用户名: 密码: 验证码:
ZnO、MnO_2、氧化硅纳米结构的合成及其物理化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物纳米材料具有独特的物理与化学特性,在发光、光电转化、化学传感、催化、生物医学和电化学储能等诸多领域都有着广泛的应用潜力。本文分别利用气相法和液相法合成了氧化硅、ZnO和MnO2三种氧化物纳米结构材料,并研究了它们的物理化学性能,主要工作概括如下:
     1.气相法合成了花蕾状、毛笔头状和羽毛状氧化硅纳米结构材料。研究发现氧化硅纳米线是从包覆在金属镓颗粒表面的氧化硅外壳上以气一固机制外延生长而出的,具有不同形貌的氧化硅纳米结构中结构缺陷的种类和数量的不同导致了它们光致发光性能的差异。
     2.气相法合成了ZnO纳米梳,在同一片硅衬底的两表面同时分别生长出准阵列ZnO纳米棒和纳米颗粒。研究发现不同气氛下的热处理会对ZnO纳米梳的形貌、微观结构和光致发光性能产生不同的影响;准阵列ZnO纳米棒和ZnO纳米颗粒的微观结构、光致发光性能和超疏水特性的存在差别。
     3.液相条件下巧妙地利用负电性聚苯乙烯磺酸(poly(4-styrenesulfonic acid),PSS)分子之间的静电斥力来分散碳纳米管,再利用PSS分子与锰离子之间的静电引力将MnO2纳米颗粒沉积生长在碳纳米管/聚苯胺同轴结构表面而制备出碳纳米管/聚苯胺/Mn02三元同轴结构超级电容器复合电极材料。这种复合电极材料大大增加了MnO2的比表面积,而且间接增加了MnO2与碳纳米管之间的接触面积与结合强度,提高电子向Mn02传输的效率和Mn02的电化学利用率。
     4.液相法合成了碳纳米管/Mn02纳米颗粒复合超级电容器电极材料,研究了这种复合电极材料的电化学电容性能,并在不同电压扫描速率下分别对电极进行了500次充放电循环测试,研究发现充放电循环会对这种复合电极材料的形貌、结构和电化学电容性能产生较大的影响。
Oxide nanomaterials have extensive potential application in many field, such as luminescence, photoelectronic, chemical sensor, catalyst, biomedical, electrochemical energy storage and others, due to their unique physical and chemical properties. In this dissertation, three kinds of oxide nanostructure materials which are silica, ZnO and MnO2 were synthesized through vapor-phase process and liqiud-phase process, and their physical and chemical properties were investigated, which could be summarized as following:
     1. Bud-like, brushhead-like and feather-like silica nanostructures were synthesized via vapor-phase process. It was found that the silica nanowires epitaxially grow from the silical shell coating on metal Ga partical by vapor-solid mechanism. The difference of defects type and number in silica nanowires with different morphologies cause the difference of their photoluminescence.
     2. ZnO nanocombs were synthesized via vapor-phase process. ZnO nanorods quasi-array and ZnO nanoparticles grown on the up and down side of one silicon substrate were also synthesized via vapor-phase process. The annealing effect in different atmospheres on morpholoy, microstructure and photoluminescence of the ZnO namocombs was studied. The photoluminescence and superphdrophobic properties of ZnO nanorods quasi-array and ZnO nanoparticles and their microstructures were studied, and the mechanism for the difference of their properties was discovered.
     3. Carbon nanotubes were dispersed in solution by the electrostatic repulsion between the negtive charged poly(4-styrenesulfonic acid) (PSS) moleculars, and the electrostatic attraction between PSS molecular and Mn2+ causes the MnO2 nanoparticles depositing on the surface of carbon nanotubes/polyaniline coaxial struture to form carbon nanotubes/polyaniline/MnO2 ternary coaxial materials for supercapacitor. The surface to volume ratio of MnO2 in this composite electrode material was increased considerablly, and the electronic conductivity and the electrochemical utilization of MnO2 were increased too.
     4. The MnO2 nanoparticles/carbon nanotubes composite mateirals for supercapacitor were synthesized in solution condition, and the electrochemical properties of this electrode material was investigated. In order to discover the effect of charge/discharge process on the morphology, structure and electrochemical properties of this composite, several electrodes with this material were charge/discharged 500 cycles at different potential scan rates.
引文
[1]陈翌庆,石瑛,纳米材料学基础,中南大学出版社,(2009),1
    [2]R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys.,79, (1983),1086.
    [3]P. Ball, L. Garwin, Nature,355, (1992),761.
    [4]W. P. Halperin, Rev. Mod. Phys.,58, (1986),532.
    [5]L. D. Landau, E. M. Lifshits, Quantum Mechanics:Non-relativistic Theory (M), Pergamon Press, (1977),1781.
    [6]D. L. Feldhein, C. D. Keating, Chem. Soc. Rev.,27, (1998),1.
    [7]J. M. Krans, J. M. van Rutenbeek, V. V. Fisum, I. K. Yanson, L. J. de Jongh, Nature,375, (1995),767.
    [8]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.,4, (1964),89.
    [9]Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc.,123, (2001),3165.
    [10]Z. W. Pan, S. Dai, D. B. Beach, Appl. Phys. Lett.,83, (2003),3159.
    [11]Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Nano. Lett.,3, (2003),1279.
