用户名: 密码: 验证码:
腹主动脉瘤小鼠模型的病理形态学比较及抗血管紧张素治疗在其发病过程中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章三种腹主动脉瘤小鼠模型的建立以及比较
     目的:建立三种小鼠腹主动脉瘤(AAA)模型,比较三种建模方法的不同特点,探讨其研究应用的可行性。
     方法:取C57BL/6以及ApoE-/-雄性小鼠共30只,采用三种不同方法分别建立三种小鼠腹主动脉瘤模型:血管紧张素Ⅱ模型[Angiotensin Ⅱ (Ang Ⅱ) Model],猪胰蛋白酶模型[Porcine Pancreatic Elastase(PPE) Model],氯化钙模型[Calcium Chloride (CaCl2) Model];并用磷酸缓冲溶液(PBS)作为相应方法的对照。多普勒超声监测小鼠腹主动脉直径变化、成瘤部位,计算并比较不同小鼠腹主动脉瘤模型的建模方法、手术时间、成瘤时间、成瘤率以及死亡率等特点;
     结果:三种方法均能建立成功的腹主动脉瘤模型。PPE模型建模方法难度较大,手术时间较长(52.6±5.1min),成瘤率高(100%),存活周期长(随访4周,存活率为95%),死亡率低(5%);CaC12模型建模方法容易,手术时间较长(40.7±4.3min),成瘤率较低(50%),存活周期长(随访4周均存活,存活率为100%),死亡率低(0%);AngⅡ模型建模方法容易,手术时间短(7.8±3.6min),成瘤率较高(70%),存活周期较短(随访4周,存活率为60%),死亡率较高(40%)。
     结论:小鼠的PPE模型,CaC12模型以及Ang Ⅱ模型为三种较为稳定的腹主动脉瘤模型,能为深入理解人腹主动脉瘤的病理机制以及评价腹主动脉瘤的药物治疗提供较为稳定的研究平台。
     第二章三种腹主动脉瘤小鼠模型的病理形态学比较以及病理机制的研究
     目的:观察不同小鼠模型的病理形态学特点,探讨不同腹主动脉瘤模型的共同病理机制。
     方法:采用HE染色、EVG染色、免疫组织化学等方法检测小鼠的腹主动脉瘤组织,与正常小鼠腹主动脉相比较,观察病组织中瘤壁弹性纤维、炎症细胞、新生血管、淋巴管生成等的表达差异。
     结果:PPE模型腹主动脉瘤病理变化表现为外膜大量炎症细胞浸润(尤其以巨噬细胞为主,伴有T淋巴细胞以及少量B淋巴细胞)以及新生血管、淋巴管形成,弹力纤维变性,部分缺失断裂,厚度不均。Ang Ⅱ模型表现为瘤壁血肿形成,外膜有炎症细胞浸润(以巨噬细胞为主,少有T淋巴细胞及B淋巴细胞)以及少量新生血管、淋巴管形成。伴有部分弹力纤维变性,缺失。CaCl2模型病变部位主要在外膜和中膜,表现为外膜部分增厚,伴少量炎症细胞浸润,仅有少量新生血管及淋巴管形成,中膜弹性纤维变性,僵直,呈烧灼状,厚薄不均,部分缺失断裂。
     结论:三种小鼠模型既存在不同的病理形态学特点,也存在共同病理形态学特征,表现为炎症细胞浸润,血管及淋巴管生成。PPE、AngⅡ模型较为真实的反映了人腹主动脉瘤的病理特点,是两种比较稳定的动物模型。
     第三章抗血管紧张素治疗在腹主动脉瘤发生发展过程中的研究
     目的:将血管紧张素受体阻滞剂应用于小鼠腹主动脉瘤模型,评价抗血管紧张素治疗在腹主动脉瘤中的应用价值。
     方法:取C57BL/6小鼠、ApoE-/-小鼠各15只,分成实验组(10只/组)和对照组(5只/组),实验组在建模前一周按telmisartan (10mg/kg)剂量给小鼠喂药;另一组为对照组,正常饮食。分别用多普勒超声监测小鼠的腹主动脉直径变化,与对照组(未用药处理的腹主动脉瘤模型小鼠)相比较,比较不同小鼠的成瘤率,瘤体进展情况等。并应用HE染色、EVG染色、免疫组织化学、qRT-PCR等方法检测腹主动脉瘤组织,比较不同小鼠的病理形态学变化。
     结果:telmisartan在10mg/kg的剂量下对小鼠无明显副作用,能够有效抑制弹力蛋白酶及血管紧张素灌注后的小鼠腹主动脉直径进行性增大,并且能够防止两种腹主动脉瘤小鼠模型的腹主动脉瘤形成。病理切片显示:telmisartan处理过的小鼠主动脉管壁血管生成明显减少,炎症细胞浸润显著减轻,弹性纤维以及管壁三层结构相对完整,无显著病理变化。
     结论:抗血管紧张素治疗能够防止小鼠腹主动脉瘤的发生并控制疾病的进展。telmisartan能够发挥有效的抗动脉瘤生成作用;10mg/kg的剂量安全,有效。
Chapter1. The establishment and comparative study of three types of rodent abdominal aortic aneurysms models
     Objective:To investigate the feasibility of the animal research application by establishment and comparison of three different types of models.
     Method:C57BL/6(20) and ApoE-/-(10) mice were used to eastablish three different abdominal aortic aneurysm (AAA) models by PPE intraluminal infusion for about5min, CaC12solution gauze adventitial infusion for15min and Ang Ⅱ minipump continuous subcutaneous infusion for28days. PBS infusion was accordingly applied for the control groups. Doppler ultrasound was applied to detect the diameter of the abdominal aortic and the location of the aneurysm. The time of operaion and aneurysm formation was recorded; the percentage of the aneurysm formation and mortality of animal models were also calculated.
     Result:Three types of AAA models were successfully established. The process of PPE model establishment was more challenged, consequently the operation time was longer (52.6±5.1min), compared to40.7±4.3min in CaC12model and7.8±3.6min in Ang Ⅱ model, but the percentage of the aneurysm formation of PPE model was100%and the survival time of PPE and CaCl2model are longer than Ang Ⅱ model, almost all alive in4weeks follow-up compared to60%alive in Ang Ⅱ model. The process of CaCl2and Ang Ⅱ model establishment was relatively easy, however, the mortality of Ang Ⅱ model was much higher than PPE and CaCl2model.
     Conclusion:PPE, CaCl2and Ang Ⅱ AAA models are stable models for further animal research. Moreover, the findings of our study support that the three types of animal models of AAAs may provide intriguing mechanistic insights into the human disease and are suitable for evaluation of medicine therapy in AAA.
     Chapter2. The comparison study of morphology and pathogenesis in three different types of abdominal aortic aneurysm models
     Objective:To observe the pathomorphological characteristics of three different models of abdominal aortic aneurysm (AAA) and investigate the common pathogenesis in the three different models of AAA.
     Methods:As compared to the aortae of normal mice, HE, EVG, Immunohistochemistry staining technique were applied to detect the Morphological and phathological changes in the tissue specimens, such as the pattern of elastin degeneration was recorded, the quantity of different inflammatory cells infiltration, angiogenesis and lymphangiogenesis were counted.
     Results:In PPE model, there was extensive destruction of the elastic lamellae and the adventitial region was occupied by a pronounced inflammatory infiltrate, predominantly containing macrophages. Neutrophils were present on the peripheral aspects of the adventitia surrounding the aorta; One fascinating aspect of angiotensin Ⅱ model is the aneurysm localization to the suprarenal segment of the aorta. The precipitating event that occurs within days of AngⅡ infusion appears to be medial macrophage accumulation in the region that is prone to AAA formation, associated with elastin degradation. Subsequently there were gross dissections of the aortas leading to prominent vascular hematomas and enhanced extracellular matrix deposition and infiltration of other leukocyte populations, primarily macrophages. The dilated region of the aorta gradually regained circumferential elastin fibers and completely re-endothelialized. Prominent neovascularization was present throughout the lumen of the remodeled tissue; In CaC12models, the abluminal incubation of calcium chloride also led to structural disruption of the medial layer and inflammatory responses. This inflammation occurred on the luminal and medial aspect of the artery. But, there is no obvious angiogenesis and lymphangiogenesis in this model.
