用户名: 密码: 验证码:
香鳞毛蕨精油和间苯三酚类成分提取分离及其抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香鳞毛蕨是一种具有特殊香气的多年生草本植物,其特点是老叶宿存,系鳞毛蕨科鳞毛蕨属。香鳞毛蕨主要分布于亚洲温带、欧洲和北美洲,通常生长在岩屑坡和岩石的裂缝中。特别是在五大连池分布的香鳞毛蕨,其只生长于火山喷发后所形成的熔岩环境中,当地居民用它来治疗多种皮肤病(牛皮癣、痤疮、皮疹和皮炎),民间验方利用香鳞毛蕨已有几十年的历史。此外,香鳞毛蕨还具有抗菌、镇痛、抗氧化、抗肿瘤和治疗类风湿性关节炎的作用。本文对香鳞毛蕨的精油和间苯三酚类成分进行了分离提取,并对纯化出的成分进行了抗菌活性考察。研究结果如下:
     1.建立了香鳞毛蕨精油以及4种间苯三酚类成分的分析方法。
     (1) GC-MS结合保留指数对香鳞毛蕨精油成分进行了鉴定,共鉴定了18个成分,占精油总量的89.65%,结果表明香鳞毛蕨精油富含倍半萜类化合物。
     (2)确定了RP-HPLC同时柃测香鳞毛蕨中4种间苯三酚类成分的色谱条件。色谱柱为ODS C18色谱柱(100mm×4.6mm.i.d.,2.6μm),流动相为乙腈-水-甲酸,柱温为25℃。本方法重复性好、准确度高、稳定性强,适用于香鳞毛蕨及其他植物中香鳞毛蕨素等间苯三酚类成分的分析及检测。
     2.采用无溶剂微波萃取技术对香鳞毛蕨中的精油进行了提取,中心组合设计结合响应而分析优化提取工艺,考察了提取时间、辐射功率和含水率对提取率的影响,确定了最佳的提取工艺参数:
     提取时间:34min
     辐射功率:500w
     含水率:50%
     在上述条件下对香鳞毛蕨精油进行提取,精油的平均提取率为0.33%,其R.S.D.为5.19%。响应面分析结果表明,在各影响因素中,提取时间对香鳞毛蕨精油提取率的影响最大,其次是辐射功率,最后是含水率。提取率与试验因素之间并不是简单的线性关系,对香鳞毛蕨精油提取率有较强交互作用的是提取时间和辐射功率。无溶剂微波提取法实现了香鳞毛蕨精油的高效提取,精油提取后的材料可继续用于其它目标成分的提取。
     3.采用负压空化提取法对香鳞毛蕨中间苯三酚类成分进行提取。考察了液固比、提取时间、空气流量、压力、提取次数等因素对负压空化提取过程中间苯三酚类成分提取率的影响,确定了最佳工艺参数:
     液固比:10:1(mL/g)
     提取时间:20min
     空气流量:30mL/min
     压力:-0.04~-0.05MPa
     提取次数:3次
     在上述条件下,香鳞毛蕨素、绵马酚、绵马素PB和绵马素BB的提取率均达到94%以上。由于负压空化提取技术以负压为动力,提取过程在密闭体系和常温操作系统下进行,所以这一方法具有节能效果好,无有机溶剂释放,有效成分无高温降解发生等优点,适用于香鳞毛蕨以及其他植物中活性成分的高效提取。
     4.对香鳞毛蕨中绵马酚、绵马素PB、香鳞毛蕨素和绵马素BB的分离富集方法进行了研究。
     (1)采用树脂柱吸附技术对香鳞毛蕨中的绵马酚和绵马素PB的分离富集进行了研究,洗脱流程为:5BV30%乙醇溶剂用于移除杂质,10BV50%乙醇溶剂被用于收集绵马酚,15BV70%乙醇溶液用来富集绵马素PB,沈脱流速为2BV/h。
     (2)采用树脂柱色谱技术对香鳞毛蕨中的香鳞毛蕨素和绵马素BB的分离富集进行了研究,对HPD-826,AB-8和HPD-600三种树脂的分离性能进行了考察,结果表明AB-8树脂对香鳞毛蕨素和绵马素BB的分离性能较好。确定了最佳洗脱流程为:10BV70%乙醇溶剂用于移除杂质,30BV80%乙醇溶剂被用于收集香鳞毛蕨素,20BV95%乙醇溶液用来富集绵马素BB,洗脱流速为6BV/h。
     (3)经过树脂富集后,绵马酚的含量从1.40mg/g增加到了10.4mg/g,提高了7.4倍;绵马素PB在产品中的含量从4.9mg/g增加到了41.8mg/g,增长了8.52倍。他们的回收率分别为85.73%和78.41%。采用AB-8树脂柱色谱动态分离后,香鳞毛蕨素的含量从4.10mg/g增加到了34.4mg/g,提高了8.39倍:绵马素BB在产品中的含量从9.5mg/g增加到了56.9mg/g,增长了5.99倍。他们的回收率分别为91.22%和75.64%。
     5.采用中压硅胶柱层析及重结晶技术对香鳞毛蕨中绵马酚、绵马素PB、香鳞毛蕨素和绵马素BB进行了纯化,并采用一系列方法对纯化所得化合物结构进行了确认。
     (1)确定了香鳞毛蕨样品中绵马酚、绵马素PB、香鳞毛蕨素和绵马素BB的中压硅胶柱层析分离方法以及重结晶条件。经HPLC检测表明绵马酚、绵马素PB、香鳞毛蕨素和绵马素BB的纯度依次为96.2%,95.1%,97.7%和95.3%。回收率依次为78.26%,63.27%,73.24%和65.63%。
     (2)经纯化得到具有一定纯度的化合物,通过理化性质、紫外(UV)、质谱(ESI-MS-MS)与核磁共振谱('H-NMR和13C-NMR)技术,结合文献报道信息确定所得产品为目标化合物。
     6对香鳞毛蕨不同溶剂萃取物、纯化得到的4种间苯三酚类成分以及香鳞毛蕨精油的抗菌活性进行了初步研究,研究结果如下:
     (1)考察了不同极性溶剂萃取物的抗菌活性,受试菌种包括痤疮杆菌、金黄色葡萄球菌、表皮葡萄球菌、枯草芽孢杆菌、大肠杆菌、变形杆菌、绿脓杆菌和白色念珠菌。不同极性部位对细菌和真菌都具有较好的抑制作用,其中对石油醚、乙酸乙酯、正丁醇和水这四种极性溶剂萃取物最为敏感的菌株是大肠杆菌,其最小抑菌浓度分别为1.95,1.95,3.9和3.9mg/mL。
     (2)香鳞毛厥精油对痤疮杆菌的最小抑菌浓度为0.0391%(v/v),香鳞毛蕨精油的最小杀菌浓度为0.0782%(v/v)。香鳞毛蕨精油对痤疮杆菌的抑菌活性优于文献报道的迷迭香精油,与J‘香精油抑制痤疮杆菌的活性相当。
     (3)对香鳞毛蕨中4种间苯三酚类成分较为敏感的菌株是表皮葡萄球菌,金黄色葡萄球菌、枯草芽孢杆菌、变形杆菌、白色念珠菌和痤疮杆菌。香鳞毛蕨素对白色念珠菌的最小杀菌浓度为125μg/mL,杀菌效果与氯霉素相当,优于红霉索和青霉素。绵马酚、绵马素PB和绵马素BB对表皮葡萄球菌、金黄色葡萄球菌、枯草芽孢杆菌、变形杆菌和白色念珠菌的杀菌效果与阳性对照相当或优于阳性对照。香鳞毛蕨素、绵马酚、绵马素BB和绵马素PB对痤疮杆菌的最小抑菌浓度分别为15.63,15.63,31.25和125μg/mL。
     (4)绵马素BB的动态杀菌曲线表明浓度为MBC(2MIC)的绵马素BB对瘁疮杆菌在5小时内可以将细菌全部杀灭。通过聚丙烯酰胺凝胶电泳(SDS-PAGE)研究了绵马素BB对痤疮杆菌的蛋白表达量的变化,结果表明绵马素BB可能通过抑制26kDa和33kDa两种特异蛋白而起作用。采用琼脂糖凝胶电泳研究了绵马素BB对痤疮杆菌DNA的裂解作用,结果表明浓度MBC的绵马素BB作用痤疮杆菌能导致其DNA出现碎裂。
     综上所述,无溶剂微波萃取技术和负压空化提取技术适用于香鳞毛蕨中精油及间苯三酚类成分的提取。树脂柱吸附和树脂柱色谱可以有效地分离富集香鳞毛蕨中四种主要的间苯三酚类成分,纯化后,绵马酚、绵马素PB、香鳞毛蕨素和绵马素BB的纯度分别达到96.2%,95.1%,97.7%和95.3%,总回收率为46.07%,36.63%,45.80%和38.66%。香鳞毛蕨不同极性溶剂萃取物和纯化得到的间苯三酚类成分均具有抑菌效果。对绵马素BB抑制痤疮杆菌的分子机制进行了初步的探索,为进一步开发利用植物药提供了良好的基础。
Dryopleris fragrans (L.) schott, a member of the Dryopteris genus, is a deciduous perennial herb characterized by distinctive fragrance and persistent old fronds. This aromatic medicinal plant normally occurs on talus slopes and cliff crevices, and mainly distributed in Asia-temperate, Europe and North America. Especially in Wu Da Lian Chi (Heilongjiang province, China), a place of interest with volcanic geological landforms, it possessed a strong affinity for lava and molten rocks formed after volcanic eruption. The indigenous plant has been used in traditional folk medicine for decades in treating various dermatosis (such as psoriasis, acne, erythra and dermatitis) and using as an effective agent of antibacterial, analgesic, antioxidant, anti-tumour as well as antirheumatic arthritis. In the present study, extraction and separation of essential oil and phloroglucinols from D. frangrans were investigated. The antibacterial activities of purified constituents were studied.