    [12]J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, Adv. Mater.,15, (2003),70.
    [13]J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, S. T. Lee, Small,1, (2005),429.
    [14]J. Zhang, F. H. Jiang, Y. D. Yang, J. P. Li, J. Cryst. Growth,307, (2007),76.
    [15]R. B. Wu, B. S. Li, M. X. Gao, Q. M. Zhu, Y. Pan, Appl. Phys. Lett.,91, (2007),203101.
    [16]P. Wu, X. Q. Zou, L. F. Chi, Q. Li, T. Xiao, Nanotechnology,18, (2007),125601.
    [17]S. S. Brenner, G. W. Sears, Acta Metall.,4, (1956),268.
    [18]Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, Chem. Mater.,14, (2002), 3564.
    [19]M. J. Wang, H. Wada, J. Mater. Sci.,25, (1990),1690.
    [20]G. J. Jiang, H. R. Zhuang, J. Zhang, M. L. Ruan, W. L. Li, F. Y. Wu, B. L. Zhang, J. Mater. Sci., 35, (2000),63.
    [21]N. Wang, Y. Cai, R. Q. Zhang, Mater. Sci. Eng. R,60, (2008),1.
    [22]Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang, J. G. Hou, Chem. Phys. Lett.,369, (2003),16.
    [23]M. S. Moreno, R. C. Mercader, A. G. Bibiloni, J. Phys. Condens. Matter,4, (1992),351.
    [24]M. Nagano, J. Cryst. Growth,66, (1984),377.
    [25]Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett.,91, (2003),185502.
    [26]E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. R. He, P. D. Yang, Nano Lett.,3, (2003),867.
    [28]J. G. Lu, P. C. Chang, Z. Y. Fan, Mater. Sci. Eng. R,52, (2006),49.
    [29]C. R. Martin, Science,266, (1994),1961.
    [30]C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, Chem. Mater.,20, (2008),756.
    [31]H. Nakamura, Y. Matsui, J. Am. Chem. Soc.,117, (1995),2651.
    [32]H. Nakamura, Y. Matsui, Ad. Mater.,7, (1995),871.
    [33]P. M. Ajayan, O. Stephan, P. H. Redlich, C. Colliex, Nature,375, (1995),564.
    [34]V. Melechko, T. E. McKnight, M. A. Guillorn, D. W. Austin, B. Ilic, V. I. Merkulov, M. J. Doktycz, D. H. Lowndes, M. L. Simpson, J. Vac. Sci. Technol. B,20, (2002),2730.
    [35]S. O. Obare, N. R. Jana, C. J. Murphy, Nano Lett.,1, (2001),601.
    [36]K. S. Mayya, D. I. Gittins, A. M. Dibaj, F. Caruso, Nano Lett.,1, (2001),727.
    [37]R. A. Caruso, J. H. Schattka, A. Greiner, Ad. Mater.,13, (2001),1577.
    [38]J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, S. Kim, Ad. Mater.,16, (2004),422.
    [39]Q. Peng, X. Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak, G. N. Parsons, Nano Lett.,7, (2007),719.
    [40]C. C. Wang, C. C. Kei, Y. W. Yu, T. P. Perng, Nano Lett.,7, (2007),1566.
    [41]R. H. A. Ras, M. Kemell, J. de Wit, M. Ritala, G. ten Brinke, M. Leskela, O. Ikkala, Ad. Mater. 19, (2007),102.
    [42]B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater.,9, (1997),2544.
    [43]B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater.,9, (1997),857.
    [44]A. Michailowski, D. AlMawlawi, G. Cheng, M. Moskovits, Chem. Phys. Lett.,349, (2001),1.
    [45]B. Cheng, E. T. Samulski, J. Mater. Chem.,11, (2001),2901.
    [46]B. A. Hernandez, K. S. Chang, E. R. Fisher, P. K. Dorhout, Chem. Mater.,14, (2002),480.
    [47]B. Liu, H.C. Zeng, J. Am. Chem. Soc.,125, (2003),4430.
    [48]J. M. Wang, L. Gao, J. Mater. Chem.,13, (2003),2551.
    [49]M. Guo, P. Diao, S. M. Cai, J. Solid State Chem.,178, (2005),1864.
    [50]M. H. Cao, Y. H.Wang, C. X. Guo, Y. J. Qi, C. W. Hu, E. B.Wang, J. Nanosci. Nanotechnol.,4, (2004),824.
    [51]D. S. Zheng, S. X. Sun, W. L. Fan, et al., J. Phys. Chem. B,109, (2005),16439.
    [52]D. L. Zhu, H. Zhu, Y. H. Zhang, J. Cryst. Growth,249, (2003),172.
    [53]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, Y. D. Li, J. Catal.,229, (2005),206.
    [54]Z. Y. Yuan, B. L. Su, Colloids Surf. A Physicochem. Eng. Aspects,241,(2004),173.
    [55]L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, B. Q. Hu, Appl. Phys. A Mater. Sci. Process., 75, (2002),687.
    [56]J. Zhang, Z. G. Liu, C. K. Lin, J. Lin, J. Cryst. Growth,280, (2005),99.
    [57]Y. W. Chen, Y. C. Liu, S. X. Lu, et al., J. Chem. Phys.,123, (2005),134701.
    [58]X. Y. Wang, X. Y. Wang, W. G. Huang, P. J. Sebastian, S. Gamboa, J. Power Sources,140, (2005),211.