     Conclusion:Although there were different pathomorphological changes in the three types of AAA models, the common pathological charateristics were still existed, such as transmural inflammatory cells infiltration, adventitial angiogenesis and lymphangiogenesis and so on. Since the similar pathogenesis as human, PPE and Ang Ⅱ model were considered to be kind of ideal models for animal research.
     Chapter3. The application of anti-angiotension in the development of abdominal aortic aneurysm
     Object:To elucidate the effect of angiotension on the progression of AAA and validate the therapeutic effect of anti-angiotension based treatment on AAA
     Method:The C57BL/6(15) and ApoE-/-male mice were devided into two groups:treated group and control. AAA was induced either in male ApoE-/-mice by subcutaneous infusion of1OOOng/kg/min Ang Ⅱ for28days or in mail C57BL/6mice by transient intra-aortic infusion of PPE. In the treated group, all the mice were daily treated with10mg/kg telmisartan7days before aneurym establishment; Doppler ultrasound was applied to detect the diameter of the abdominal aortic and the location of the aneurysm. The percentage of the aneurysm formation and mortality of animal models were also calculated. Morover, histopathology and gene profiling were used to evaluate therapeutic efficacy.
     Results:The telmisartan almost completely prevented PPE-induced AAA formation in C57BL/6mice and suppressed Ang Ⅱ-induced increase in systolic blood pressure, preserved medial elastin and smooth musclesm and attenuated macrophage infiltration and angiogenesis within aortic adventitia. Moreover, ARB therapy dramatically downregulated the gene expression levels of certain proteinases, chemokines and their receptors, Cytokines, and adhesion molecules at the aneurismal lesions. There was no obvious side effect in the dose of1Omg/kg.
     Conclusion:The application of telmisartan can play a significant anti-angiotension effect, which can successfully prevent the progression and formation of AAA; and the anti-angiotension therapy is highly efficacious and safe in suppressing experimental AAA.
引文
[1]Trollope A, Moxon JV, Moran CS, et al. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc Pathol.2011; 20(2):114-123.
    [2]Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2004; 24(3):429-434.
    [3]Dobrin PB. Animal models of aneurysms. Ann Vasc Surg.1999;13(6):641-648.
    [4]张明芳,熊吉信,陈锋.腹主动脉瘤发病机制及其动物模型的研究进展.中国血管外科杂志.2010;2(3):189-191.
    [5]Paraskevas KI, Mikhailidis DP, Perrea D. Experimental models of abdominal aortic aneurysms:an overview. Curr Pharm Des.2008; 14(4):325-337
    [6]Tsui JC. Experimental models of abdominal aortic aneurysms. Open Cardiovasc Med J.2010;4:221-230.
    [7]Anidjar S, Salzmann JL, Gentric D, et al. Elastase-induced experimental aneurysms in rats. Circulation.1990; 82(3):973-981.
    [8]Gertz SD, Kurgan A, Eisenberg D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo. J Clin Invest. 1988; 81(3):649-656.
    [9]Chiou AC, Chiu B, Pearce WH. Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res.2001; 99(2):371-376.
    [10]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000; 105(11):1605-1612.
    [11]Manning MW, Cassi LA, Huang J, et al. Abdominal aortic aneurysms:fresh insights from a novel animal model of the disease. Vasc Med.2002; 7(1):45-54.
    [12]Deng GG, Martin-McNulty B, Sukovich DA, et al. Urokinase-type plasminogen activator plays a critical role in angiotensin Ⅱinduced abdominal aortic aneurysm. Circ Res.2003; 92(5):510-517.
    [13]Halpern VJ, Nackman GB, Gandhi RH, et al. The elastase infusion model of experimental aortic aneurysms:synchrony of induction of endogenous proteinases with matrix destruction and inflammatory cell response. J Vasc Surg. 1994; 20(1):51-60.
    [14]Freestone T, Turner RJ, Higman DJ, Lever MJ, Powell JT. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol.1997; 17(1):10-17.
    [15]Aziz F, Kuivaniemi H. Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann Vasc Surg.2007; 21(3):392-401.
    [16]Johnson C, Sung HJ, Lessner SM, et al. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues:potential role in capillary branching. Circ Res.2004; 94(2):262-268.
    [17]Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998; 93(3):411-422.
    [18]Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA.2000; 97(8):4052-4057.
    [19]Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med.2005;11(12):1330-1338.
    [20]Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest.2002; 110(5):625-632.
    [21]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments Angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol.2001; 134(4):865-870.
    [22]Ayabe N, Babaev VR, Tang Y, et al. Transiently heightened angiotensin Ⅱ has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis.2006; 184(2):312-321.
    [23]Bruemme D, Collins AR, Noh G., et al. Angiotensin Ⅱ accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest.2003; 112(9):1318-1331.
    [1]Tsuruda T, Kato J, Hatakeyama K, Kojima K, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res.2008; 102(11):1368-1377.
    [2]Goodall S, Crowther M, Hemingway DM, et al. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation.2001; 104(3):304-309.
    [3]Abisi S, Burnand KG, Waltham M, et al. Cysteine protease activity in the wall of abdominal aortic aneurysms. J Vasc Surg.2007; 46(6):1260-1266.
    [4]Fang J, Shing Y, Wiederschain D, Yan L, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A.2000; 97(8):3884-3889.
    [5]NEWMAN KM, JEAN-CLAUDE J, LI H et al. Cellular localisation of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vase Surg.1994; 20(5):814-820.
    [6]Gong Y, Hart E, Shchurin A, et al. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest.2008; 118(9):3012-3024.
    [7]Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest. 1995;96(1):318-326.
    [8]Fukuo K, Hata S, SuharaT, et al. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension.1996; 27(3 pt 2):823-826.
    [9]Sho E, Sho M, Nanjo H, Kawamura K, et al. Hemodynamic regulation of CD34+ cell localization and differentiation in experimental aneurysms. Arterioscler Thromb Vasc Biol.2004; 24(10):1916-1921.
    [10]Borromeo JR, Koshy N, Park WM, et al. Regional distribution in the mouse of proteins homologous to artery-specific antigenic proteins (ASAPs). J Surg Res. 1999; 85(2):217-224.
    [11]Newman KM, Jean-Clande J, Li H, et al. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm Wall. J Vasc Surg. 1994; 20(5):814-820.
    [12]Nishimura K, Ikebuchi M, Kanaoka Y, et al. Relationships between matrix metalloproteinases and tissue inhibitor of metalloproteinases in the wall of abdominal aortic aneurysms. Int Angiol.2003; 22(3):229-238.
    [13]Oya K, Sakamoto N, Ohashi T, et al. Combined stimulation with cyclic stretching and hypoxia increases production of matrix metalloproteinase-9 and cytokines by macrophages. Biochem Biophys Res Commun.2011; 412(4): 678-682.
    [14]何昊,舒畅.OPG在腹主动脉瘤中的表达及OPG与主动脉平滑肌细胞凋亡关系研究:[博士论文].中南大学.2009.
    [15]Kobayashi M, Matsubara J, Matsushita M, et al. Expression of angiogenesis and angiogenic factors in human aortic vascular disease. J Surg Res.2002; 106(2): 239-245.
    [16]石建霞,顾健.炎症网络调节与血管新生对血栓形成的影响.2005;11(5):225-227.