     The results were as follows:
     1. The analysis method of essential oil and four phloroglucinols from D. fragrans were developed.
     (1) GC-MS combined with retain index were used to identify the constituents of the essential oil of D. fragrans. Eighteen compounds, representing89.65%of the oil, were identified. The essential oil was found to be rich in sesquiterpenes.
     (2) A RP-HPLC method was developed for the simultaneous separation and determination of four phloroglucinols from D. fragrans.
     Chromatography column:ODS C18reversed phase column (100mm×4.6mm. i.d.,2.6μm); mobile phase:acetonitrile-water-Formic acid; column temperature:25℃. This method was repeatable, accurate and stable, which was suitable for the determination of phloroglucinols in D. fragrans as well as in other plants.
     2The solvent-free microwave extraction was developed for extraction of the essential oil from D. fragrans. A central composite design combined with response surface methodology was applied to optimize the technique. The influence parameters of extraction time, irradiation power and humidity were investigated. The optimal operating condition was as follows: extraction time34min, irradiation power500W, humidity50%.
     Under the opimized condition, the extraction yield of essential oil was0.33%, and R.S.D. was5.19%. In the results of response surface analysis, extraction time is the main factor which affects the microwave extraction process followed by irradiation power and humidity. The relationship between the extraction yield and the influence factor is not simple linearity. There is strong interaction between extraction time and irradiation power. The solvent-free microwave extraction was an efficient technique for extraction of the essential oil from D. fragrans. After extracted by solvent-free microwave extraction, the residua can be used as raw material to extract other target components.
     3. The negative-pressure cavitation extraction (NPCE) was developed for extraction of four main phloroglucinols from D. fragrans. The effects of liquid/solid ratio, extraction time, air flow, pressure and number of extration cycles on the recovery of flavonoids were optimized. The optimum parameters were as follows:liquid/solid ratio10:1(mL/g), extraction time20min, air flow30mL/min, pressure-0.04~-0.05Mpa,3extraction cycles.
     Under the above opimized conditions, the relative recoveries of dryofragin, aspidin BB, aspidin PB and aspidinol were all higher than94%. Negative pressure is the impetus of NPCE; and the extraction process was performed under the obturation condition and normal temperature. So the method was energy saving, solvent free and avoiding the thermal decomposition, which was suitable for the extraction of active components in D. fragrans as well as in other plants.
     4. The method of separation and enrichment of aspidinol, aspidin PB, dryofragin and aspidin BB from D. fragrans was studied.
     (1) Resin column adsorption was applied for separation and enrichment of aspidinol and aspidin PB. Considering both contents and recoveries, the optimal enrichment and separation conditions were confirmed as follows:30%ethanol5BV was used for removing impurities,50%ethanol10BV was selected to wash aspidinol and70%ethanol15BV to elute aspidin PB, the flow rate was3BV/h.