    [59]H. Xu, D. H. Qin, Z. Yang, H. L. Li, Mater. Chem. Phys.,80, (2003),524.
    [60]M. Zhang, Y. Bando, K. Wada, J. Mater. Sci. Lett.,20, (2001),167.
    [61]Y. K. Zhou, H. L. Li, J. Mater. Chem.,12, (2002),681.
    [62]Z. Yang, Y. Huang, B. Dong, H. L. Li, Appl. Phys. A Mater. Sci. Process.,81, (2005),453.
    [63]C. K. Xu, G. D. Xu, Y. K. Liu, G. H. Wang, Solid State Commun.,122, (2002),175.
    [64]C. K. Xu, X. L. Zhao, S. Liu, G. H. Wang, Solid State Commun.,125 (2003) 301.
    [65]C. K. Xu, G. D. Xu, G. H. Wang, J. Mater. Sci.,38, (2003),779.
    [66]Y. L. Cao, D. Z. Jia, L. Liu, J. M. Luo, Chin. J. Chem.,22, (2004),1288.
    [67]A. Vantomme, Z. Y. Yuan, G. H. Du, B. L. Su, Langmuir,21, (2005),1132.
    [68]M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett.,363, (2002),123.
    [69]K. Y. Shi, B. F. Xin, Y. J. Chi, H. G. Fu, Acta Chim. Sin.,62, (2004),1859.
    [70]X. M. Liu, Y. C. Zhou, Appl. Phys. A Mater. Sci. Process.,81, (2005),685.
    [71]T. S. Mintz, Y. V. Bhargava, S. A. Thorne, et al., Electrochem. Solid State Lett.,8, (2005), D26.
    [72]Y. H. Chen, X. T. Zhang, Z. H. Xue, Z. L. Du, T. J. Li, J. Inorg. Mater.,20, (2005),59.
    [73]Y. Li, G. S. Cheng, L. D. Zhang, J. Mater. Res.,15, (2000),2305.
    [74]Z.L. Wang, Z. C. Kang, Functional and smart materials, Plenum, New York,1998.
    [75]Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater.,13, (2003),9.
    [76]M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. D. Yang, Science,305, (2004),1269.
    [77]J. C. Johnson, H. Q. Yan, P. D. Yang, R. J. Saykally, J. Phys. Chem. B,107, (2003).8816.
    [78]X. Fan, X. M. Meng, X. H. Zhang, C. S. Lee, S. T. Lee, Appl. Phys. Lett.,90, (2007),103114.
    [79]H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, U. Wiesner, Nano Lett.,5, (2005),113.
    [80]W. I. Park, G. C. Yi, Adv. Mater.,16, (2004),87.
    [81]R. Konenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett.,85, (2004),6004.
    [82]J. W. Park, S. S. Park, Y. Kim, C. S. Ha, ACS Nano,2, (2008),1137.
    [83]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater.,4, (2005),455.
    [84]J. T. Liu, F. M. Wang, S. Isoda, M. Adachi, Chem. Lett.,34, (2005),1506.
    [85]L. Greene, M. Law, B. Yuhas, P. Yang, J. Phys. Chem. C,111, (2007),18451.
    [86]M. Law, L. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B,110, (2006),22652.
    [87]S. Anandan, X. Wen, S. Yang, Mater. Chem. Phys.,93, (2005),35.
    [88]K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas, Adv. Mater.,20, (2008),3248.
    [89]S. Anandan, X. G. Wen, S. H. Yang, Mater. Chem. Phys.,93, (2005),35.
    [90]Z. L. Wang, J. H. Song, Science,312, (2006),242.
    [91]A. Kolmakov, Y. X. Zhang, G. S. Cheng, M. Moskovits, Adv. Mater.,15, (2003),997.
    [92]C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Sens. Actuators B Chem.,109, (2005),2.
    [93]Z. Y. Fan, J. G. Lu, Appl. Phys. Lett.,86, (2005),123510.
    [94]A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res.,34, (2004),151.
    [95]B. S. Kang, Y. W. Heo, L. C. Tien, et al., Appl. Phys. A Mater. Sci. Process.,80, (2005),1029.
    [96]Z. Y. Fan, J. G Lu, Appl. Phys. Lett.,86, (2005),123510.
    [97]Z. Y. Fan, J. G. Lu, IEEE Trans. Nano.,5, (2006),393.
    [98]C. H. Wang, X. F. Chu, M. W. Wu, Sens. Actuators B Chem.,113, (2006),320.
    [99]Q. Wan, Q. H. Li, Y J. Chen, et al., Appl. Phys. Lett.,84, (2004),3654.
    [100]Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, Appl. Phys. Lett.,84, (2004),3085.
    [101]A. Kolmakov, Y. X. Zhang, G. S. Cheng, M. Moskovits, Adv. Mater.,15, (2003),997.
    [102]C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Sens. Actuators B Chem.,109, (2005),2.
    [103]E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Sens. Actuators B Chem., 111,(2005),2.
    [104]Z. Ying, Q. Wan, Z. T. Song, S. L. Feng, Nanotechnology,15, (2004),1682.
    [105]Q. Wan, T. H. Wang, Chem. Commun., (2005),3841.
    [106]S. V. Kalinin, J. Shin, S. Jesse, et al., J. Appl. Phys.,98, (2005),044503.