    [17]Facemire CS, Nixon AB, Griffiths R, et al. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension.2009; 54(3):652-658.
    [18]Korsisaari N, Kasman IM, Forrest WF, et al. Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc+/min mice. Proc Natl Acad Sci U S A.2007; 104(25):10625-10630.
    [19]Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2:structure, function, intracellular signalling and therapeutic inhibition. Cell Signal.2007; 19(10):2003-2012.
    [20]Tilson MD, Fu C, Xia SX, et al. Expression of molecular messages for angiogenesis by fibroblasts from aneurysmal abdominal aorta versus dermal fibroblasts. Int J Surg Investig.2000;1(5):453-457.
    [21]McColl BK, Stacker SA, Achen MG. Molecular regulation of the VEGF family-inducers of angiogenesis and lymphangiogenesis. APMIS.2004; 112(7-8): 463-480.
    [22]Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol.2007; 2:251-275.
    [23]Skirgaudas M, Awad IA, Kim J, et al. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery.1996; 39(3):537-545; discussion 45-47.
    [24]Thompson MM, Jones L, Nasim A, et al. Angiogenesis in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg.1996; 11(4):464-469.
    [1]Geisterfer AA, Peach MJ, Owens GK. Angiotensin Ⅱ induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res.1988; 62(4):749-756.
    [2]Berk BC, Vekshtein V, Gordon HM, et al. Angiotensin Ⅱ-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension.1989; 13(4):305-314.
    [3]Kato H, Suzuki H, Tajima S, et al.Angiotensin Ⅱ stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens.1991; 9(1):17-22.
    [4]Natarajan R, Bai W, Rangarajan V, et al. Platelet-derived growth factor BB mediated regulation of 12-lipoxygenase in porcine aortic smooth muscle cells. J Cell Physiol.1996; 169(2):391-400.
    [5]Powell JS, Clozel JP, Muller RK, et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science.1989; 245(4914):186-188.
    [6]Daemen MJ, Lombardi DM, Bosman FT, et al. Angiotensin Ⅱ induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res.1991; 68(2):450-456.
    [7]Gerrity RG, Naito HK, Richardson M, et al. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol.1979; 95(3):775-792.
    [8]Bunning P, Budek W, Escher R, et al. Characteristics of angiotensin converting enzyme and its role in the metabolism of angiotensin Ⅰ by endothelium. J Cardiovasc Pharmacol.1986; 8 Suppl 10:S52-57.
    [9]Gavras H, Brunner HR, Laragh JH, et al. An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients.N Engl J Med.1974; 291(16):817-821.
    [10]Hahn AW, Jonas U, Buhler FR, et al. Activation of human peripheral monocytes by angiotensin II. FEBS Lett.1994; 347(2-3):178-180.
    [11]Kim JA, Berliner JA, Nadler JL.Angiotensin Ⅱ increases monocyte binding to endothelial cells. Biochem Biophys Res Commun.1996; 226(3): 862-868.
    [12]Samani NJ, Thompson JR, O'Toole L, et al.1996. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction.Circulation.1996; 94(4):708-712.
    [13]Aberg G, Ferrer P. Effects of captopril on atherosclerosis in cynomolgus monkeys.J Cardiovasc Pharmacol.1990; 15 Suppl 5:S65-72.
    [14]Charpiot P, Rolland PH, Friggi A, et al. ACE inhibition with perindopril and atherogenesis-induced structural and functional changes in minipig arteries. Arterioscler Thromb.1993; 13(8):1125-1138.
    [15]Chobanian AV, Haudenschild CC, Nickerson C, et al. Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension.1990; 15(3):327-331.
    [16]Campbell JH, Fennessy P, Campbell GR. Effect of perindopril on the development of atherosclerosis in the cholesterol-fed rabbit. Clin Exp Pharmacol Physiol Suppl.1992; 19:13-17.
    [17]Schuh JR, Blehm DJ, Frierdich GE, et al. Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits.J Clin Invest.1993; 91(4):1453-1458.
    [18]Finta KM, Fischer MJ, Lee L, et al. Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis.1993; 100(2):149-156.
    [19]Hoshida S, Nishida M, Yamashita N, et al. Vascular angiotensin-converting enzyme activity in cholesterol-fed rabbits:effects of enalapril. Atherosclerosis.1997; 130(1-2):53-59.
    [20]Kowala MC, Valentine M, Recce R, et al. Enhanced reduction of atherosclerosis in hamsters treated with pravastatin and captopril:ACE in atheromas provides cellular targets for captopril. J Cardiovasc Pharmacol. 1998; 32(1):29-38.
    [21]Kowala MC, Recce R, Beyer S, et al. Regression of early atherosclerosis in hyperlipidemic hamsters induced by fosinopril and captopril. J Cardiovasc Pharmacol.1995; 25(2):179-186.
    [22]Hayek T, Attias J, Smith J, et al. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol.1998; 31(4):540-544.
    [23]Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators.N Engl J Med.1992; 327(10):669-677.
    [24]Iwai N, Inagami T, Ohmichi N, et al. Renin is expressed in rat macrophage/ monocyte cells. Hypertension.1996; 27(3 Pt 1):399-403.
    [25]Diet F, Pratt RE, Berry GJ, et al. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation.1996 Dec 1;94(11):2756-2767.
    [26]Potter DD, Sobey CG, Tompkins PK, et al. Evidence that macrophages in atherosclerotic lesions contain angiotensin Ⅱ. Circulation.1998; 98(8):800-807.
    [27]Chobanian AV, Alexander RW. Exacerbation of atherosclerosis by hypertension. Potential mechanisms and clinical implications. Arch Intern Med.1996; 156(17): 1952-1956.
    [28]Yanagitani Y, Rakugi H, Okamura A, et al. Angiotensin Ⅱ type 1 receptor-mediated peroxide production in human macrophages. Hypertension.1999; 33(1 Pt 2):335-339.
    [29]Keidar S. Angiotensin, LDL peroxidation and atherosclerosis. Life Sci.1998; 63(1):1-11.
    [30]Daugherty A, Roselaar SE. Lipoprotein oxidation as a mediator of atherogenesis: insights from pharmacological studies. Cardiovasc Res.1995; 29(3):297-311.
    [31]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000; 105(11):1605-1612.
    [32]孙璐,韦立新,石怀银,等.冠状动脉粥样硬化斑块内血管新生与斑块稳定的关系.中华病理学杂志,2003;32(5):427-431.
    [33]Kajimoto K, Miyauchi K, Kasai T, et al. Short-term 20-mg atorvastatin therapy reduces key inflammatory factors including c-Jun N-terminal kinase and dendritic cells and matrix metalloproteinase expression in human abdominal aortic aneurysmal wall. Atherosclerosis.2009; 206(2):505-511.
    [34]Tsuruda T, Kato J, Hatakeyama K, Kojima K, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res.2008; 102(11): 1368-1377.
    [35]Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2:structure, function, intracellular signalling and therapeutic inhibition. Cell Signal.2007; 19(10):2003-2012.
    [36]Bai Y, Ma JX, Guo J, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol.2009; 219(4):446-454.
    [37]McColI BK, Stacker SA, Achen MG. Molecular regulation of the VEGF family--inducers of angiogenesis and lymphangiogenesis. APMIS.2004; 112(7-8): 463-480.
    [38]Bendeck MP. Macrophage matrix metalloproteinase-9 regulates angiogenesis in ischemic muscle. Circ Res.2004; 94(2):138-139.
    [39]Hamano K, Li TS, Takahashi M, et al. Enhanced tumor necrosis factor-alpha expression in small sized abdominal aortic aneurysms. World J Surg 2003; 27:476-480.
    [40]Wahl SM, Wen J, Moutsopoulos N. TGF-beta:a mobile purveyor of immune privilege. Immunol Rev 2006; 213:213-227.