     (2) Resin column chromatography was applied for separation and enrichment of dryofragin and aspidin BB. Considering both contents and recoveries, the optimal enrichment and separation conditions were confirmed as follows:70%ethanol10BV was used for removing impurities,80%ethanol30BV was selected to wash dryofragin and95%ethanol20BV to elute aspidin BB, the flow rate was6BV/h.
     (3)After AB-8resin column adsorption, the content of aspidinol increased from1.40mg/g to10.4mg/g, increased7.4times; the content of aspidinol increased from4.9mg/g to41.8mg/g, increased8.52times.The recoveries of aspidinol and aspidin PB were85.73%and78.41%, separately. After AB-8resin column chromatography, the content of dryofragin and aspidin BB increased to34.4mg/g and56.9mg/g, separately, increased8.39and5.99times. The recoveries of dryofragin and aspidin BB were91.22and75.64%, respectively.
     5. Medium-pressure silica gel column chromatography and recrystallization were applied for purification of aspidinol, aspidin PB, dryofragin and aspidin BB from D. fragrans were studied. A series of schemes were employed for identification the structure of the purified compounds.
     (1)1he condition of medium-pressure silica gel column chromatography and recrystallization were determined. After determined by HPLC, the purities of aspidinol, aspidin PB, dryofragin and aspidin BB were96.2%,95.1%,97.7%and95.3%, separately, with the recoveries of78.26%,63.27%,73.24%and65.63%.
     (2)The products were identified as the target compounds by the reaction of physical and chemical property combined with UV spectrum, mass spectrum (ESI-MS-MS) and nuclear magnetic resonance (1H-NMR和13C-NMR).
     6. Antibacterial activities of different fractions, four main phloroglucinols and essential oil from D. fragrans were studied. The results were as follows:
     (1)The antibacterial activities of different fractions were tested, and the bacterium include Propionibacterium Acnes, Staphylococcus aureus, Staphylococcus epidermidis, Bacilus subtillis, Escherichia coli, Proteus vuLgaris, Pseudomonas aeruginos and Candida albicans. All fractions showed antimicrobial activity towards both gram-positive bacteria and gram-negative bacteria. The most sensitive stain towards petroleum ether, ethyl acetate, n-butanol and water fractions was Escherichia coli with the MIC values of1.95,1.95,3.9and3.9mg/mL
     (2)The MIC and MBC values of D. fragrans essential oil towards P. Acnes were0.0391%and0.0782%(v/v). The antibacterial activity of D. fragrans essential oil towards P. Acnes was better than that of reported Rosmarinus officinalis essential oil and nearly to that of Syzygium aromaticum essential oil.
     (3)The most sensitive stains towards four phloroglucinols were Staphylococcus epidermidis, Staphylococcus aureus, Bacilus subtillis, Proteus vμLgaris, Candida albicans and Propionibacterium Acnes.
     The MIC values of dryofragin towards Candida albicans were125μg/mL. The bactericidal effect of dryofragin approach to that of positive control penicillium and better than that of chloromycetin and erythromycin. The bactericidal effect of aspidinol, aspidin PB and aspidin BB towards Staphylococcus epidermidis, Staphylococcus aureus, Bacilus subtillis, Proteus vμLgaris and Candida albicans are nearly to or better than that of positive control (penicillium, chloromycetin and erythromycin). The MIC values of dryofragin, aspidinol, aspidin BB and aspidin PB towards P. Acnes were15.63,15.63,31.25and125μg/mL.
     (4) According to time-kill curves of aspidin BB (MBC), all the P. Acnes were killed in5hours. The results of SDS-PAGE showed the molecular mechanisms of aspidin BB against P. acnes, aspidin BB could inhibit the two special proteins (26kDa and33kDa). The DNA (?)leavage activity of aspidin BB towards P. Acnes showed that aspidin BB inhibits the growth of P. Acnes by DNA cleaving.
     In conclusion, the method of solvent-free microwave extraction (SFME) and negative- pressure cavitation extraction (NPCE) was suit for extraction of essential oil and four main phloroglucinols from D.fragrans. Resin column adsorption and Resin column chromatography could enrich the four main phloroglucinols effectively. After extraction, separation and purification, the purities of aspidinol, aspidin PB, dryofragin and aspidin BB were96.2%,95.1%,97.7%and95.3%, separately, with the recoveries of46.07%,36.63%,45.80%and38.66%. Different fractions, purified constituents and essential oil from D.fragrans possessed antibacterial activities. Aspidin BB showed great antimicrobial activity. The results benefit of develop and make full use of plant medicinal.
引文
[1]李辉敏,阮金兰.鳞毛蕨科药用蕨类植物研究进展.九江学院学报(自然科学版),2004,3:3-5
    [2]常缨.香鳞毛蕨国内外研究进展.北方园艺,2009,(04):113-115.
    [3]沈志滨.香鳞毛蕨药效物质基础研究和肤痒宁软膏的研制.黑龙江中医药大学博士论文.2005.
    [4]黄庆阳,肖自添,常缨.香鳞毛蕨配子体发育的研究.植物研究,2006,(03):266-269.
    [5]黄庆阳,樊锐锋,袁强,常缨.香鳞毛蕨配子体发育及快速繁殖的研究.中草药,2007,(10):1573-1576.
    [6]刘家熙,李学东,陈阜东.北京鳞毛蕨属孢子形态研究.首都师范大学学报(自然科学版),1997,18(3):82-84.
    [7]邢怡,党安志,刘保东.黑龙江产十种蕨类植物孢子囊和叶表皮的扫描电镜观察.植物研究,2004,24(4):413-416.
    [8]王秀华.东北鳞毛蕨科植物叶比较解剖的初步研究.植物研究,2001,21(2):202-205.
    [9]沈志滨,金哲雄,张德连.香鳞毛蕨的生药学研究.中草药,2002,33(7):661-663.
    [10]黄庆阳,樊锐锋,常缨.香鳞毛蕨种质资源遗传多样性的AFLP分析.中草药,2010,(06):971-974.
    [11]周荣汉.药用植物化学分类学.上海:上海科学技术出版社,1985:221.
