Glaser, A.C. Weaver, M. Kirkland, M.H. Butler, Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin, Crystal Growth & Design, 2006, 6: 781-794.
    [156] Thanachasai S., Furukawa H., Yoshida S., Watanabe T., Determination of enzyme immobilized into electropolymerized polymer films, Chemistry Letters, 2003, 32(2):176-177.
    [157] Christos G.. Kontoyannis, Nikos V., Vagenas calcium carbonate phase analysis using XRD and FT-Raman Spectroscopy, Analyst, 2000, 125: 251-255.
    [158] Sarmento B., Ferreira D., Veiga F., Ribeiro A., Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies, Carbohydrate Polymers, 2006, 66: 1-7.
    [159] Lan Q., Amarjeet S., Bassi, Zhu J.X., Margaritis A., A modified Langmuir model for the prediction of the effects of ionic strength on the equilibriumcharacteristics of protein adsorption onto ion exchange/affinity adsorbents, Chemical Engineering Journal, 2001, 81: 179-186.
    [160] Ravindra R., Zhao S., Gies H., Winter R., Protein encapsulation in mesoporous silicate: the effects of confinement on protein stability, hydration, and volumetric properties, Journal of the American Chemical Society, 2004, 26: 12224-12225.
    [161] Zhang Y.F., Wu H., Li J., Li L., Jiang Y.J., Jiang Y., Jiang Z.Y., Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation, Chemistry of Materials, 2008, 20(3): 1041-1048.
    [162] Wang Y.J., Angelatos A.S., Caruso F., Template synthesis of nanostructured materials via layer-by-layer assembly, Chemistry of Materials, 2008, 20(3): 848-858.
    [163] Antipov A.A., Sukhorukov G.B., Donath E., M?hwald H., Sustained release properties of polyelectrolyte multilayer capsules, Journal of Physical Chemistry B 2001, 105: 2281-2284.
    [164] Déjugnat C., Halozˇan D., Sukhorukov G.B., Defined picogram dose inclusion and release of macromolecules using polyelectrolyte microcapsules, Macromolecular Rapid Communication 2005,26: 961-967.
    [165] Leporatti S.,Gao C.,Viogt A.,Donath E.,Mohwald H., Shrinking of ultrathin polyeleetrolyte multilayer capsules upon annealing:a confocal laser scanning microscopy and scanningforcemicroscopy study, European Physical Journal E, 2001, 5: 13.
    [166] Kohler K. , Shchukin D.G. , Sukhorukov G.B. , Mohwald H., Drastic morphological modification of polyelectrolyte microcapsules induced by high temperature. Macromolecules, 2004,37: 9546-9550.
    [167] C. Déjugnat, K. K?hler, M. Dubois, G. B. Sukhorukov, H. M?hwald, T. Zemb and P. Guttmann, Membrane densification of heated polyelectrolyte multilayer capsules characterized by soft X-ray microscopy, Advanced Materials, 2007, 19, 1331.
    [168] Brott L L, Naik R R, Pikas D J, Kirkpatrick S M, Tomlin D W, Whitlock P W, Clarson S J, Stone M O, Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature, 2001, 413(6853): 291-293.
    [169] Coradin T., Livage J. Effect of some amino acids and peptides on silicic acid polymerization, Journal of Colloid and Surfaces B, 2001, 21(4): 329-336.
    [170] Patwardhan S. V., Clarson S. J., Silicification and biosilicification: Part 6. Poly-L-histidine mediated synthesis of silica at neutral pH, Journal of Inorganic Organometalic Polymer and Materials, 2003, 13(1): 49-53.
    [171] Patwardhan S. V., Clarson S. J., Silicification and biosilicification: Part 1. Formation of silica structures utilizing a cationically charged synthetic polymerat neutral pH and under ambient conditions, Polymer Bulletin, 2002, 48(4-5): 367-371.
    [172] Patwardhan S V, Taori V P, Hassan M, Agashe N R, Franklin J E, Beaucage G, Mark J E, Clarson S J, An investigation of the properties of poly(dimethylsiloxane)-bioinspired silica hybrids, European Polymer Journal, 2006, 42(1): 167-178.
    [173] Yuan J J, Jin R H, Multiply shaped silica mediated by aggregates of linear poly(ethyleneimine), Advanced Materials, 2005, 17(7): 885-888.
    [174] Gr?ger C., Lutz K., Brunner E., Biomolecular self-assembly and its relevance in silica biomineralization, Cell Biochemistry and Biophysics, 2008, 50(1): 23-39.
    [175] Poulsen N., Sumper M., Kroger N., Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis, Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 12075-12080.
    [176] Brunner E., Lutz K., Sumper M., Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution, Physical Chemistry Chemical Physics, 2004, 6: 854-857.
    [177] Kroger N., Lorenz S., Brunner E., Sumper M., Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science, 2002, 298: 584-586.
    [178] Yudovin-Farber I., Yanay C., Azzam T., Linial M., Domb A.J., Quaternary ammonium polysaccharides for gene delivery, Bioconjugate Chemistry, 2005, 16(5): 1196-1203.
    [179]何淑兰,张敏,耿占杰,尹玉姬,姚康德,部分氧化海藻酸钠的制备与性能,应用化学,2005,22(9):1007-1011.
    [180] Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability, Protein Science., 2001, 10: 250-261.
    [181] Gottfried D S, Kagan A, Hoffman B M, Friedman J M. Impeded rotation of a protein in a sol-gel matrix, Journal of Physical Chemistry B, 1999, 103: 2803-2807.
    [182]张连飞,宋淑亮,梁浩,吉爱国,海藻酸钠接枝聚合物研究进展,中国生化药物杂志,2009,30(4):281-284.
    [183] Stile R.A., Barber T.A., Castner D.G., Healy K.E., Sequential robust design methodology and X-ray photoelectron spectroscopy to analyze the grafting of hyaluronic acid to glass substrates, Journal of Biomedical Materials Research Part A, 2002, 61(3): 391-398.
    [184] Nakajima N., Ikada Y., Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media, Bioconjugate Chemistry, 1995, 6(1): 123-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700