    [41]Fukuda N, Hu WY, Kubo A, et al. Angiotensin Ⅱ upregulates transforming growth factor-beta type Ⅰ receptor on rat vascular smooth muscle cells. Am J Hypertens 2000; 13:191-198.
    [42]Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006; 312:117-121.
    [43]Kaschina E, Schrader F, Sommerfeld M, et al. Telmisartan prevents aneurysm progression in the rat by inhibiting proteolysis, apoptosis and inflammation. J Hypertens.2008; 26(12):2361-2373.
    [44]Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor gamma activity. Circulation 2004; 109:2054-2057.
    [45]Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis:regulators of gene expression in vascular cells. Circ Res 2004; 94:1168-1178
    [46]Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARa but not by PPARg activators. Nature 1998; 393:790-793.
    [1]Forsdahl SH, Solberg S, Singh K, et al. Abdominal aortic aneurysms, or a relatively largediameter of non-aneurysmal aortas, increase total and cardiovascular mortality:the Tromso study. Int J Epidemiol.2010; 39(1):225-232.
    [2]Anderson RN. Deaths:leading causes for 2000. Natl Vital Stat Rep.2002; 50(16): 1-85.
    [3]Solberg S, Forsdahl SH, Singh K, et al. Diameter of the infrarenal aorta as a risk factor for abdominal aortic aneurysm:the Tromso Study,1994-2001. Eur J Vase Endovasc Surg.2010; 39(3):280-284.
    [4]Pleumeekers HJ, Hoes AW, van der Does E, et al. Aneurysms of the abdominal aorta in older adults. The Rotterdam Study. Am J Epidemiol.1995; 142(12):1291-1299.
    [5]Bengtsson H, Sonesson B, Bergqvist D. Incidence and prevalence of abdominal aortic aneurysms, estimated by necropsy studies and population screening by ultrasound. Ann NY Acad Sci.1996; 800:1-24.
    [6]Johnston KW, Rutherford RB, Tilson MD, et al. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North Am Chapter, International Society for Cardiovascular Surgery. J Vase Surg.1991; 13(3):452-458.
    [7]Kyriakides C, Byrne J, Green S, et al. Screening of abdominal aortic aneurysm:a pragmatic approach. Ann R Coll Surg Engl.2000; 82(1):59-63.
    [8]Allison MA, Kwan K, DiTomasso D, et al. The epidemiology of abdominal aortic diameter. J Vasc Surg.2008; 48(1):121-127.
    [9]Best VA, Price JF, Fowkes FG. Persistent increase in the incidence of abdominal aortic aneurysm in Scotland,1981-2000. Br J Surg.2003; 90(12):1510-1515.
    [10]Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet.2005; 365(9470):1577-1589.
    [11]Powell JT, Norman PE. Abdominal aortic aneurysm events in postmenopausal women. Br Med J.2008:337.
    [12]Gillum RF. Epidemiology of aortic aneurysm in the United States. J Clin Epidemiol.1995; 48(11):1289-1298.
    [13]Thompson MM. Controlling the expansion of abdominal aortic aneurysms. Br J Surg.2003; 90(8):897-898.
    [14]Harthun NL. Current issues in the treatment of women with abdominal aortic aneurysm. Gender Medicine.2008; 5(1):36-43.
    [15]Golledge J, Tsao PS, Dalman RL, et al. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation.2008; 118(23):2382-2392.
    [16]Timaran CH, Veith FJ, Rosero EB, et al. Endovascular aortic aneurysm repair in patients with the highest risk and in-hospital mortality in the United States. Arch Surg.2007; 142(6):520-524.
    [17]Vardulaki KA, Walker NM, Day NE, et al. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br J Surg. 2000; 87(2):195-200.
    [18]Clancy P, Oliver L, Jayalath R, et al. Assessment of a serum assay for quantification of abdominal aortic calcification. Arterioscler Thromb Vase Biol. 2006; 26(11):2574-2576.
    [19]Freiberg MS, Arnold AM, Newman AB, et al. Abdominal aortic aneurysms, increasing infrarenal aortic diameter, and risk of total mortality and incident cardiovascular disease events:10-year follow-up data from the Cardiovascular Health Study. Circulation.2008; 117(8):1010-1017.
    [20]Dobrin PB. Animal models of aneurysms. Ann Vase Surg.1999; 13(6):641-648.
    [21]Carrell TW, Smith A, Burnand KG. Experimental techniques and models in the study of the development and treatment of abdominal aortic aneurysm. Br J Surg. 1999; 86(3):305-312.
    [22]曹海勇,刘志成.动脉瘤动物模型的研究进展.中国医学物理学杂志.2005; 22(2):466-468.
    [23]Raymond J, Desfaits AC, Roy D. Fibrinogen and vascular smooth muscle cell grafts promote healing of experimental aneurysms treated by embolization. Stroke.1999; 30(8):1657-1664.
    [24]Conn MP. Sourcebook of models for biomedical research. Totowa, New Jersey 07512:Humana Press,2008.
    [25]Trollope A, Moxon JV, Moran CS, et al. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc Pathol.2011; 20(2):114-123.
    [26]Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2004; 24(3):429-434.
    [27]Brophy CM, Tilson JE, Braverman IM, et al. Age of onset, pattern of distribution, and histology of aneurysm development in a genetically predisposed mouse model. J Vasc Surg.1988; 8(1):45-48.
    [28]Reilly JM, Savage EB, Brophy CM, et al. Hydrocortisone rapidly induces aortic rupture in a genetically susceptible mouse. Arch Surg.1990; 125(6):707-709.
    [29]Maki JM, Rasanen J, Tikkanen H, et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation.2002; 106(19):2503-2509.
    [30]Daugherty A. Mouse models of atherosclerosis. Am J Med Sci 2002; 323(1):3-10.
    [31]Silence J, Lupu F, Collen D, et al. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol.2001; 21(9):1440-1445.
    [32]Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res.2002; 90(8):897-903.
    [33]Lemaitre V, Soloway PD, D'Armiento J. Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation.2003; 107(2):333-338.
    [34]Pyo R, Lee JK, Shipley M, et al. Targeted gene disruption of matrix metalloproteinase-9(gelatinaseB) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest.2000; 105(11):1641-1649.
    [35]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments Angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol.2001; 134(4):865-870.
    [36]Tangirala RK, Rubin EM, Palinski W. Quantitation of atherosclerosis in murine models:correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res.1995; 36(11):2320-2328.
    [37]Yoshimura K, Aoki H, Ikeda Y, et al. Development of pharmacological therapy for abdominal aortic aneurysms based on animal studies. In:Sakalihasan N, Kuivaniemi H, Michel JB, editors. Aortic aneurysms-new insights into an old problem. Liege, Belgium:Les Editions de l'Universite de Liege.2008.
    [38]Inoue N, Muramatsu M, Jin D, et al. Involvement of vascular angiotensin Ⅱ-forming enzymes in the progression of aortic abdominal aneurysms in angiotensin Ⅱinfused ApoE-deficient mice. J Atheroscler Thromb.2009; 16(3):164-171.
    [39]Cassis LA, Gupte M, Thayer S, et al. Angiotensin Ⅱ infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol.2009; 296(5):H1660-1665.
    [40]Qin Z. Newly developed angiotensin Ⅱ-infused experimental models in vascular biology. Regul Pept 2008; 150(1-3):1-6.
    [40]Gitlin JM, Trivedi DB, Langenbach R, et al. Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res.2007; 73(1):227-236.
    [41]Shimizu K, Shichiri M, Libby P, et al. Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allo-grafted aortas. J Clin Invest.2004; 114(2):300-308.
    [42]Matsumura JS, Brewster DC, Makaroun MS, et al. A multicenter controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysm. J Vasc Surg.2003; 37(2):262-271.