    [12]C. J. Widen, C.R. Fraser-Jenkins, and T. Reichstein. A survey of phenolic compounds in Dryopteris and related fern genera. Annales Botanici Fennici,2001,38 (2):99-138
    [13]向燕,王皓,温远影.鹿角蕨化学成分的研究.热带亚热带植物学报,2002,10(1):69-73
    [14]赵丹丹,张彦龙,陆欣媛,王淑春.香鳞毛蕨化学成分的研究.黑龙江医药,2006,(05):353-355.
    [15]L. M. Molodozhnikov, A. I. Ban'kovskii, and N. M. Sergeev. Derivatives of phloroglucinol from Dryopteris fragrans (L.) Schott. Khimiko-Farmatsevticheskii Zhurnal, 1971,5(7):32-36.
    [16]H. Ito, T. Muranaka, and K. Mori. Ichthyotoxic phloroglucinol derivatives from Dryopteris fragrans and their anti-tumor promoting activity. Chem Pharm Bull.,2000,48(8):1190-1195.
    [17]张彦龙.香鳞毛蕨治疗类风湿性关节炎有效部位的药理作用和化学成分的研究.黑龙江中医药大学博士论文.2006.
    [18]王慧荣,王睿,徐洪亮.香鳞毛蕨镇痛作用研究.齐齐哈尔医学院学报,2008,(20):2443-2444.
    [19]王慧荣.香鳞毛蕨中有效部位化学成分的提取分离.黑龙江大学硕士论文.2007.
    [20]张燕丽.香鳞毛蕨化学成分的研究.黑龙江中医药大学硕士论文.2007.
    [21]孙超.香鳞毛蕨治疗类风湿性关节炎有效部位的化学成分研究.黑龙江中医药大学硕士.2007.
    [22]张彦龙,曾伟民,王慧荣.香鳞毛蕨中木脂素类抗氧化活性成分的研究.中草药,2008,(03):343-346.
    [23]朱俊访.香鳞毛蕨化学成分研究和香丹注射液质量控制方法的研究.广东药学院硕士论文.2008.
    [24]朱丽.香鳞毛蕨中抗真菌活性成分的研究.黑龙江大学硕士论文.2010.
    [25]高增平,陆蕴如,李国福.绵马贯众部位抗疟活性筛选.北京中医药大学学报,2002,25(4):45-47.
    [26]薛惟建.东北贯众素的抗肿瘤作用及对DNA的损伤效应.中国药理学及毒理学杂志,1988,2(2):150-152
    [27]高增平,马秉智,陆蕴如.绵马贯众化学成分的研究.北京中医药大学学报.2004,27(1):52-55
    [28]蒋亚生,杨宁.贯众的药理研究进展.药学实践杂志,2000,18(1):17-20.
    [29]高增平,李世文,陆蕴如.中药绵马贯众的化学成分研究.中国药学杂志,2003,38(4):260-262.
    [30]李德华,郝晓阁,薛惟建.贯众有效成分的抗肿瘤作用.中草药,1986,17(6):14-18.
    [31]薛惟建,王士贤,李德华.贯众抗肿瘤有效组分对P-388细胞超微结构及细胞呼吸作用.中国药理学通报,1987,3(5):291-293.
    [32]张成稿,玄延花,曹红.贯众水提取液抗柯萨奇B3病毒的实验研究.中国中医药科技,2002,9(2):104-107.
    [33]刘郁达,焦杨.贯众有效成分对实验性肝损伤的药理作用.天津药学,1995,7(2):19-21.
    [34]G. J. Kapadia, H. Tokuda, and T. Konoshima. Anti-tumor promoting activity of Dryopteris phlorophenone derivatives. Cancer Letter,1996,105(2):161-165.
    [35]沈志滨,罗文英,朱俊访.香鳞毛蕨CO2超临界萃取物的GC-MS分析.广东药学院学报,2006,(02):142-143.
    [36]张彦龙,匡宏枫,高传军.香鳞毛蕨挥发油成分的研究.中草药,2006,(07):991-992.
    [37]张岚,高传军,张彦龙.香鳞毛蕨挥发油提取工艺的研究.科技信息(科学教研),2008,(15):27.
    [38]S. A. Vichkanova, S. B. Izosimova, and T. V. Fateeva. Antimicrobial activity of some Dryopteris species from the Primorsk territory. Rastitel'nye Resursy,1982,18(1):93-99.
    [39]沈志滨,马英丽,江蔚新,李文兰.香鳞毛蕨对真菌的抑制作用.中草药,2005,(05):735-736.
    [40]郑家润.抗银屑药物治疗和研究的现状及展望.中华皮肤科杂志,1997,14(4):18-20.
    [41]沈志滨,金哲雄,张德连,刘建军,孙婷.香鳞毛蕨治疗银屑病的药理作用研究,中草 药,2002(05):67-68.
    [42]罗容,金哲雄,张延萍.香鳞毛蕨擦剂的药效学研究.哈尔滨商业大学学报(自然科学版),2003,(04):388-390
    [43]李红枝,沈志滨,赵瑛,江淼,张德连.香鳞毛蕨软膏对大鼠实验性体癣的治疗作用.中药材.2005,(10):82-83.
    [44]徐洪亮.香鳞毛蕨中活性成分研究.黑龙江中医药大学硕士论文.2008.
    [45]O. N. O. Masateru, and M. Chikako. Antioxidative constituents fromViticis trifoliae Fructus (fruit of Vitex rotundifolia L.). Food Sci Technol Int Tokyo,1998,4(1):7-13.
    [46]S. Toda, T. Miyase, and H. Arichi. Natural antioxidative components isolated from seeds of Plantago asiatica Linne. Chem Pharm Bull,1985,33:1270-1273.
    [47]张莹莹.香鳞毛蕨中生物活性物质的筛选.黑龙江大学硕士论文.2008.
    [48]F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar. Biological effects of essential oils-A review. Food and Chemical Toxicology,2008,46:446-475.
    [49]J. Silva, W. Abebe, S. M. Sousa, V.G. Duarte, M.I.L. Machado, and F.J.A. Matos. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol, 2003,89:277-283.
    [50]V. Hajhashemi, A. Ghannadi, and B. Sharif. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J. Ethnopharmacol,2003, 89:67-71.
    [51]N. S. Perry, C. Bollen, E. K. Perry, and C. Ballard. Salvia for dementia therapy:review of pharmacological activity and pilot tolerability clinical trial. Pharmacol. Biochem. Behav. 2003,75:651-659.
