用户名: 密码: 验证码:
空间图形的表达、识别与综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从计算机技术应用于地图制图学领域的第一天起,地图自动综合就成为人们一直想要解决的问题,直到21世纪的今天,仍没能找到一个万全之策来解决这一国际性难题。本文在参阅和分析国内外有关文献资料的基础上,指出了地图自动综合中的根本矛盾,从一个全新的角度提出了空间图形自动综合的理论,并提出了若干新算法、新模型。从理论到实践,对空间图形的自动综合进行了全面系统的深入研究。本文研究的主要内容如下:
     1.明确了地图综合的目的、本质、对象及方法。从地图综合概念的历史沿革,地图自动综合的理论、算法,现有研究机构及成果几方面进行了总结,提出了基于仿生学观点的地图综合概念。分析了地图自动综合中的困惑与误区,指出地理目标的无限性与载负量的有限性是地图综合的根本矛盾,地图自动综合应该是螺旋式上升的循环过程,并对地图自动综合的发展方向进行了预测。
     2、指出地图空间由图形空间和属性空间组成,将图形空间中复杂的地理目标抽象成相对简单的空间图形——点(群)、线(群)、面(群),并对其进行了数学描述,研究了空间图形的空间关系。提出了空间图形自动综合的新理论,即自动综合的模式为空间图形的表达、识别与综合,是贯穿全文研究的理论基础。
     3、构建Delaunay三角网对空间随机点群目标进行表达。以此为基础,从点群的外围轮廓特征,内部结构,中轴线以及单个点目标影响域几方面进行了形态识别。建立了随机点群目标的自动综合模型,并将其应用于海底地形的自动综合当中。
     4、分析线状目标的结构特点,构造了弯曲Douglas二叉树对其进行空间表达。形态识别包括:局部特征点及其方向,弯曲的结构特征,整体描述参数以及拓扑特征。基于视觉连续性原理给出了线状目标的自动综合模型。选取海图中的海岸线、等深线进行了综合试验。
     5、借助图论中图的概念,提出了路径系统模型,对网状目标进行图形表达,并识别其形态参数。分别选取了道路网、河流网这两种典型的网状目标进行了综合试验。
     6、根据等高线的特性,通过构建等高线树和似Douglas变换模型来表达地貌形态,识别等高线的空间关系,地形特征点,地性线以及地貌类型。最后结合等高线综合的知识规则建立了地貌形态的自动综合模型,并通过试验验证了其有效性。
People always want to solve the problem of map automatic generalization since computer technology was applied in cartography. Until the 21st century, there is not a perfect method to solve it. After analyzing and studying the interrelated literature, the author puts forward the theory of automatic generalization for spatial graphics from a fire-new point of view, and there are also some new arithmetic and new models in this dissertation. From theory to practice, a systemic research is made by the author. The main achievements are the follows:1. The aim, essence, object and method of map automatic generalization are disused. The study makes a summarization including the history of map generalization concept, its theory, arithmetic, research institution and production, and then defines the concept of automatic generalization for spatial graphics. The author thinks that the main conflict is the infinite geography objects and the finite capability, the course of generalization should be spire. And forecast the developing orientation.2. The map space can be divided into graphics space and attribute space. The complicated geography objects are abstracted into simple spatial graphics, including point(s), line(s) and area(s). They are depicted using a math way and their spatial relationship are studied. A new theory of automatic generalization for spatial graphics is educed. That is representation, identification and generalization.3. To represent point-cluster, the study builds Delaunay triangular network. The shape identification includes outline, inside structure, center- axis and the extension of single point. The model of point-cluster automatic generalization is formed and applied in the seabed terrain.4. On the basis of analyzing the line object structure, the study presents curve Douglas binary tree to represent it. The shape identification includes the local character point and its direction, the curve structure, the global parameter and topology trait. The model of line automatic generalization accords with the seeing continuity theory. The coastline and the isobath are selected in the experimentation.5. The study represents net object by designing the path system model and identifies the shape parameter. A test is made using the road net and the river net which are typical.6. Using the contour tree and the similar Douglas conversion, the physiognomy is represented. The contour relationship, terrain character point, orographic character line and physiognomy style are identified. At last, the model of physiognomy automatic generalization is building and its validity is validated by the experiment.