    [107]A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett.,5, (2005), 667.
    [108]X. F. Chu, C. H. Wang, D. L. Jiang, C. M. Zheng, Chem. Phys. Lett.,399, (2004),461.
    [109]C. Li, D. H. Zhang, X. L. Liu, et al., Appl. Phys. Lett.,82, (2003),1613.
    [110]J. F. Liu, X. Wang, Q. Peng, Y. D. Li, Adv. Mater.,17, (2005),764.
    [111]I. Raible, M. Burghard, U. Schlecht, A. Yasuda, T. Vossmeyer, Sens. Actuators B Chem.,106, (2005),730.
    [112]C. Neinhuis, W. Barthlott, Annals of Botany,79,(1997),667.
    [113]Y. T. Cheng, D. E. Rodak, Appl. Phys. Lett.,86, (2005),144101.
    [114]Q. M. Pan, Y. X. Cheng, Appl. Surf. Sci.,255, (2009),3904.
    [115]B. Xu, Z. S. Cai, Appl. Surf. Sci.,254, (2008),5899.
    [116]J. L. Camphell, M. Breedon, K. Latham, K. K. Zadeh, Langmuir,24, (2008),5091.
    [117]B. Hipp, I. Kunert, M. Durr, Langmuir,26, (2010),6557-6560.
    [118]M. Manca, A. Cannavale, L. D. Marco, A. S. Arico, R. Cingolani, G. Gigli, Langmuir,25, (2009),6357.
    [119]P. Simon, Y. Gogotsi, Nat. Mater.,7, (2008),845.
    [120]C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater.,22, (2010), E28.
    [121]J. P. Zheng, P. J. Crygan, T. R. Jow, J. Electrochem. Soc.,142, (1995),2699.
    [122]J. P. Zheng, T. R. Jow, J. Electrochem. Soc.,145, (1998),49.
    [123]H. Y. Lee, J. B. Goodenough, J. Solid State Chem.,144, (1999),220.
    [124]V. Subramanian, H. W. Zhu, B. Q. Wei, J. Power Sources,159, (2006),361.
    [125]P. Ragupathy, H. N. Vasan, N. Munichandraiah, J. Electrochem. Soc.,155, (2008), A34.
    [126]H. Xia, J. K. Feng, H. L.Wang, M. O. Lai, L. Lu, J. Power Sources,195, (2010),4410.
    [127]J. W. Lang, L. B. Kong, W. J. Wu, Y. C. Luo, L. Kang, Chem. Commun., (2008),4213.
    [128]J. Xu, L. Gao, J. Y. Cao,W. C. Wang, Z. D. Chen, Electrochimica Acta,56, (2010),732.
    [129]Y. Zeng, R. Hao, B. G. Xing, Y. L. Hou, Z. C. Xu, Chem. Commun.,46, (2010),3920.
    [130]R. K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C,112, (2008),1825.
    [131]G. Wee, H. Z. Soh, Y. L. Cheeh, S. G. Mhaisalkar, M. Srinivasan, J. Mater. Chem.,20, (2010), 6720.
    [132]H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang, Z. J. Shi, Z. N. Gu, Nano Lett.,8, (2008),2664.
    [133]S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano,4, (2010),2822.
    [134]J. Yan, T. Wei, W. M. Qiao, B. Shao, Q. K. Zhao, L. J. Zhang, Z. J. Fan, Electrochimica Acta, 55, (2010),6973.
    [135]R. Liu, J. Duay, S. B. Lee, ACS Nano,4, (2010),4299.
    [1]Y. Yi, J. G. Sandland, S. Akiyama, X. M. Duan, L. C. Kimerling, Appl. Phys. Lett.,85,(2004), 3381.
    [2]H. M. Ouyang, C. C. Striemer, P. M. Fauchet, Appl. Phys. Lett.,88,(2006),163108.
    [3]G. Feng, W. D. Nix, Y. Yoon, C. J. Lee, J. Appl. Phys.,99, (2006),074304.
    [4]J. Zygmunt, F. Krumeich, R. Nesper, Adv. Mater.,15, (2003),1538.
    [5]D. T. Mitchell, S. B. Lee, L. Trofin, N. C. Li, T. K. Nevanen, H. Soderlund, C. R. Martin, J. Am. Chem. Soc.,124, (2002),11864.
    [6]Y. Cui, Z. H. Zhong, D.L. Wang, W. U. Wang, C. M. Lieber, Nano Lett.,3, (2003),149.
    [7]Q. F. Xu, B. Schmidt, S. Pradhan, M. Lipson, Nature,435, (2005),325.
    [8]X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. D. Sun, J. J. Du, Chem. Phys. Lett.,336, (2001),53.
    [9]D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, Appl. Phys. Lett.,73,(1998),3076.
    [10]M. Zhang, Y. Bando, L. Wada, K. Kurashima, J. Mater. Sci. Lett.,18, (1999),1911.
    [11]C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang, Z. Q. Chu, J. Non-Cryst. Solids,277, (2000),63.
    [12]Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J. P. Have, P. D. Townsend, H. W. Kroto, D. R. M. Walton, Adv. Mater.,11, (1999),844.
    [13]Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, J. Am. Chem. Soc.,124, (2002),1817.
    [14]Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Nano. Lett.,3, (2003),1279.