    [43]Peterson BG, Matsumura JS, Brewster DC, et al. Excluder Bifurcated Endoprosthesis Investigators. Five-year report of a multicenter controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysms. J Vasc Surg.2007; 45(5):885-890.
    [44]Cao P, Verzini F, Parlani G, et al. Clinical effect of abdominal aortic aneurysm endografting:7-year concurrent comparison with open repair. J Vasc Surg.2004; 40(5):860-866.
    [45]Veith FJ, Baum RA, Ohki T, et al. Nature and significance of endoleaks and endotension:summary of opinions expressed at an international conference. J Vasc Surg 2002; 35(5):1029-1035.
    [46]Chuter TA, Faruqi RM, Sawhney R, et al. Endoleak after endovascular repair of abdominal aortic aneurysm. J Vasc Surg 2001; 34(1):98-105.
    [47]van Marrewijk C, Buth J, Harris PL, et al. Significance of endoleaks after endovascular repair of abdominal aortic aneurysms:The EUROSTAR experience. J Vasc Surg.2002; 35(3):461-473.
    [48]Alric P, Hinchliffe RJ, Wenham PW, et al. Lessons learned from the long-term follow-up of a first-generation aortic stent graft. J Vasc Surg.2003; 37(2): 367-373.
    [49]Matsumura JS, Ryu RK, Ouriel K. Identification and implications of transcraft microleaks after endovascular repair of aortic aneurysms. J Vasc Surg.2001; 34(2):190-197.
    [50]Politz JK, Newman VS, Stewart MT. Late abdominal aortic aneurysm rupture after AneuRx repair:a report of three cases. J Vasc Surg.2000; 31(3):599-606.
    [51]Zarins CK, White RA, Fogarty TJ. Aneurysm rupture after endovascular repair using the AneuRx stent graft. J Vasc Surg.2000; 31(5):960-970.
    [52]Hinchliffe RJ, Singh-Ranger R, Davidson IR, et al. Rupture of an abdominal aortic aneurysm secondary to type Ⅱ endoleak. Eur J Vasc Endovasc Surg.2001; 22(6):563-565.
    [53]Liewald F, Ermis C, Gorich J, et al. Influence of treatment of type Ⅱ leaks on the aneurysm surface area. Eur J Vasc Endovasc Surg.2001; 21(4):339-343.
    [54]Pavcnik D, Andrews RT, Yin Q, et al. A canine model for studying endoleak after endovascular aneurysm repair. J Vasc Interv Radiol.2003; 14(10):1303-1310.
    [55]Rhee JY, Trocciola SM, Dayal R, et al. Treatment of type Ⅱ endoleaks with a novel polyurethane thrombogenic foam:induction of endoleak thrombosis and elimination of intra-aneurysmal pressure in the canine model. J Vasc Surg.2005; 42(2):321-328.
    [56]Mousa A, Dayal R, Bernheim J, et al. A canine model to study the significance and hemodynamics of type Ⅱ endoleaks. J Surg Res.2005; 123(2):275-283.
    [57]Lerouge S, Raymond J, Salazkin I, et al. Endovascular aortic aneurysm repair with stent-grafts:experimental models can reproduce endoleaks. J Vasc Interv Radiol.2004; 15(9):971-979.
    [58]Nango M, Nakamura K, Sakai Y, et al. An animal model for type Ⅱ endoleaks with the use of a tsuzumi drum-shaped stent-graft. J Vasc Interv Radiol.2006; 17(7):1147-1154.
    [59]Diaz S, Uzieblo MR, Desai KM, et al. Type Ⅱ endoleak in porcine model of abdominal aortic aneurysm. J Vasc Surg.2004; 40(2):339-344.
    [60]Laborde JC, Parodi JC, Clem MF, et al. Intraluminal bypass of abdominal aortic aneurysm:feasibility study. Radiology.1992; 184(1):185-190.
    [61]Criado E, Marston WA, Woosley JT, et al. An aortic aneurysm model for the evaluation of endovascular exclusion prostheses. J Vasc Surg.1995; 22(3):306-314.
    [62]Eton D, Warner D, Owens C, et al. Results of endoluminal grafting in an experimental aortic aneurysm model. J Vasc Surg 1996; 23(5):819-829.
    [63]Becquemin JP, Kelley L, Zubilewicz T, et al. Outcomes of secondary interventions after abdominal aortic aneurysm endovascular repair. J Vasc Surg 2004; 39(2):298-305.
    [64]Mousa A, Dayal R, Bernheim J, et al. A canine model to study the significance and hemodynamics of type Ⅱ endoleaks. J Surg Res.2005; 123(2):275-283.
    [65]Diaz S, Uzieblo MR, Desai KM, et al. Type Ⅱ endoleak in porcine model of abdominal aortic aneurysm. J Vasc Surg.2004; 40(2):339-344.
    [66]Maynar M, Qian Z, Hernandez J, et al. An animal model of abdominal aortic aneurysm created with peritoneal patch:technique and initial results. Cardiovasc Intervent Radiol.2003; 26(2):168-176.
    [67]Hynecek RL, DeRubertis BG, Trocciola SM, et al. The creation of an infrarenal aneurysm within the native abdominal aorta of swine. Surgery.2007; 142(2):143-149.
    [68]Brewster DC, Jones JE, Chung TK, et al. Long-term outcomes after endovascular abdominal aortic aneurysm repair:the first decade. Ann Surg.2006; 244(3):426-438.
    [69]Schlosser FJ, Gusberg RJ, Dardik A, et al. Aneurysm rupture after EVAR:can the ultimate failure be predicted? Eur J Vasc Endovasc Surg.2009; 37(1):15-22.
    [70]Molacek J, Treska V, Kobr J, et al. Optimization of the model of abdominal aortic aneurysm-experiment in an animal model. J Vasc Res.2009; 46(1):1-5.
    [71]Anidjar S, Salzmann JL, Gentric D, et al. Elastase-induced experimental aneurysms in rats. Circulation.1990; 82(3):973-981.
    [72]Curci JA, Thompson RW. Variable induction of experimental abdominal aortic aneurysms with different preparations of porcine pancreatic elastase. J Vasc Surg. 1999; 29(2):385.
    [73]Lee JK, Borhani M, Ennis TL, et al. Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol.2001; 21(9):1393-1401.
    [74]Azuma J, Asagami T, Dalman R, et al. Creation of murine experimental abdominal aortic aneurysms with elastase. J Vis Exp.2009; 23(29):1280.
    [75]Yamaguchi T, Yokokawa M, Suzuki M, et al. Morphologic changes in the aorta during elastase infusion in the rat aneurysm model. J Surg Res.2001; 95(2):161-166.
    [76]Halpern VJ, Nackman GB, Gandhi RH, et al. The elastase infusion model of experimental aortic aneurysms:synchrony of induction of endogenous proteinases with matrix destruction and inflammatory cell response. J Vasc Surg. 1994; 20(1):51-60.
    [77]Aziz F, Kuivaniemi H. Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann Vasc Surg.2007; 21(3):392-401.
    [78]Goodall S, Crowther M, Hemingway DM, et al. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation.2001; 104(3):304-309.
    [79]Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest.1995; 96(1):318-326.
    [80]Silence J, Collen D, Lijen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res.2002; 90(8):897-903.
    [81]汪浩,景在平.腹主动脉瘤发病机制的实验研究.中国现代普通外科进展,2002,5(4):211-213.
    [82]Sigala F, Papalambros E, Kotsinas A, et al. Relationship between iNOS expression and aortic cell proliferation and apoptosis in an elastase-induced model of aorta aneurysm and the effect of 1400 W administration. Surgery.2005; 137(4):447-456.
    [83]ShoE, Sho M, Nanjo H, et al. Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms. J Vasc Surg.2005; 41(5):844-852.