    [52]L. Pizzale, R. Bortolomeazzi, S. Vichi, E. Uberegger, and L. S.Conte. Antioxidant activity of sage(Salvia officinalis and S. fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agr.,2002, 82:1645-1651.
    [53]G. F. Santoro, M. G. Cardoso, L. G. Guimaraes, L. Z. Mendonca, and M. J. Soares. Trypanosoma cruzi:Activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Exp. Parasitol,2007,116:283-290.
    [54]L. Song, J. Y. Ding, C. Tang, and C. H. Yin, Compositions and biological activities of essential oils of Kadsura longepedunculata and Schisandra sphenanthera. Am. J. Chin. Med.,2007,35:353-364.
    [55]P. Lo Cantore, N. S. Iacobellis, A. De Marco, F. Capasso, and F. Senatore. Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller Var. vulgare (Miller) essential oils, J. Agric. Food Chem.,2004,52:7862-7866
    [56]European Pharmacopeia (Ph. Eur.),5th Ed. Council of Europe, Strasbourg, France,2005.
    [57]A. Farhat, A.-S. Fabiano-Tixier, M. E. Maataoui, J.-F. Maingonnat, M. Romdhane and F. Chemat. Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract's global yield and mechanism. Food Chemistry,2011,125 (1):255-261
    [58]H. M. Kingston, S. J. Haswell and A. C. Society, Microwave-enhanced chemistry: fundamentals, sample preparation, and applications. American Chemical Society Washington:1997.
    [59]H. M. Kingston, L. Jassie and A. C. Society. Introduction to microwave sample preparation:theory and practice. American Chemical Society Washington, DC,1988.
    [60]J. Thuery and E. Grant, Microwaves:industrial, scientific, and medical applications. Artech House on Demand:Boston, MA,1992.
    [61]K. Ackley, C. B'Hymer, K. Sutton and J. Caruso. Speciation of arsenic in fish tissue using microwave-assisted extraction followed by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry,1999,14 (5):845-850.
    [62]M. A. Rostagno, M. Palma and C. G. Barroso. Microwave assisted extraction of soy isoflavones. Analytica Chimica Acta.,2007,588 (2):274-282.
    [63]E. Vazquez Blanco, P. Lopez Mahia, S. Muniategui Lorenzo, D. Prada Rodriguez and E. Fernandez Fernandez. Optimization of microwave-assisted extraction of hydrocarbons in marine sediments:comparison with the Soxhlet extraction method. Fresenius' journal of analytical chemistry,2000,366 (3):283-288.
    [64]F.-Y. Du, X.-H. Xiao, X.-J. Luo and G.-K. Li. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta, 2009,78(3):1177-1184.
    [65]C. S. Eskilsson and E. Bjorklund. Analytical-scale microwave-assisted extraction. Journal of Chromatography A,2000,902 (1):227-250.
    [66]赵华,张金生,李丽华,李秀萍,王艳红,胡震.微波辅助萃取洋葱精油的研究.香料香精化妆品,2005,3(6):1-4.
    [67]刘作梅,蒋道松,胡松梅,梁曾恩妮.微波萃取白背叶种子果皮精油的研究.湖南农业科学,2005,(2):116-117.
    [68]A. Pibs, M. Philippe, and M. Bernard. Method and plant for solvent-free microwave extraction of natural products [P]. WO,9426853.1994-11-24.
    [69]M. E. Lucchesi, F. Chemat, and J. Smadja. An original solvent free microwave extraction of essential oils from spices. Flavor and Fragrance Journal,2004,19:134-138.
    [70]M. E. Lucchesi, F. Chemat, and J. Smadja. Solvent-free microwave extraction of essential oil from aromatic herbs:comparison with conventional hydro-distillation. Journal of Chromatography A,2004,1043:323-327.
    [71]M.E. Lucchesi, J. Smadja, S. Bradshaw, W. Louw, and F. Chemat. Solvent free microwave extraction of Elletaria cardamomum L.:A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering,2007,79:1079-1086.
    [72]宁洪良,郑福平,孙宝国,谢建春,刘玉平.无溶剂微波萃取法提取花椒精油.分离与提取.2008,34(5):179-181
    [73]G. G. Duthie, P. T. Gardner and J. A. Kyle. Plant polyphenols:are they the new magic bullet? Proceedings of the Nutrition Society,2003,62 (03):599-603.
    [74]D. Goldberg, B. Hoffman, J. Yang and G. Soleass. Phenolic constituents, furans, and total antioxidant status of distilled spirits. Joural of Agriculture and Food Chemistry,1999,47 (10):3978-3985.
    [75]E. Holt, L. Steffen, A. Moran, S. Basu, J. Steinberger, J. Ross, C. Hong and A. Sinaiko. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. Journal of the American Dietetic Association,2009,109 (3):414-421.
    [76]A. Lichtenstein, L. Appel, M. Brands, M. Carnethon, S. Daniels, H. Franch, B. Franklin, P. Kris-Etherton, W. Harris and B. Howard. Summary of American Heart Association diet and lifestyle recommendations revision 2006. Arteriosclerosis, Thrombosis, and Vascular Biology,2006,26 (10):2186-2191.
    [77]J. Mursu, S. Voutilainen, T. Nurmi, T. Tuomainen, S. Kurl and J. Salonen. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men:the Kuopio Ischaemic Heart Disease Risk Factor Study. British Journal of Nutrition,2008,100 (04):890-895.
    [78]A. Bertelli and D. Das. Grapes, wines, resveratrol, and heart health. Journal of cardiovascular pharmacology,2009,54 (6):468-476.
    [79]R. Corti, A. Flammer, N. Hollenberg and T. Luscher. Cocoa and cardiovascular health. Circulation,2009,119 (10):1433-1441.
    [80]S. Desch; J. Schmidt, D. Kobler, M. Sonnabend, I. Eitel, M. Sareban, K. Rahimi, G. Schuler and H. Thiele. Effect of cocoa products on blood pressure:systematic review and meta-analysis. American journal of hypertension,2009,23 (1):97-103.
    [81]高秋生.对液体空化机理的进一步讨论.河海大学学报,1999,27(5):45-49
    [82]李根生,沈晓明,施立德,陈现华.空化和空蚀机理及其影响因素.石油大学学报,1997,21(1):97-101.
    [83]李志博,胡国清.空蚀空化现象与液压系统新进展.机床与液压,2000,(6):6-11.