    [15]J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, Adv. Mater.,15, (2003),70.
    [16]J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, S. T. Lee, Small,1, (2005),429.
    [17]J. Zhang, F. H. Jiang, Y. D. Yang, J. P. Li, J. Cryst. Growth,307, (2007),76.
    [18]R. B. Wu, B. S. Li, M. X. Gao, Q. M. Zhu, Y. Pan, Appl. Phys. Lett.,91, (2007),203101.
    [19]P. Wu, X. Q. Zou, L. F. Chi, Q. Li, T. Xiao, Nanotechnology,18, (2007),125601.
    [20]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.,4, (1964),89.
    [21]周庆涛,半导体纳米线及其阵列可控生长和物性研究,合肥工业大学博士学位论文,合肥, (2008),27.
    [22]B. Zheng, Y. Y. Wu, P. D. Yang, J. Liu, Adv. Mater.,14, (2002),122.
    [23]J. C. Wang, C. Z. Zhan, F. G. Li, Solid State Commun.,125, (2003),629.
    [24]P. A. Hu, Y. Q. Liu, X. B. Wang, Appl. Phys. A,77, (2003),743.
    [25]Y. Q. Chen, Q. T. Zhou, H. F. Jiang, Y. Su, H. H. Xiao, L. A. Zhu, and L. Xu, nanotechnology, 17, (2006),1022.
    [26]D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G C. Xiong, S. Q. Feng, Appl. Phys. Lett.,73, (1998),3076-3078.
    [27]Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J. P. Hare, P. D. Townsend, H. W. Kroto, D. R. M. Walton, Adv. Mater.,11,(1999),844.
    [28]Y. Yang, B. K. Tay, X. W. Sun, H. M. Fan, Z. X. Shen, Physica E,31,(2006),218.
    [29]S. K. Srivastava, P. K. Singh, V. N. Singh, K. N. Sood, D. Haranath, V. Kumar, Physica E,41, (2009),1545.
    [30]J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, S. T. Lee, Chemical Physics Letters,367, (2003), 339.
    [31]J. Lin, Y. Huang, J. Zhang, J. M. Gao, X. X. Ding, Z. X. Huang, C. C. Tang, L. Hu, D. F. Chen, Chem. Mater.,19, (2007),2585.
    [32]J. H. Kim, H. H. An, C. S. Yoon, J. Appl. Phys.,105, (2009),076102.
    [33]Q. Wei, G. W. Meng, X. H. An, Y. F. Hao, L. D. Zhang, Solid State Communications,138, (2006),325.
    [1]Z. L. Wang, Appl. Phys. A,88, (2007),7.
    [2]C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater.,15, (2003),838.
    [3]B. Liu, H. C. Zeng, J. Am. Chem. Soc.,125, (2003),4430.
    [4]H. Yan, R. He, J. Pham, P. Yang, Adv. Mater.,15, (2003),402.
    [5]X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Science,303, (2004),1348.
    [6]X. Y. Kong, Z. L. Wang, Nano Lett.,3, (2003),1625.
    [7]A. B. Djurisic, Y. H. Leung, Small,2, (2006),944.
    [8]J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, J. Mater. Chem.,14, (2004),770.
    [9]Y. Su, X. Meng, Y. Q. Chen, S. Li, Q. T. Zhou, X. M. Liang, Y. Feng, Mater. Res. Bull.,43, (2008),1865.
    [10]Y. S. Lim, J. W. Park, S. T. Hong, J. Kim, Mater. Sci. Eng. B,129, (2006),100.
    [11]H. B. Huang, S. G. Yang, J. F. Gong, H. W. Liu, J. H. Duan, X. N. Zhao, R. Zhang, Y. L. Liu, Y. C. Liu, J. Phys. Chem. B,109, (2005),20746.
    [12]W. Bai, K. Yu, Q.X. Zhang, F. Xu, D.Y. Peng, Z.Q. Zhu, Appl. Surf. Sci.253 (2007) 6835.
    [13]Y. H. Zhang, X. B. Song, J. Zheng, H. H. Liu, X. G. Li, L. P. You, Nanotechnolgy,17, (2006), 1916.
    [14]Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett.,91, (2003),185502.
    [15]H. Q. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am. Chem. Soc.,125, (2003),4728.
    [16]Z. W. Pan, S. M. Mahurin, S. Dai, D. H. Lowndes, Nano. Lett.,5, (2005),723.
    [17]Y. Hu, H. J. Chen, Mater. Res. Bull.,43, (2008),2153.
    [18]H. H. Wang, C. S. Xie, J. Phys. Chem. Solids,69, (2008),2440.
    [19]B. Ha, H. Ham, C. J. Lee, J. Phys. Chem. Solids,69, (2008),2453.
    [20]Z. J. Yan, Y. W. Ma, D. L. Wang, J. H. Wang, Z. S. Gao, L. Wang, P. Yu, T. Song, Appl. Phys. Lett.,92, (2008),081911.
    [21]W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, W. K. Chan, Appl. Phys. Lett.,89,(2006),183112.
    [22]Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, Y. Y Wang, Appl. Surf. Sci.,241, (2005),303.
    [23]M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B,107, (2003),659.
    [24]Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science 293, (2001),1289.
    [25]H. Zhou, G. J. Fang, L. Y. Yuan, C. Wang, X. X. Yang, H. H. Huang, C. H. Zhou, X. Z. Zhao, Appl. Phys. Lett.,94, (2009),013503.