    [84]Marinov GR, Marios Y, Paris E, et al. Can the infusion of elastase in the abdominal aorta of Yucatan miniature consistently produce experi-mental aneurysms? J Invest Surg.1997; 10(3):129-150.
    [85]张明芳,熊吉信,陈锋.腹主动脉瘤发病机制及其动物模型的研究进展.中国血管外科杂志.2010;2(3):189-191.
    [86]Gertz SD, Kurgan A, Eisenberg D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo. J Clin Invest.1988; 81(3):649-656.
    [87]Freestone T, Turner RJ, Higman DJ, et al. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol.1997; 17(1):10-17.
    [88]Chiou AC, Chiu B, Pearce WH. Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res.2001; 99(2):371-376.
    [89]Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest.2002,110(5):625-632.
    [90]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000; 105(11):1605-1612.
    [91]. Manning MW, Cassi LA, Huang J, et al. Abdominal aortic aneurysms:fresh insights from a novel animal model of the disease. Vasc Med.2002; 7(1):45-54.
    [92]Bruemme D, Collins AR, Noh G, et al. Angiotensin Ⅱaccelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest.2003; 112(9):1318-1331.
    [93]Deng GG, Martin-McNulty B, Sukovich DA, et al. Urokinase-type plasminogen activator plays a critical role in angiotensin Ⅱinduced abdominal aortic aneurysm. Circ Res.2003; 92(5):510-517.
    [94]Ishibashi M, Egashira K, Zhao Q, et al. Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin Ⅱinduced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler. Thromb Vasc Biol.2004; 24(11):e174-el78.
    [95]Yoshimura K, Aoki H, Ikeda Y, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med.2005; 11(12):1330-1338.
    [96]Ayabe N, Babaev VR, Tang Y, et al. Transiently heightened angiotensin Ⅱ has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis.2006; 184(2):312-321.
    [97]Ahluwalia N, Lin AY, Tager AM, et al. Inhibited aortic aneurysm formation in BLT1-deficient mice. J Immunol.2007; 179(1):691-697.
    [98]Lu H, Rateri DL, Cassis LA, et al. The role of the renin-angiotensin system in aortic aneurismal diseases. Curr Hypertens Rep.2008; 10(2):99-106.
    [99]Tieu BC, Lee C, Sun H, et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest.2009; 119(12):3637-3651
    [100]Wang Y, Ait-Oufella H, Herbin O, et al. TGF-P activity protects against inflammatory aortic aneurysm progression and complications in angiotensin Ⅱ-infused mice. J Clin Invest.2010; 120(2):422-432.
    [101]Wang JA, Chen WA, Wang Y, et al. Statins exert differential effects on angiotensin Ⅱ-induced atherosclerosis, but no benefit for abdominal aortic aneurysms. Atherosclerosis.2011;217(1):90-96.
    [102]Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments Angiotensin Ⅱ-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol.2001; 134(4):865-870.
    [103]Kuhlencordt PJ, Gyurko R, Han F, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation.2001; 104(4):448-454.
    [104]Ravisankar P, Cassis LA, Szilvassy SJ, et al. Absence of CCR2 receptors in bone marrow-derived cells decreases angiotensin Ⅱ induced atherosclerosis and abdominal aortic aneurysms. Proc ArteriosclerThromb Vasc Biol. 2002;3:35.
    [105]Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang PL. Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation.2001; 104(20):2391-2394.
    [106]Saraff K, Babamusta F, Cassis LA, et al. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin Ⅱ-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol.2003; 23(9):1621-1626.
    [107]Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin Ⅱ-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2003; 23(3):483-488.
    [108]Saraff K, Babamusta F, Cassis LA, et al. Aortic dissection precedes formation of aneurysms and atherosclerosis in angⅡ-Infused apoE deficient mice. Arterioscler Thromb Vasc Biol.2003; 23(9):1621-1626.
    [109]Tham DM, Martin McNulty B, et al. Angiotensin Ⅱ is associated with activation of NF-kappa B-mediated genes and downregulation of PPARs. Physiol Genomics.2002; 11(1):21-30.
    [110]Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2006; 26(5):987-994.
    [111]Humphery JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences and need for a new class of computational models. Ann Rev Biomed Eng.2008; 10:221-46.
    [112]Scholz M, Mucke T, von During M, et al. Microsurgically induced aneurysm models in rats:Part Ⅰ. Techniques and histological examination. Minim Invasive Neurosurg 2008; 51(2):76-82.
    [113]Rush C, Nyara M, Moxon JV, et al. Whole genome expression analysis within the angiotensin Ⅱ? apolipoprotein E deficient mouse model of abdominal aortic aneurysm. BMC Genomics.2009; 10:298.
    [114]Golledge J, Norman PE. Pathophysiology of abdominal aortic aneurysm relevant to improvements in patients'management. Curr Opin Cardiol.2009; 24(6):532-8.
    [115]Zatina MA, Zarins CK, Gewertz BL, et al. Role of medial lamellar architecture in the pathogenesis of aortic aneurysms. J Vasc Surg.1984; 1(3):442-448.
    [116]Chun HJ, Ali ZA, Kojima Y, et al. Apelin signaling antagonizes Ang Ⅱ effects in mouse models of atherosclerosis. J Clin Invest.2008; 118(10):3343-3354.
    [117]Fujiwara Y, Shiraya S, Miyake T, et al. Inhibition of experimental abdominal aortic aneurysm in a rat model by the angiotensin receptor blocker valsartan. Int J Mol Med.2008; 22(6):703-708.
    [118]Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin Ⅱ-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice:possible role of ERK. Arterioscler Thromb Vasc Biol.2009; 29(11):1764-1771.
    [1]Freiberg MS, Arnold AM, Newman AB, et al. Abdominal aortic aneurysms, increasing infrarenal aortic diameter, and risk of total mortality and incident cardiovascular disease events:10-year follow-up data from the Cardiovascular Health Study. Circulation.2008; 117(8):1010-1017.
    [2]Pleumeekers HJ, Hoes AW, van der Does E, et al. Aneurysms of the abdominal aorta in older adults. The Rotterdam Study. Am J Epidemiol.1995; 142(12): 1291-1299.
    [3]Kyriakides C, Byrne J, Green S, et al. Screening of abdominal aortic aneurysm:a pragmatic approach. Ann R Coll Surg Engl.2000; 82(1):59-63.
    [4]Allison MA, Kwan K, DiTomasso D, et al. The epidemiology of abdominal aortic diameter. J Vasc Surg.2008; 48(1):121-127.
    [5]Best VA, Price JF, Fowkes FG. Persistent increase in the incidence of abdominal aortic aneurysm in Scotland,1981-2000. Br J Surg.2003; 90(12):1510-1515.
    [6]Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet.2005; 365(9470):1577-1589.
    [7]Golledge J, Muller J, Daugherty A, et al. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006; 26(12):2605-2613.
    [8]Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol.2006; 26(5): 987-994.
    [9]Wassef M, Upchurch GR, Jr., Kuivaniemi H, et al. Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg.2007; 45(1):192-198.
    [10]Breen EC. VEGF in biological control. J Cell Biochem.2007; 102(6):1358-1367.
    [11]McColl BK, Stacker SA, Achen MG. Molecular regulation of the VEGF family--inducers of angiogenesis and lymphangiogenesis. APMIS.2004; 112(7-8): 463-480.
    [12]Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol.2007; 2:251-275.
    [13]雷莉,郭静萱.血管内皮细胞生长因子与治疗性血管新生.中国心血管杂志.2001;6(5):307-310.
    [14]郭敬,王烈.血管内皮生长因子与治疗性血管生成研究进展.国际外科学杂志.2010;35(10):675-678.
    [15]Bai Y, Ma JX, Guo J, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol.2009; 219(4):446-454.