引文
[1] 艾廷华.城市地图数据库综合的支撑数据模型与方法的研究[D].武汉大学博士学位论文,2000.
    [2] 艾廷华,郭仁忠.支持地图综合的面状目标约束Delaunay三角网剖分[J].武汉测绘科技大学学报,2000,25(1),35-41.
    [3] 艾廷华,郭仁忠.基于约束Delaunay结构的街道中轴线提取及网络模型建立[J].测绘学报,2000,29(4):348-354.
    [4] 艾廷华,郭仁忠,刘耀林.曲线弯曲深度层次结构的二叉树表达[J].测绘学报,2001,30(4):343-348.
    [5] 艾廷华,刘耀林.保持空间分布特征的群点化简方法[J].测绘学报,2002,31(2):175-181.
    [6] 艾廷华.基于空间映射观念的地图综合概念模式[J].测绘学报,2003,32(1):87-92.
    [7] 艾廷华.基于场论分析的建筑物群的移位[J].测绘学报,2004,33(1):89-94.
    [8] 艾自兴.地理信息系统中的河网平面结构模型及其自动建立[J].四川测绘,1995,18(2):75-79.
    [9] 蔡少华.GIS图形空间关系的研究与实践[D].解放军测绘学院博士学位论文,1999.
    [10] 陈军,赵仁亮.GIS空间关系的基本问题与研究进展[J].测绘学报,1999,28(2):95-102.
    [11] 陈永良,刘大有.一种新的山脊线和山谷线自动提取方法[J].中国图象图形学报,2001,6(A)(12):1230-1234.
    [12] 陈毓芬.地图空间认知理论的研究[D].解放军测绘学院博士学位论文,2000.
    [13] 陈海燕,万刚.利用等高线数据自动生成地性结构线的算法研究[J].测绘通报,2003,3:21-23.
    [14] 陈涛,艾廷华.多边形骨架线与形心自动搜索算法研究[J].武汉大学学报·信息科学版,2004,29(5):443-446.
    [15] 杜维,艾廷华,徐峥.一种组合优化的多边形化简方法[J].武汉大学学报·信息科学版,2004,29(6):548-550.
    [16] 戴汝为.“人机结合”的大成智慧[J].模式识别与人工智能,1994,7(3):181-189.
    [17] 高俊.地图学四面体—数字化时代地图学的诠释[J].测绘学报,2004,33(1):6-11.
    [18] 郭庆胜.地图自动综合理论与方法[M].测绘出版社,2000,7:21-25.
    [19] 郭庆胜,李沛川.地图自动综合系统的概念框架设计[J].测绘信息与工程,1999,(1):8-10.
    [20] 胡鹏,游涟,杨传勇,吴艳兰.地图代数[M].武汉:武汉大学出版社,2002.
    [21] 黄培之.提取山脊线和山谷线的一种新方法[J].武汉大学学报·信息科学版,2001,26(3):247-251.
    [22] 廖克.现代地图学[M].北京:科学出版社,2003.
    [23] 刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J].测绘学报,2001,30(1):82-88.
    [24] 刘丹丹,张树有等.一种基于特征点识别的曲线离散化方法[J].中国图像图形学 报,2004,9(6):755-758.
    [25] 刘文宝,黄幼才,李宗华.GIS数字曲线复杂性的度量与误差建模中趋势项的分离[J].武汉测绘科技大学学报,1995,20(4):289-295.
    [26] 刘春,姚连璧.车载导航电子地图中道路数据的空间逻辑描述[J].同济大学学报,2002,30(3):346-351.
    [27] 刘春,丛爱岩.基于“知识规则”的GIS水系要素制图综合推理[J].测绘通报,1999,9:21-24.
    [28] 刘玲.自动建立结构化河网的算法改进[J].解放军测绘学院学报,1995,12(4):294-298.