    [26]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater.,4, (2005) 455.
    [27]Z. L. Wang, J. H. Song, Science,312, (2006),242.
    [28]J. L. Campbell, M. Breedon, K. Latham, K. K. Zadeh, Langmuir,24, (2008),5091.
    [29]D. Kelley, D. Louca, Scripta Mater.,53, (2005),475.
    [30]D. Kohl, M. Henzler, G. Heiland, Surf. Sci.,41, (1974),403.
    [31]M. Grunze, W. Hirschwald, D. Hofmann, J. Cryst. Growth.,52, (1981),241.
    [32]H. Iwanaga, T. Yoshiie, T. Yamaguchi, N. Shibata, J. Cryst. Growth.,47, (1979),703.
    [33]U. Manzoor, D. K. Kim, Scripta Mater.,54, (2006),807.
    [34]H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, E. E. Haller, Appl. Phys. Lett., 82, (2003),2023.
    [35]Q. Yang, K. Tang, J. Zuo, Y. Qian, Appl. Phys. A,79, (2004),1847.
    [36]X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys.,95, (2004),3141.
    [37]Y. W. Heo, D. P. Norton, S. J. Pearton, J. Appl. Phys.,98, (2005),073502.
    [38]Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, J. H. Yang, Appl. Phys. Lett.,87, (2005),211912.
    [39]M. Gomi, N. Oohira, K. Ozaki, M. Koyano, J. Appl. Phys,42, (2003),481.
    [40]A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, C. Surya, Adv. Funct. Mater.,14, (2004),856.
    [41]A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelberph, A. Meijerink, J. Phys. Chem. B,104, (2000),1715.
    [42]C. Neinhuis, W. Barthlott, Annals of Botany,79, (1997),667,
    [43]A. B. D. Gassie, S. Baxter, effects of surface roughness on wettability of solid surfaces, Trans. Faraday Soc.,40, (1944),546.
    [1]P. Simon, Y. Gogotsi, Nat. Mater.,7, (2008),845.
    [2]M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev.,104, (2004),4245.
    [3]J.R. Miller, P. Simon, Science,321, (2008),651.
    [4]C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater.,22, (2010), E28.
    [5]D. H. Jurcakova, X. Li, Z. H. Zhu, R. D. Marco, G. Q. Lu, Energy & Fuels,22, (2008),4139.
    [6]M. Arulepp, J. Leis, M. Latt, F. Miller, K. Rumma, E. Lust, A. F. Burke, J. Power Sources,162, (2006),1460.
    [7]K. Hung, C. Masarapu, T. Ko, B. Q. Wei, J. Power Sources,193, (2009),944.
    [8]C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian, Electrochim. Acta,53, (2008),7675.
    [9]C. M. Yang, Y. J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, J. Am. Chem. Soc.,129, (2007),20.
    [10]D. W. Wang, F. Li, M. Liu, G. Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed.,47, (2008),373.
    [11]K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, J. Power Sources,103, (2002),305.
    [12]L. Z. Fan, J. Maier, Electrochem. Commun.,8, (2006),937.
    [13]B. Muthulakshmi, D. Kalpana, S. Pitchumani, N. G. Renganathan, J. Power Sources,158, (2006),1533.
    [14]M. Toupin, T. Brousse, D. Belanger, Chem. Mater.,16, (2004),3184.
    [15]M. Toupin, T. Brousse, D. Belanger, Chem. Mater.,14, (2002),3946.
    [16]L. Chen, C. Z. Yuan, H. Dou, B. Gao, S. Y. Chen, X. G. Zhang, Electrochim. Acta,54, (2009), 2335.
    [17]S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. MacFarlane, M. Forsyth, D. W. Kim, J. Power Sources,171, (2007),1062.
    [18]Y. P. Fang, J. W. Liu, D. J. Yu, J. P. Wicksted, K. Kalkan, C. O. Topal, B. N. Flanders, J. Wu, J. Li, J. Power Sources,195, (2010).674.
    [19]D. W. Wang, F. Li, J. P. Zhao, W. C. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, H. M. Cheng, ACS nano,3, (2009),1745.
    [20]L. P. Zheng, Y. Wang, X. Y. Wang, N. Li, H. F. An, H. J. Chen, J. Guo, J. Power Sources,195, (2010),1747.
    [21]H. L. Wang, Q. L. Hao, X. J. Yang, L. D. Lu, X. Wang, Electrochem. Commun.,11, (2009), 1158.
    [22]K. Zhang, L. L. Zhang, X. S. Zhao, J. S. Wu, Chem. Mater.,22, (2010),1392.
    [23]L. X. Li, H. H. Song, Q. C. Zhang, J. Y. Yao, X. H. Chen, J. Power Sources,187, (2009),268.
    [24]L. Z. Fan, Y. S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, Adv. Funct. Mater.,17, (2007),3083.
    [25]A. Laforgue, P. Simon, J. F. Fauvarque, M. Mastragostino, F. Soavi, J. F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti, J. Electrochem. Soc.,150, (2003), A645.
    [26]G. R. Li, Z. P. Feng, Y. N. Ou, D. C. Wu, R. W. Fu, Y. X. Tong, Langmuir,26, (2010),2209.