    [84]A. Penttila, and J. Sundman. The chemistry of dryopteris acylphlcroglucinols. Pham. Pharmac.,1970,22:393-404
    [85]C. J. Widen, and M. Lounasmaa, J. Sarvela. Phloroglucinol derivatives of eleven dryopteris species from Japan. Plant Med.,1975,28:144-164.
    [86]高增平,李瑞峰,王宝华,陆蕴如.鳞毛蕨属植物化学成分研究进展.中国实验方剂学杂志,2003,9(3):50-55
    [87]H. Fuchino, H. Nakamura, H. Wadka, T. Hakamatsuka and N. Tanaka, Chem. Pharm. Bull., 1997,45:1101.
    [88]Zengping Gao, Zulfiqar Ali, Jianping Zhao, liang Qiao, Haimin Lei, Yunru Lu, and Ikhlas A. Khan. Phytochemical investigation of the rhizomes of Dryopteris crassirhizoma. Phytochemistry Letters,2008,4(1):188-190.
    [89]M. Coskun, A. Sakushima, and S. Nishibe. Phloroglucinol Derivatives of Dryopteris abbreviata. Chem. Pharm. Bull.,1982,30(11):4102-4126.
    [90]E. Wollenweber, J. F. Stevens, and M. Ivanic. Acylphloroglucinols and Flavonoid Aglycones Produced by External Glands on the Leaves of Two Dryopteris Ferns and Currania robertiana. Phytochemistry,1998,48(6):931-934.
    [91]C. J. Widen, and A. Huhtikangas, Phloroglucinol Derivatives in Dryopteris parallelogramma and D. patula. Phytochemistry,1973,12:931-935.
    [92]J. Euw, T. Reichstein, and C. J. Widen. The Phloroglucinols of Dryopteris aitoniana Pichi Serm. Helvetica Chimica Acta.,1985,68:1251-1254.
    [93]C. J. Widen, H. Pyysalo, and P. Salovaara. Separation of Naturally Occurring Acylphloroglucinols by High-Performance Liquid Chromatography. Journal of Chromatography,1980,188:213-216.
    [94]Y. Noro, K. Okuda, and H. Shimada. Dryocrassin:A New Acylphloroglucinol from Dryopteris crassirhizoma. Phytochemistry,1973,12:1491-1495.
    [95]H. Fuchino, H. Nakamura, and H. Wada. Two New Acyl Phloroglucinols from Dryopteris atrata. Chem. Pharm. Bull.,1997,45(6):1101-1104.
    [96]A. Penttila, and J. Sundman. The chemistry of dryopteris acylphloroglucinols. Pharm. Pharmac.,1970,22:393-404.
    [97]C. J. Widen, M. Lounasmaa, and J. Sarvela. Phloroglucinol Derivatives of Dryopteris crassirhizoma from Japan. Acta Chemica Scandinavica,1975,829:859-862.
    [98]罗伟强,廖海达,李小梅.四种提取柑皮中黄酮物质的方法比较.西部粮油科技,2003,28(1):50-51
    [99]常楚瑞.乙酸乙酷回流法提取木瓜总黄酮及含量测定.贵阳医学院学报,2001,26(4):326-327
    [100]黄维安,蒙颜,黄品莲.正交法试验比较甘草浸膏的提取工艺.中国中药杂.1994.19(5):283-284
    [101]吴仲儿,林洪,梁瑞云.甘草中抗氧、抗黄曲霉有效成份的分离和结构鉴定.食品科学,1996,17(4):46-50
    [102]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定.北京:化学工业出版社,2004.
    [103]J. Rajesh Kumar, H. I. Lee, J. Y. Lee, J. S. Kim, and J. S. Sohn, Comparison of liquid-liquid extraction studies on platinum(IV) from acidic solutions using bis(2,4,4-trimethylpentyl) monothiophosphinic acid, Sep.Purif.Technol.,2008,63:184-190.
    [104]L. H. Wang, Y.H. Mei, F. Wang, X. S. Liu, and Y. Chen, A novel and efficient method combining SFE and liquid-liquid extraction for separation of coumarins from Angelica dahurica, Sep.Purif.Technol.,2011,77:397-401.
    [105]E. P. Byrne, and J. J. Fitzpatrick, Investigation of how agitation during precipitation, and subsequent processing affects the particle size distribution and separation of a-lactalbumin enriched whey protein precipitates, Biochem. Eng. J.,2002,10:17-25.
    [106]Y. J. Fu, Y. G. Zu., W. Liu, T. Efferth, N. J. Zhang, X. N. Liu, and Y. Kong, Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins, J. Chromatogr. A.,2006,1137:145-152.
    [107]W. Liu, S. Zhang, Y. G. Zu, Y. J. Fu, W. Mac, D. Y. Zhang, Y. Kong, and X. J. Li, Preliminary enrichment and separation of genistein and apigenin from extracts of pigeon pea roots by macroporous resins, Bioresour. Technol.,2010,101:4667-4675.
    [108]Z. L. Ai, Y. H. Wang, H. Wang, J. Guo, and J. T. Cui, Absorption of polyphenols from apple pomace by macroporous absorbent resins, Trans. Ch. Soc. Agric. Eng.,2007,23: 245-248.
    [109]J. M. Huang, J. X. Guo, W. S. Chen, B. Lu, M. M. Sun, and G. L. Duan, Adsorption properties and application of macroporous resin for purification of alkaloids in Aconitum kusnezoffii, Fudan Univ. J. Med. Sci.,2003,30:267-269.
    [110]Y. Kong, M. M. Yan, W. Liu, C. Y. Chen, B.S. Zhao, Y.G. Zu, Y.J. Fu, M. Luo, and M. Wink, Preparative enrichment and separation of astragalosides from Radix Astragali extracts using macroporous resins, J. Sep. Sci.,2010,33:2278-2286.
    [111]R. Sun, K. Fu, Y. J. Fu, Y. G. Zu, Y. Wang, M. Luo, S. M. Li, H. Luo, and Z. N. Li, Preparative separation and enrichment of four taxoids from Taxus chinensis needles extracts by macroporous resin column chromatography, J. Sep. Sci.33 (2010) 2278-2286.
    [112]D. S. Tang, L. Zhang, H. L. Chena, Y. R. Liang, J. L. Lu, H. L. Liang, and X. Q. Zheng, Extraction and purification of solanesol from tobacco:(I). Extraction and silica gel column chromatography separation of solanesol, Sep.Purif.Technol.2007,56,291-295.