    [29] 李伟生.地图制图自动综合中相邻关系的概念框架及例子[J].测绘学报,1995,24(3):231-237.
    [30] 李德仁,程涛.从GIS数据库中发现知识[J].测绘学报,1995,24(1):37-43.
    [31] 李德仁,龚健雅等.论地图数据库合并技术[J].测绘科学,2004,29(1):1-4.
    [32] 陆毅,翟京生,杜景海,李树军.数字海图点群状特征的识别、量测与综合[J].武汉大学学报,2001,26(2):133-139.
    [33] 陆毅.数字海图自动综合理论研究与实践[D].海军大连舰艇学院硕士学位论文,2000.
    [34] 孟丽秋.自动化地理信息综合的发展现状和趋势[J].解放军测绘学院学报,1996,13(2):123-129.
    [35] 乔朝飞,赵仁亮,陈军.等高线空间关系研究[J].测绘与空间地理信息,2004,27(5):77-81.
    [36] 齐清文,姜莉莉.面向地图特征的制图综合指标体系和知识法则的建立与应用研究[J].地理科学进展,2001,20增刊:1-13.
    [37] 邵黎霞,何宗宜等.基于BP神经网络的河系自动综合研究[J].武汉大学学报·信息科学版,2004,29(6):555-557.
    [38] 盛业华,郭达志.GIS环境下空间要素的制图综合方法[J].测绘通报,1995,(3):26-30.
    [39] 田震.基于神经元网络的自动制图综合研究[D].解放军测绘学院博士学位论文,1997.
    [40] 王家耀,武芳.数字地图自动综合原理与方法[M].北京:解放军出版社,1998.
    [41] 王家耀,田震.海图水深综合的人工神经元网络方法[J].测绘学报,1999,28(4):335-339.
    [42] 王家耀.空间信息系统原理[M].北京:科学出版社.2001.
    [43] 王桥,毋河海.地图图斑群自动综合得分形方法研究[J].武汉测绘科技大学学报,1996,21(1):59-63.
    [44] 王桥.数字环境下制图综合若干问题的探讨[J].武汉测绘科技大学学报,1995,20(3):208-213.
    [45] 王杰臣,闾国年.曲线矢量数据综合的微凹凸消除算法[J].测绘通报,2002,1:17-18.
    [46] 王厚祥,李进杰.海图制图综合[M].测绘出版社,1999,2.
    [47] 王耀革,王玉海.基于等高线数据的地性线追踪技术研究[J].测绘工程,2002,11(3):42-44.
    [48] 王庆国,黄仁涛.基于等高线的几个自动推理问题[J].测绘通报,2004(1):31-33.
    [49] 王涛,毋河海.等高线拓扑关系的构建以及应用[J].武汉大学学报·信息科学版,2004,29(5):438-442.
    [50] 王涛,毋河海.一种从格网DEM中提取等高线的算法[C].《全国地图学与GIS学术会议论文集》.中国,福州.2004,10:707-711.
    [51] 毋河海.河系树结构的自动建立[J].武汉测绘科技大学学报,1995,20(增刊):7-14.
    [52] 毋河海.地貌形态自动综合的原理和方法[J].武汉测绘科技大学学报,1982,7(1):44-51.
    [53] 毋河海.等高线树的自动建立及其应用[J].测绘科技动态,1996,(1):2-7.
    [54] 毋河海.自动综合的结构化实现[J].武汉测绘科技大学学报,1996,21(1):277-285.
    [55] 毋河海.凸壳原理在点群目标综合中的应用[J].测绘工程,1997,(1):1-8.
    [56] 毋河海.地图信息自动综合基本问题研究[J].武汉测绘科技大学学报,2000,25(5):377-383.
    [57] 毋河海.基于多叉树结构的曲线综合算法[J].武汉大学学报·信息科学版,2004,29(6):479-483.
    [58] 毋河海.地图综合基础理论与技术方法研究[M].北京:测绘出版社,2004.