    [27]R. R. Jiang, T. Huang, Y. Tang, J. L. Liu, L. G. Xue, J. H. Zhuang, A. S. Yu, Electrochim. Acta, 54, (2009),7173.
    [28]J. Yan, Z. J. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. P. Song, M. L. Zhang, J. Power Sources,194, (2009),1202.
    [29]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, J. Phys. Chem. C,114, (2010), 658.
    [30]Y. Chen, C. G. Liu, C. Liu, G. Q. Lu, H. M. Cheng, Mater. Res. Bull.,42, (2007),1935.
    [31]R. Liu, S. B. Lee, J. Am. Chem. Soc.,130, (2008),2942.
    [32]K. T. Lee, J. F. Lee, N. L. Wu, Electrochim. Acta,54, (2009),6148.
    [33]M. Nakayama, Y. Kashiwa, K. Suzuki, J. Electrochem. Soc.,156, (2009), D125.
    [34]E. C. Rios, A. V. Rosario, R. M. Q. Mello, L. Micaroni, J. Power Sources,163, (2007),1137.
    [35]R. K. Sharma, L. Zhai, Electrochim. Acta,54, (2009),7148.
    [36]R. K. Sharma, A. Karakoti, S. Seal, L. Zhai, J. Power Sources,195, (2010),1256.
    [37]C. Z. Yuan, L. H. Su, B. Gao, X. G. Zhang, Electrochim. Acta,53, (2008),7039.
    [38]S. R. Sivakkumar, J. M. Ko, D. Y. Kim, B. C. Kim, G. G. Wallace, Electrochem. Acta,52, (2007),7377.
    [39]C. Duarte, M. A. Sobal, N. L. Marzan, L. M. Giersig, Adv. Mater.,16, (2004),2179.
    [40]R. K. Sharma, H. S. Oh, Y. G. Shul, H. S. Kim, J. Power Sources,173, (2007),1024.
    [41]S. Devaraj, N. Munichandariah, J. Electrochem. Soc.,154, (2007), A80.
    [42]K. W. Ford, Classical and Modern Physics, Xerox college publishing, Lexington, Massachusetts,1973.
    [43]Z. S. Lou, Q. W. Chen, W. Wang, Y. F. Zhang, Carbon,41, (2003),3063.
    [44]H. K. Chaudhari, D. S. Kelkar, Polym. Int.,42, (1997),380.
    [45]J. Yan, T. Wei, Z. J. Fan, W. Z. Qian, M. L. Zhang, X. D. Shen, F. Wei, J. Power Sources,195, (2010),3041.
    [46]C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie,1978.
    [47]O. Ghodbane, J. L. Pascal, F. Favier, ACS Appl. Mater. Interfaces,1, (2009),1130.
    [48]C. C. Hu, T. W. Tsou, Electrochem. Commun.,4, (2002),105.
    [49]J. Zhang, L. B. Kong, B. Wang, Y. C. Luo, L. Kang, Synth. Met.,159, (2009),260.
    [50]Y. W. Lin, H. H. Chang, Y. S. Liu, M. C. Tsai, Y. C. Tsai, T. M. Wu, J. Electrochem. Soc.,157, (2010), K15.
    [51]Y. G. Wang, H. Q. Li, Y. Y. Xia, Adv. Mater.,18, (2006),2619.
    [52]W. Wei, X. Cui, W. Chen, D. G. Ivey, Electrochim. Acta,54, (2009),2271.
    [53]C. J. Wen, C. Ho, B. A. Boukamp, I. D. Raistrick, W. Weppner, R. A. Huggins, Int. Met. Rev., 26, (1981),253.
    [1]天相投资顾问有限公司,超级电容器:战略价值远超锂电池的标准低碳经济核心产品。
    [2]M. Winter, R. J. Brodd, Chem. Rev.,104, (2004),4245.
    [3]P. Simon, Y. Gogotsi, Nat. Mater.,7,2008,845.
    [4]J. R. Miller, P. Simon, Science,321, (2008),651.
    [5]M. Toupin, T. Brousse, D. Belanger, Chem. Mater.,16, (2004),3184.
    [6]R. N. Reddy, R. G. Reddy, J. Power Sources,124, (2003),330.
    [7]T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, J. Electrochem. Soc., 153, (2006), A2171.
    [8]V. Subramanian, H. W. Zhu, B. Q. Wei, J. Power Sources,159, (2006),361.
    [9]M. Xu, L. Kong, W. Zhou, H. Li, J. Phys. Chem. C,111,2007,19141.
    [10]P. Yu, X. Zhang, D. L. Wang, L. Wang, Y. W. Ma, Cryst. Growth Des.,9, (2009),528.
    [11]S. L. Chou, J. Z. Wang, S. Y. Chew, H. K. Liu, S. X. Dou, Electrochem. Commun.,10, (2008), 1724.
    [12]X. Y. Chen, X. X. Li, Y. Jiang, C. W. Shi, X. L. Li, Solid State Commun.,136, (2005),94.
    [13]L. Athouel, F. Moser, R. Dugas, O. Grosnier, D. Belanger, T. Brousse, J. Phys. Chem. C,112, (2008),7270.
    [14]S. Devaraj, N. Munichandraiah, J. Electrochem. Soc.,154, (2007), A80.
    [15]W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, J. Phys. Chem. C,112, (2008),15075.