    [113]A. A. White, Separation and purification of cyclic nucleotides by alumina column chromatography, Methods Enzymol,1974,38:41-46.
    [114]王其灏,裴雅群,蒋挺大.甘草酸的提取分离和纯化.医药工业,1987,18(11):481-487.
    [115]孙毓庆.仪器分析选论.北京:北京科学出版社,2005:153-159.
    [116]朱淮武.有机分子结构波谱学.北京:化学工业出版社,2005:106.
    [117]A. M. Lammerding. Hazard identification and exposure assessment for microbial food safety risk assessment. Int J food Microbiol,2000,58:147-157.
    [118]E. I. Nweze. Aetiology of Diarrhoea and Virulence Properties of Diarrhoeagenic Escherichia coli among Patients and Healthy Subjects in Southeast Nigeria. J Healthpopulnutr,2010,28(3):245-252.
    [119]J.Sarantuya, J. Nishi, N. Wakimoto, S. Erdene, J. P. Nataro, and J. Sheikh. Typical enteroaggregative Escherichia coli is the most prevalent pathotype among E. coli strains causing diarrhea in Mongolian children. J Clin Microbiol,2004,42:133-139.
    [120]I. N. Okeke, O. Ojo, A. Lamikanra, and J. B. Kaper. Etiology of acute diarrhea in adults in southwestern Nigeria. J Clin Microbiol,2003,41:4525-4530.
    [121]E. Presterl, R. H. Zwick, S. Reichmann, A. Aichelburg, S. Winkler, and P. G. Kremsner. Frequency and virulence properties of diarrheagenic Escherichia coli in children with diarrhea in Gabon. Am J Trop Med Hyg,2003,69:406-410.
    [122]R. J. Gorwitz, D. Kruszon-Moran, S.K. McAllister, G. McQuillan, L. K. McDougal, G. E. Fosheim, B. J. Jensen, G. Killgore, F. C. Tenover, and M. J. Kuehnert. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States,2001-2004. J Infect Dis,2008,197:1226-1234.
    [123]H. F. Chambers, and F. R. DeLeo. Waves of Resistance:Staphylococcus aureus in the Antibiotic Era. Nat Rev Microbiol,2009,7 (9):629-641.
    [124]P. A. Hunter, and D. S. Reeves. The Current status of resistance to antimicrobial agents: report on a meeting. Journal of Antimicrobial Chemotherapy,2002,49:17-23.
    [125]K. Bush, G. A. and Jacoby, A.A. Medeiros. A functional classification scheme for β-lactamases and its correlation with molecularstructure. Antimicrob Agents Chemother, 1994,39(6):1211-1233.
    [126]T. Nass, D. M. Livermore, and P. Nordmann. Characterization of an LysR family potein, SemR from Serratia marcessecs S6, Its effect on expression of the carbapenem-hydrolyzing β-lactamases Sme-1 and comparison of this regulator with other β-lactamases regulators. Antimicrob Agents Chemother,1995,39 (3):629-637.
    [127]B. A. Rasmussen, K. Bush, D. Keeney, Y. Yang, R. Hare, C. O'Gara, and A. A. Medeiros. Characterization of IMI-1 β-lactamases, a nover class A carbapenem hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother,1996,40:2080-2086.
    [128]E. J. Begg, and M. L. Barclay. Aminoglycosides-50 years on. Br J Clin Pharmacol,1995, 39:597-603.
    [129]K. Adwan, and N. Abu-Hzsan. Gentamicin resistance in clinical strins of Enterbacteriance association with reduced gentamicin uptake. Folia Microbiol,1998,1U5 (18):266-356.
    [130]M. P. Mingeot-leclercq, Y. Glupczynski, and P. M. Tulkens. Aminoglycosidea:activity and resistance. Antimicrob Agents Chemother,1999,43 (4):727-737.
    [131]T. Akasaka, Y. Ondera, M. Tanaka, and S. Kenichi. Cloning, expression, and enzymatic characterization of Pseudomonas aeruginosa topoisomerase IV. Antimicrob Agents Chemother,1999,43:530-536.
    [132]J. A. Karlowsky, D. J. Hoban, and M. R. Decorby. Fluoroquinolone-re-sistant urinary isolates of Escherichia coli from outpatientsare frequently multidrug resistant:results from the NorthAmerican Urinary Tract Infection Collaborative Alliance-Quinolone Resistance Study. Antimicrob Agents Chemother,2006,50 (6):2251-2254.
    [133]D. Jung, M. Y. Lee, J. M Kim, J. C. Lee, D. T. Cho, and Y. Lee. Isolation of quinolone-resistant Escherichia coli found in major rivers in Korea. J Microbiol,2006,44 (6):680-684.
    [134]B. T. Porse, and R. Agarrett. Sites of interaction of streotogramin A and B antibiltics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J Mol Biol,1999,286:375-387.
    [135]K. Nagai, P. C. Appelbaum, T. A. Davies, T. A. Davies, L. M. Kelly, D. B. Hoellman, A. T. Andrasevic, L. Drukalska, W. Hryniewicz, M. R. Jacobs, and J. Kolman. Susceptibilities to Telithromycin and Six Other Agents and Prevalence of Macrolide Resistance Due to L4 Ribosomal Protein Mutation among 992 Pneumococci from 10 Central and Eastern European Countries. Antimicrob Agents Chemother,2002,46 (2):371-377.
    [136]M. H. Saier. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev,2000,64 (2):354-411.
    [137]B. Vester, and S. Douthwaite. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrobial Agents and Chemotherapy,2001,45 (1):1-12.
    [138]A. Canu, B. Malbruny, M. Coquemont, T. A. Davies, P. C. Appelbaum, and R.Leclercq. Diversity of Ribosomal Mutations Conferring Resistance to Macrolides, Clindamycin, Streptogramin, and Telithromycin in Streptococcus pneumoniae. Antimicrob Agents Chemother,2002,46 (1):125-131.
    [139]D. J. Stickler, A. Evans, and N. Morris. Strategies for the control of catheter encrustation. Int J Antimicrob Agents,2002,19:499-506.
    [140]C. Ramos, T. R. Licht, and C. Stermberg. Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods Enzymol,2001,337:21-42.
    [141]J. F. Poschet, J. C. Boucher, and A. M. Firoved. Conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Methods Enzymol,2001,336:65-76.