    [59] 武芳.数字河流数据的自动综合[J].解放军测绘学院学报,1994,3:38-42.
    [60] 武芳.协同式地图自动综合的研究与实践[D].解放军测绘学院博士论文,2000.
    [61] 武芳,王家耀.地图自动综合的协同方法研究[J].测绘通报,2001,8:24-25.
    [62] 武芳,王家耀.地图自动综合概念框架分析与研究[J].测绘工程,2002,11(2):18-20.
    [63] 武芳.信息时代对自动制图综合的挑战[C].郑州,军事地图制图与地理信息工程发展与展望,2003:173-179.
    [64] 谢政,戴丽.组合图论[M].长沙:国防科技大学出版社,2003.
    [65] 视觉感知对制图综合的作用[J].测绘学报,1992,21(3):224-231.
    [66] 赵军喜,孙庆辉等.GIS中几何对象之间的空间关系[J].测绘学院学报,2002,19(4):306-309.
    [67] 翟京生,肖永茂.等深线深度值的自动识别[J].测绘学报,1996,25(4):272-276.
    [68] 翟京生,陆毅.数字海图线性特征的识别、量测与综合[J].测绘学报,2000,29(3):273-279.
    [69] 张园玉,李霖.基于图论的树状河系结构化绘制模型研究[J].武汉大学学报·信息科学版,2004,29(6):537-539.
    [70] 张海堂,罗睿,郭建星,王天还.基于三角网渐进式简化的等高线多尺度综合[J].测绘信息与工程,2004,29(5):11-13.
    [71] 张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报,2000,5(A),(11):885-894.
    [72] 周培德.计算几何——算法分析与设计[M].北京:清华大学出版社,2000.
    [73] Alan Saalfeld. Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm[J], Cartography and Geographic Information Science, 1999,26(1): 7-18.
    [74] Andriani Skopeliti and Lysandros Tsoulos. On the Parametric Description of the Shape of the Cartographic Line[J]. Cartographica, 1999, 36(3): 53-63.
    [75] Andriani Skopeliti, Lysandros Tsoulos. A Knowledge Based Approach for the Generalization of Linear Features[C]. Proceeding of 20~th ICC, Beijing, 2001.
    [76] Boyell, R. and Ruston, H. Hybrid techniques for real-time radar simulation[C]. Proc. of the Fall Joint Computer Conference, Las Vegas, 1963:445-458.
    [77] Battersby, S. E. and Clarke, K. C. Information Content in Map Generalization[C]. Proceeding of 21~th ICC, Durban, 2003, 118-126.
    [78] Beard, K. Theory of the Cartographic Line Revisited[J]. Cartographica, 1991,4(28):32-58.
    [79] Christensen, A. H. J. Cartographic Line Generalization with Waterlines and Medial-Axes[J], Cartography and Geographic Information Science, 1999,26(1): 19-32.
    [80] Caristensen, Albert H J. Carographic Line Generalization with Waterlines and Medial-axes[J]. Cartography and Geographic Information Sciense, 1999(1): 19-32.
    [81] Christensen, A. H. J. Two Experiments on Stream Network Generalization[C]. Proceeding of 21~th ICC, Durban, 2003, 146-154.
    [82] Coffman D, Turner A. Computer Determination of the Geometry and Topology of Stream Networks. Water Resources Research, 1971,7(2): 419-423.
    [83] Cromley R. Hierarchical Methods of Line Simplification[J]. Cartography and Geographic Information Systems, 1991, 18(2): 125-131.
    [84] Dan Lee. Generalization in the New Generation of GIS[C]. Proceeding of 20~th ICC, Beijing, 2001.
    [85] Douglas D H, Peucker T K. Algorithm for the Reduction of the Number or Points Required to Represent a Digitized Line or Its Caricature[J]. The Canadian Cartographer, 1973, (10):47-55.
    [86] Dutton, G. Scale, Sinuousity, and Point Selection in Digital Line Generalization[J]. Cartography and Geographic Information Science, 1999, 26(l):33-53.