    [16]O. Ghodbane, J. L. Pascal, F. Favier, ACS Appl. Mater. Interfaces,1, (2009),1130.
    [17]Q. T. Qu, P. Zhang, B. Wang, Y. H. Chen, S. Tian, Y. P. Wu, R. Holze, J. Phys. Chem. C,113, (2009),14020.
    [18]H. Xia, J. K. Feng, H. L. Wang, M.O. Lai, L. Lu, J. Power Sources,195, (2010),4410.
    [19]A. J. Roberts, R. C. T. Slade, J. Mater. Chem.,20, (2010),3221.
    [20]C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin, T. Y. Tseng, J. Electrochem. Soc.,152, (2005), A716.
    [21]V. Subramanian, H. W. Zhu, B. Q. Wei, Electrochem. Commun.,8, (2006),827.
    [22]X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, J. Phys. Chem. B,110, (2006),6015.
    [23]Y. Chen, C. G. Liu, C. Liu, G. Q. Lu, H. M. Cheng, Mater. Res. Bull.,42, (2007),1935.
    [24]X. Xie, L. Gao, Carbon,45, (2007),2365.
    [25]Y. Xue, Y. Chen, M. L. Zhang, Y. D. Yan, Mater. Lett.,62, (2008),3884.
    [26]A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, J. W. Long, Nano Lett.,7, (2007), 281.
    [27]J. Li, Q. M. Yang, I. Zhitomirsky, J. Power Sources,185, (2008),1569.
    [28]J. Yan, Z. J. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. P. Song, M. L. Zhang, J. Power Sources,194, (2009),1202.
    [29]H. J. Zheng, F. Q. Tang, Y. Jia, L. Z. Wang, Y. C. Chen, M. Lim, L. Zhang, G. Q. Lu, Carbon, 47, (2009),1534.
    [30]H. J. Liu, L. H. Jin, P. He, C. X. Wang, Y. Y. Xia, Chem. Commun.,44, (2009),6813.
    [31]J. M. Koa, K. M. Kimb, Mater. Chem. Phys.,114, (2009),837.
    [32]R. R. Jiang, T. Huang, Y. Tang, J. L. Liu, L. G. Xue, J. H. Zhuang, A. S. Yu, Acta,54, (2009), 7173.
    [33]K. W. Nam, C. W. Lee, X. Q. Yang, B. W. Cho, W. S. Yoon, K. B. Kim, J. Power Sources, 188, (2009),323.
    [34]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, J. Phys. Chem. C,114, (2010), 658.
    [35]G. R. Li, Z. P. Feng, Y. N. Ou, D. C. Wu, R. W. Fu, Y. X. Tong, Langmuir,26, (2010),2209.
    [36]S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano,4, (2010),2822.
    [37]H. Q. Wang, Z. S. Li, Y. G. Huang, Q. Y. Li, X. Y. Wang, J. Mater. Chem.,20, (2010),3883.
    [38]M. N. Patel, X. Q. Wang, B. Wilson, D. A. Ferrer, S. Dai, K. J. Stevenson, K. P. Johnston, J. Mater. Chem.,20, (2010),390.
    [39]S. W. Lee, J. Y. Kim, S. Chen, P. T. Hammond, S. H. Yang, ACS Nano,4, (2010),3889.
    [40]P. C. Chen, G. Z. Shen, Y. Shi, H. T. Chen, C. W. Zhou, ACS Nano,4, (2010),4403.
    [41]S. R. Sivakkumar, J. M. Ko, D. Y. Kim, B. C. Kim, G. G. Wallace, Electrochim. Acta,52, (2007),7377.
    [42]C. Z. Yuan, L. H. Su, B. Gao, X. G. Zhang, Electrochim. Acta,53, (2008),7039.
    [43]Sharma, R. K.; Zhai, L. Electrochim. Acta,54, (2009),7148.
    [44]R. K. Sharma, K A. arakoti, S. Seal, L. Zhai, J. Power Sources,195, (2010),1256.
    [45]Y. Hou, Y. W. Cheng, T. Hobson, J. Liu, Nano Lett.,10, (2010),2727.
    [46]Q. Li, J. H. Liu, J. H. Zou, A. Chunder, Y. Q. Chen, L. Zhai, J. Power Sources,196, (2011), 565.
    [47]T. Brousse, P. L. Taberna, O. Crosnier, P. Guillemet, Y. Scudeller, Y. K. Zhou, F. Favier, D. Belanger, P. Simon, J. Power Sources,173, (2007),633.
    [48]Y. C. Hsieh, K. T. Lee, Y. P. Lin, N. L. Wu, S. W. Donne, J. Power. Sources,177, (2008), 660.
    [49]S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc.,147, (2000),444.
    [50]K. W. Nam, M. G. Kim, K. B. Kim, J. Phys. Chem. C,111, (2007),749.
    [51]M. Q. Wu, G. A. Snook, G. Z. Chen, D. J. Fray, Electrochem. Commun.,6, (2004),499.
    [52]W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, Electrochim. Acta,54, (2009),2271.
    [53]W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, J. Power Sources,186, (2009),543.
    [54]M. Toupin, T. Brousse, D. Belanger, Chem. Mater.,14, (2002),3946.
    [55]K. Zhang, L. L. Zhang, X. S. Zhao, J. S. Wu, Chem. Mater.,22, (2010),1392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700