    [142]R. Wang, Q. Chen, and X. Q. Fang. Effects on the Pseudomonas aeruginosa in biofilm of flemxacin combined with urokinase or earthworm kinase. Chinese Journal of Antibiotics, 2005,29 (11):675-678.
    [143]H. Wu, Z. Song, and M. Hentzer. Synthetic furanones inhibit quorumsensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrnh Chemother,2004,53 (6):1054-1061.
    [144]S. Lee, S. Park, and J. Lee. Genesencoding the N-acyl-homo 2serine lactonedegrading enzyme widespread in many subspecies Bacillust huringiensis. Appl Envrion Microbiol, 2007,68:3919-3924.
    [145]D.A. Rowe-Magnus, A. M. Guerout, and D. Mazel. Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol Microbiol,2002,43 (6):1657-1669.
    [146]D. Cirlich, S. Nass. Biochemical genetic characterization and regulation of expression an Acc-I-like chromosome bornecep halo sporinase from Hafnia alver. Antimicrob Agents Chemother,2000,44 (6):1470-1492.
    [147]M. Beatriz, B. V. Susan, and L. M. Boudewijn. Increased production of penicillin-binding protein, increase detection of other penicillin-binding protein, and decreased coagulase activity associated with glycopeptide resistance in staphyloccus aureus. Antimicrob Agents Chemother,1997,41 (8):1788-1793.
    [148]Y.S. Amaresh, V.B. Nargud, and B.V. Patil. Integrated management of Alternaria leaf blight of sunflower Helianthus annus L. caused by Alternaria helianthi. Oileed Res,2004, 21,(1):204-205.
    [149]B. Seema, J. Neetu, and K. Padma. Antibacterial screening of different extracts of some common plant. J Ind Bot Soc,2001,180:317-318.
    [150]M. Pavlik, and Vanova, V. Laudova. Fungi toxicity of natural heterocycle glucoside vicine obtained from Vicia faba L. against selected microscopic filamentous fungi. Rostlinna Vyroba,2002,48 (12):543-547.
    [151]S.T. Wang, X. Y. Wang, and J. L. Liu. Screening of Chinese herbs for the fungi toxicity against Phytophthora infestans. J Agric Univ Hebei,2001,24 (2):90-97.
    [152]A.T.M. Almeida, F.L. Ribeiro, and H. Kloos. Polygodial, the fungi-toxic component from the Brazilian medicinal plant Polygonum punctatum. Mem Inst Oswaldo Cruz,2001, 96 (6):831-833.
    [153]A.L. Homans, and A. Fuchs. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr,1970,51:327-338.
    [154]B. A. Chaudhry, M. Y. Syad, and K. H. Janbaz. Biological activities of Polygonum barbatum. J Res Sci,2003,14 (2):169-175.
    [155]Y. Kimura, M. Kozawa, and K. Baba. New constituents of the roots of Polygonum cuspidatum. Planta Med,1983,48 (3):164-168.
    [156]C. Li, Y. Fukushi, and J. Kawabata. Antiviral and antifungal activities of some naphthoquinones isolated from the roots of Lithospermum erythrorhizon. J Pestic Sci,1998, 23 (1):54-57.
    [157]C. Demetzos, B. Stahl, and T. Anastassaki. Chemical analysis and antimicrobial activity of the resin Ladano, of its essential oil and of the isolated compounds. Planta Med,1999, 65 (1):76-78.
    [158]B. Seema, J. Neetu, and K. Padma. Antibacterial screening of different extract of some commonplants. J Ind Bot Soc,2001,180:317-318.
    [159]C. C. Celimene, J. A. Micales, and L. Ferge. Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung,1999,53 (5):491-497.
    [160]A. Farooq, and M. I. Choudhary, Atta-ur-Rahman. Detoxification of terpinolene by plant pathogenic fungus Botrytis cinerea. Z Naturforsch,2002,57:863-866.
    [161]D. Velickvic, and N. V. Randjelovic. Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L. J Serb Chem Soc,2003,68 (1):17-24.
    [162]N. Petsikos-Panayotarou, A. Schmitt, and E. Markellou. Management of cucumber powdery mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. Z Pflkrankh Pflschutz,2002,109 (5):478-490.
    [163]M. C. Duarte, G. M. Figueira, A. Sartoratto, V. L. Rehder, and C. Delarmelina. Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology,2005,97: 305-311.
    [164]T. Fukai, Y. Oku, Y. Hano, and S. Terada. Antimicrobial activities of hydrophobic 2-arylbenzofurans and an isoflavone against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Planta Medica,2004,70:685-687.
    [165]M. Heinrich, J. Barnes, S. Gibbons, and E. M. Williamson. Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, Edinbrugh,2004,245-252.
    [166]M. A. Ferhat, B. Y. Meklati, and F. Chemat. Comparison of different isolation methods of essential oil from Citrus fruits:cold pressing, hydrodistillation and microwave'dry' distillation. Flavour and Fragrance Journal,2007,22,494-504.
    [167]M. E.Lucchesi, J. Smadja, S. Bradshaw, W. Louw, and F. Chemat. Solvent free microwave extraction of Elletaria cardamomum L.:A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering,2007,79,1079-1086.
    [168]O. O. Okoh, A.P. Sadimenko, and A. J. Afolayan. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry,2010, 120,308-312.
    [169]G E P. Box. Evolutionary operation:A method for increasing industrial productivity. Applied Statistics,1957,6(2):81-101
    [170]R. C. Lacher. Back-propagation learning in expert networks. IEEE Transaction on Neural Networks,1992,1(3):62-72.
    [171]肖卫华,韩鲁佳,杨增玲.响应面法优化黄芪黄酮提取工艺的研究.中国农业大学学报,2007,12(5):52-56.
    [172]赵卫星,孙治强,高玉红.响应面法优化百部总生物碱提取工艺的研究.西北农林科技大学学报,2008,36(7):185-190.
    [173]T. Hernandez, and M. Canales. Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). Journal of Ethnopharmacology,2005,96: 551-554.
    [174]W. L. Du, S. S. Niu, Y. L. Xua, Z. R. Xu, C. L. Fan. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 2009,75:385-389.
    [175]陈丽艳.丁香和迷迭香精油抗痤疮丙酸杆菌的活性、作用机制及涂膜剂的制备.东北林业大学硕士论文,2008:15-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700