    [87] Eric Saux. B-spline Functions and Wavelets for Cartographic Line Generalization[J]. Cartography and Geographic Information Science, 2003, 30(1): 33-50.
    [88] Ellen R. White. Assessment of Line-Generalization Algorithms Using Characteristic Points[J]. The American Cartographer, 1985, 12(1): 17-27.
    [89] Finn, J. T. Use of the Average Mutual Information Index in Evaluating Classification Error and Consistency, Int[J]. Journal of Geographic Information Systems, 1993, 7(4):349-366.
    [90] Frank, A. U, Volta, G. S. and McGranaghan, M. Formalization of Families of Categorical Coverages, Int[J]. Journal of Geographical Information Systems, 1997, 11(3):215-231.
    [91] Jaakkola, O. Multi-Scale Categorical Data Bases with Automatic Generalization Transformations Based on Map Algebra[J]. Cartography and GIS, 1998,25(4): 195-207.
    [92] Jiang, B. and Ormeling, F. J. Cybermap: the Map for Cyberspace[J].The Cartographic Journal, 1997, 34(2): 111-116.
    [93] Jones C B, Bundy G L, Ware J M. Map Generalization with a Triangulated Data Structure[J]. Cartography and GIS, 1995, 22(4): 317-331.
    [94] Hangouet, J. F. and Lamy, S. Automated Cartographic Generalization:Approach and Methods[C]. Proceedings of the 19th International Cartographic Conference, Ottawa: 1063-1072.
    [95] Howard Veregin. Line Simplification, Geometric Distortion,and Positional Error[J]. Cartographica, 1999, 36(1): 25-39.
    [96] Kreveld, M. Efficient Settlement Selection for Interactive Display[J]. Proceedings of AutoCarto 12, Bethesda, Md, 1995:287-296.
    [97] Lamy, S. and Ruas, A. ect. The Application of Agents in Automated Map Generalization[C]. Proceedings of the 19~th International Cartographic Conference, Ottawa: 1225-1234.
    [98] Lee, D. Understanding and Deriving Generalization Rules[C]. Proceedings of the 18th International Cartographic Conference, Stockholm, 1997:1258-1265.
    [99] Li, Z. Stan Openshaw. Algorithm for Automated Line Generalization Based on a Nature Principle of Objective Generalization[J]. International Journal of Geographical Information System, 1992, 6(5): 373-389.
    [100] Li, Z. and Openshaw, S. A Natural Principle for Objective Generalization of Digital Map Data[J]. Cartography and Geographic Information System, 1993, 20(1): 19-29.
    [101] Li,Z.An Examination of Algorithms for the Detection of Critical Points on Digital Cartographic Lines[J]. The Cartographic Journal, 1995, 32(2): 121-125.
    [102] Liqiu Meng. Automatic Generalization of Geographic Data[EB/OL]. http://www.lrz-muenchen.de/~t583101AVWW/content/aboutus/meng.htm, 2003, 8, 12.
    [103] Liqiu Meng. Congnitive Modeling of Cartographic Generalization[EB/OL]. http://www.lrz-muenchen.de/~t583101AVWW/content/aboutus/meng.htm, 2003, 8, 12.
    [104] Lysandros Tsoulos, Konstantions Stefanakis. Sounding Selection for Nautical Charts: An Expert System Approach[C]. Proceeding of 18 th ICC, Stockholm. 1997, 2021-2029.
    [105] Mackness, W. A. and Beard, K. Use of Graph Theory to Support Map Generalization[J]. Cartography and Geographic Information Systems, 1993,20(4): 210-221.
    [106] Mackaness, W. A. and Mackechnie, G. A. Detection and Simplification of Road Junctions in Automated Map Generalization[C]. Proceedings of the 18th International Cartographic Conference, Stockholm, 1997:1013-1021.
    [107] A Computer Science Perspective on the Bendsimplification Algorithm[J]. Cartography and Geographic Information Science, 1999,26(4), 253-270.