    [16]Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell.2003; 112(5):645-657.
    [17]Lee S, Chen TT, Barber CL, Jordan MC, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell.2007; 130(4):691-703.
    [18]Scott A, Powner MB, Gandhi P, et al. Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One.2010;5(7):e11863.
    [19]Stockmann C, Kirmse S, Helfrich I, et al. A Wound Size-Dependent Effect of Myeloid Cell-Derived Vascular Endothelial Growth Factor on Wound Healing. J Invest Dermatol.2011; 131(3):797-801
    [20]Olfert IM, Howlett RA, Tang K, et al. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol.2009; 587(Pt 8):1755-1767.
    [21]Stockmann C, Doedens A, Weidemann A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature.2008; 456(7223):814-818.
    [22]Stockmann C, Kerdiles Y, Nomaksteinsky M, et al. Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis. Proc Natl Acad Sci U S A.2010; 107(9):4329-4334.
    [23]Zelzer E, Mamluk R, Ferrara N, et al. VEGFA is necessary for chondrocyte survival during bone development. Development.2004; 131(9):2161-2171.
    [24]Rateri DL, Moorleghen JJ, Balakrishnan A, et al. Endothelial Cell-Specific Deficiency of Ang Ⅱ Type 1a Receptors Attenuates Ang Ⅱ-Induced Ascending Aortic Aneurysms in LDL Receptor-/-Mice. Circ Res.2011; 108(5):574-581
    [25]Choke E, Cockerill GW, Dawson J, et al. Vascular endothelial growth factor enhances angiotensin Ⅱ-induced aneurysm formation in apolipoprotein E-deficient mice. J Vase Surg.2010; 52(1):159-166 el.
    [26]Kobayashi M, Matsubara J, Matsushita M, et al. Expression of angiogenesis and angiogenic factors in human aortic vascular disease. J Surg Res.2002; 106(2):239-245.
    [27]马跃美.急性炎症对黑色素瘤生长和血管生成的影响及机制的实验研究:[博士学位论文].天津:天津医科大学.2009.
    [28]石建霞,顾健.炎症网络调节与血管新生对血栓形成的影响.2005;11(5):225-227.
    [29]Facemire CS, Nixon AB, Griffiths R, et al. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension.2009; 54(3):652-658.
    [30]Korsisaari N, Kasman IM, Forrest WF, et al. Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc+/min mice. Proc Natl Acad Sci U S A.2007; 104(25):10625-10630.
    [31]Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2:structure, function, intracellular signalling and therapeutic inhibition. Cell Signal.2007; 19(10):2003-2012.
    [32]Tilson MD, Fu C, Xia SX, et al. Expression of molecular messages for angiogenesis by fibroblasts from aneurysmal abdominal aorta versus dermal fibroblasts. Int J Surg Investig.2000; 1(5):453-457.
    [33]Skirgaudas M, Awad IA, Kim J, et al. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery.1996; 39(3):537-545; discussion 45-47.
    [34]Thompson MM, Jones L, Nasim A, et al. Angiogenesis in abdominal aortic aneurysms. Eur J Vase Endovasc Surg.1996;11(4):464-469.
    [35]West XZ, Malinin NL, Merkulova AA, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature.2010; 467(7318):972-976.
    [36]张金保,张艳军,崔广智,等.动脉粥样硬化斑块内新生血管与斑块稳定性的研究进展.中国药理学通报.2011;27(7):901-903.
    [37]孙璐,韦立新,石怀银,等.冠状动脉粥样硬化斑块内血管新生与斑块稳定的关系.中华病理学杂志,2003;32(5):427-431.
    [38]Barger AC, Beeuwkes R, Lainey L, et al.Hypothesis vasa vasorum and neovascularization of human coronary arteries. N Engl Med.1984; 310(3):175-177.
    [39]O'Brien ER,Garvin MR,Dev R,et al.Angiogenesis in human coronary atherosclerotic plague. Am J Pathol.1994; 145(4):883-894.
    [40]Kaartinen M, Penttila A, Kovanen PT, et al. Mast cells accompany micro vessels in human coronary atheromas. Atherosclerosis.1996; 123(1-2):123-131.
    [41]Chen YX, Nakashima Y, Tanaka, et al. Immunohistochemical expression of vascular endothelial growth vascular Permeability factor in atherosclerotic intimals of human coronary arteries. Arterioscler Thromb Vase Biol.1999; 19(1):131-139.
    [42]肖敏,吕军,陈立东,等.斑块内血管生成在兔动脉粥样硬化斑块发生发展中的作用.中国心血管病杂志.2005;10(2):90-94.
    [43]Choke E, Thompson MM, Dawson J, et al. Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vase Biol.2006; 26(9):2077-2082.
    [44]Jacobi J, Tam BY, Sundram U, et al. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther.2004; 11(3):302-309.
    [45]Vorp DA, Lee PC, Wang DH, Makaroun MS, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg.2001; 34(2):291-299.
    [46]Lesauskaite V, Epistolato MC, Castagnini M, et al. Expression of matrix metalloproteinases, their tissue inhibitors, and osteopontin in the wall of thoracic and abdominal aortas with dilatative pathology. Hum Pathol.2006; 37(8):1076-1084.
    [47]Liu J, Sukhova GK, Yang JT, et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis.2006; 184(2):302-311.
    [48]Moran CS, McCann M, Karan M, et al. Association of osteoprotegerin with human abdominal aortic aneurysm progression. Circulation.2005; 111(23): 3119-3125.
    [49]Siminini A, Moscuccim, Muller DW, et al. IL-8 is an angiogenic factor in human coronary atherectomy tissue.Circulation.2000; 101(13):1519-1526.
    [50]Sho E, Sho M, Hoshina K, Kimura H, et al. Hemodynamic forces regulate mural macrophage infiltration in experimental aortic aneurysms. Exp Mol Pathol.2004; 76(2):108-116.
    [51]Kajimoto K, Miyauchi K, Kasai T, et al. Short-term 20-mg atorvastatin therapy reduces key inflammatory factors including c-Jun N-terminal kinase and dendritic cells and matrix metalloproteinase expression in human abdominal aortic aneurysmal wall. Atherosclerosis.2009; 206(2):505-511.
    [52]Moulton K,Vakili K,Zurakowski D, et al. Inhibition of plaque neovasculari-zation reduces macrophage accumu-lation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA.2003; 100(8):4736-4741.
    [53]Hayden MR, Tyagi SC. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus,and atheroscleropathy:a malignant transformation. Cardiovasc Diabetol.2004; 3:1.
    [54]陈慧敏,高南南.豚鼠动脉粥样硬化模型的建立及机理探讨:[硕士学位论文].北京:北京协和医学院.2010.
    [55]Paik DC, Fu C, Bhattacharya J, et al. Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Exp Mol Med.2004; 36(6):524-533.
    [56]Choke E, Cockerill GW, Dawson J, Chung YL, Griffiths J, Wilson RW, et al. Hypoxia at the site of abdominal aortic aneurysm rupture is not associated with increased lactate. Ann N Y Acad Sci.2006; 1085:306-310.
    [57]Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest.2005; 115(11):2979-2991.
    [58]Herron GS, Unemori E, Wong M, et al. Connective tissue proteinases and inhibitors in abdominal aortic aneurysms. Involvement of the vasa vasorum in the pathogenesis of aortic aneurysms. Arterioscler Thromb.1991; 11(6):1667-1677.
    [59]NEWMAN KM, JEAN-CLAUDE J, LI H et al. Cellular localisation of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vasc Surg.1994; 20(5):814-820.
    [60]Nishibe T, Dardik A, Kondo Y, et al. Expression and localization of vascular endothelial growth factor in normal abdominal aorta and abdominal aortic aneurysm. Int Angiol.29(3):260-265.
    [61]Choke E, Cockerill GW, Dawson J, et al. Increased angiogenesis at the site of abdominal aortic aneurysm rupture. Ann N Y Acad Sci.2006; 1085:315-319.
    [62]Chapple KS, Parry DJ, McKenzie S, et al. Cyclooxygenase-2 expression and its association with increased angiogenesis in human abdominal aortic aneurysms. Ann Vase Surg.2007; 21(1):61-66.
    [63]Nackman GB, Karkowski FJ, Halpern VJ, et al. Elastin degradation products induce adventitial angiogenesis in the Anidjar/Dobrin rat aneurysm model. Surgery.1997; 122(1):39-44.
    [64]Nackman GB, Karkowski FJ, Halpern VJ, et al. Elastin degradation products induce adventitial angiogenesis in the Anidjar/Dobrin rat aneurysm model. Ann N Y Acad Sci.1996; 800:260-262.
    [65]Curci JA, Liao S, Huffman MD, Shapiro SD, et al. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest.1998; 102(11):1900-1910.
    [66]Tilson MD. Histochemistry of aortic elastin in patients with nonspecific abdominal aortic aneurismal disease. Arch Surg.1988; 123(4):503-505.
    [67]Bendeck MP. Macrophage matrix metalloproteinase-9 regulates angiogenesis in ischemic muscle. Circ Res.2004; 94(2):138-139.
    [68]Satta J, Soini Y, Mosorin M, Juvonen T. Angiogenesis is associated with mononuclear inflammatorycells in abdominal aortic aneurysms. Ann Chir Gynaecol.1998; 87(1):40-42.
    [69]De boer OJ,Van der wal AC,Teeling P, et al. Leucocyte recruitment in rupture prone regions of lipid-rich plaques:a prominent role for neovascularization? Cardiovasc Res.1999; 41(2):443-449.
    [70]ZhongH, de Marzo AM, Lim M, et al. Overexpression of hypoxia-inducible fator 1 alpha in common human cancers and their metastases. Cancer Res.1999; 59(22):5830-5835.
    [71]Tedesco MM, Terashima M, Blankenberg FG, et al. Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression. Arterioscler Thromb Vasc Biol.2009; 29(10): 1452-1457.
    [72]Kuhnert F, Tam BY, Sennino B, et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci U S A.2008; 105(29):10185-10190.
    [73]Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res.1998; 58(5):1048-1051.
    [74]Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother. 2009; 58(10):1577-1586.
    [75]Pearce WH, Sweis I, Yao JS, et al. Interleukin-1 beta and tumor necrosis factor-alpha release in normal and diseased human infrarenal aortas. J Vasc Surg.1992; 16(5):784-789.
    [76]Koch AE, Kunkel SL, Pearce WH, et al. Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol.1993; 142(5):1423-1431.
    [77]DAvis CA, Pearce WH, Haines GK, et al. Increased ICAM-1 expression in aortic disease. J Vasc Surg.1993; 18(5):875-880.
    [78]Allaire E, Forough R, Clowes M, et al. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest.1998; 102(7):1413-1420.
    [79]Daugherty A, Manning MW, Cassis LA. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest.2000; 105(11):1605-1612.
    [80]Gong Y, Hart E, Shchurin A, et al. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest.2008; 118(9): 3012-3024.
    [81]Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest.1995; 96(1):318-326.
    [82]Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest.2002; 110(5):625-632.
    [83]Fang J, Shing Y, Wiederschain D, Yan L, et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A.2000; 97(8):3884-3889.
    [84]Johnson C, Sung HJ, Lessner SM, et al. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues:potential role in capillary branching. Circ Res.2004; 94(2):262-268.
    [85]Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998; 93(3):411-422.
    [86]Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA.2000; 97(8):4052-4057.
    [87]Abisi S, Burnand KG, Waltham M, et al. Cysteine protease activity in the wall of abdominal aortic aneurysms. J Vasc Surg.2007; 46(6):1260-1266.
    [88]Goodall S, Crowther M, Hemingway DM, et al. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation.2001; 104(3):304-309.
    [89]Sho E, Sho M, Nanjo H, Kawamura K, et al. Hemodynamic regulation of CD34+ cell localization and differentiation in experimental aneurysms. Arterioscler Thromb Vasc Biol.2004; 24(10):1916-1921.
    [90]Tsuruda T, Kato J, Hatakeyama K, Kojima K, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res.2008; 102(11):1368-1377.
    [91]Sun J, Zhang J, Lindholt JS, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation.2009; 120(11):973-982.
    [92]Wang YX, Martin-McNulty B, Freay AD, et al. Angiotensin Ⅱ increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol.2001; 159(4):1455-1464.
    [93]Cabebe E, Wakelee H. Sunitinib:a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Bare).2006; 42(6):387-398.
    [94]Cohen MH, Gootenberg J; Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist.2007; 12(6):713-718.
    [95]Cohen MH, Gootenberg J, Keegan P, et al. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist.2007; 12(3):356-361.
    [96]Cohen MH, Shen YL, Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist.2009; 14(11):1131-1138.
    [97]Goodman VL, Rock EP, Dagher R, et al. Approval summary:sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res.2007; 13(5):1367-1373.
    [98]Rock EP, Goodman V, Jiang JX, et al. Food and Drug Administration drug approval summary:Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist.2007; 12(1):107-113.
    [99]Summers J, Cohen MH, Keegan P, et al. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist. 2010:15(1):104-111.
    [100]Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov.2006; 5(10):835-844.
    [101]Dalton JE, Maroof A, Owens BM, et al. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J Clin Invest.2010; 120(4):1204-1216.
    [102]van der Veldt AA, Boven E, Helgason HH, et al. Predictive factors for severe toxicity of sunitinib in unselected patients with advanced renal cell cancer. Br J Cancer.2008; 99(2):259-265.
    [103]Takimoto CH, Awada A. Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents:a review of clinical trials. Cancer Chemother Pharmacol.2008; 61(4):535-548.
    [104]Stadler WM, Figlin RA, McDermott DF, et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in North America. Cancer.2010; 116(5):1272-1280.
    [105]Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol.2008; 26(32):5204-5212.
    [106]Maitland ML, Kasza KE, Karrison T, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res.2009; 15(19):6250-6257.
    [107]Humphreys BD, Atkins MB. Rapid development of hypertension by sorafenib: toxicity or target? Clin Cancer Res.2009; 15(19):5947-5949.
    [108]Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma:a multicenter analysis. Ann Oncol.2009; 20(9):1535-1542.
    [109]Blanchet B, Billemont B, Barete S, et al. Toxicity of sorafenib:clinical and molecular aspects. Expert Opin Drug Saf.2010; 9(2):275-287.
    [110]Bhojani N, Jeldres C, Patard JJ, et al. Toxicities associated with the administration of sorafenib, sunitinib, and temsirolimus and their management in patients with metastatic renal cell carcinoma. Eur Urol.2008; 53(5): 917-930.
    [111]King VL, Trivedi DB, Gitlin JM, et al. Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin Ⅱ-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol.2006; 26(5):1137-1143.
    [112]Thomas M, Gavrila D, McCormick ML, et al. Deletion of p47phox attenuates angiotensin Ⅱ-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation.2006; 114(5):404-413.
    [113]Armstrong PJ, Franklin DP, Carey DJ, et al. Suppression of experimental aortic aneurysms:comparison of inducible nitric oxide synthase and cyclooxygenase inhibitors. Ann Vasc Surg.2005; 19(2):248-257.
    [114]Zhang LN, Vincelette J, Cheng Y, et al. Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia. Arterioscler Thromb Vase Biol.2009; 29(9):1265-1270.
    [115]Kalyanasundaram A, Elmore JR, Manazer JR, et al. Simvastatin suppresses experimental aortic aneurysm expansion. J Vase Surg.2006; 43(1):117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700