    [108] Mark,D. and Egenhofer, M.Modeling Spatial Relations Between Lines and Regions :Combining Formal Mathematical Models and Human Subject Testing[J]. Cartography and Geographical Information Systems, 1994,21(3): 195-212.
    [109] Mark de Berg, Mare van Kreveld, Mark overmars.Computational Geometry:Algorithms and Application[M]. Berlin Heidelberg: Springer-Verlag, 1997.
    [110] Mark, D. Freksa, C. Hirtle, S. Lloyd, R. and Tversky, B. Cognitive models of geographical space[J]. International Journal of Geographical Information Science, 1999, 13(8): 747-774.
    [111] Maguire D J. Generalization, Fractals and Spatial Database.The Bulletin of the Society of University Cartographers, 1986,20(2):96-99.
    [112] McMaster. R. Automated Line Generalization[J]. Cartographica, 1987, 24(2): 74-111.
    [113] Michael McAllister and Jack Snoeyink. Medial Axis Generalization of River Networks[J]. Cartography and Geographic Information Science, 2000,27(2): 129-138.
    [114] Muller J C. Fractal and Automated Line Generalization[J]. The Cartographic Journal, 1987, (24): 138-143.
    [115] Plazanet C. Measurement, Characterization and Classification for Automated Line Generalization[C]. Proceedings of AutoCarto 12, Bethesda, 1995.
    [116] Paiva J, Egenhofer M J. Rouust Inference of the Flow Direction in River Network.Algorithmica[EB/OL]. http://www.spatial.maine.edu/~max/pubsRJ.html, 2002.
    [117] Robert B. McMaster, K. Stuart Shea. Generalization in Digital Cartography[M], Publication by the A. A. G, 1992,73.
    [118] de Serres B, Roy A. Flow Direction and Branching Geometry at Junctions in Dendritic River Networks[J]. The Professional Geographer, 1990,42(2): 149-201.
    [119] Shea K S, McMaster R B. Cartographic Generalization in a Digital Environment:When and How to Generalize[J]. Autocarto, 1991, (9):56-67.
    [120] Smith, B. E. Jackson, H. L. and Maier, R. L. The Furture of Automated Map Generalization[C]. Proceeding of 19~th ICC, Ottawa, 1999:1073-1080.
    [121] SndahiroY. Cluster Perception in the Distribution of Point Objects[J]. Cartographic, 1997(1):49-61.
    [122] Steven ZORASTER, Steven BAYER. Automated cartographic sounding selection[J]. International Hydrographic Review, Monaco, 1992, 3.
    [123] Zhen T, Wang J Y, Liang K L. Design of Neural Network for Automated Selection of Sounding in Nautical Chart Making[C]. Proceeding of 18~th ICC, Stockholm, 1997, 720-723.
    [124] Tiina Kilpelainen. Knowledge Acquisition for Generalization Rules[J]. Cartography and Geographic Information Science, 2000, 27(1):41-50.
    [125] Thomas, R. Generating Street Center-Lines From Vector City Maps[J]. Cartography and Geographic Information Systems, 1998,25(4): 221-230.
    [126] Van Kreveld M. Efficient Settlement Selection for Interactive Display[C]. AutoCarto 12, Bethesda, Md. 1995, 287-296.
    [127] Visvalingam M, Whyaat J. The Douglas-Peucker Algorithm for Line Simplification[J]. Computer Graphics Forum, 1990, (3):38-43.
    [128] Visvalingam, M. and Williamson, P. J. Simplification and Generalization of Large Scale Data for Road: A Comparison of two Filtering Algorithms[J]. 1995, 22(4): 264-275.
    [129] Wang Z, Muller J C. Line Generalization Based on Analysis of Shapes[J]. Cartography and Geographic Information System, 1998, 25(1):3-15.
    [130] Weibel R. and Dutton G. Constraint-based Automated Map Generalization[C], in Proceedings 8th International Symposium on Spatial Data Handling, 1998,214 - 224.
    [131] Zeshen Wang and Jean-Claude Muller. Line Generalization Based on Analysis of Shape Characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1): 3-15.
    [132] Zhilin Lin, Haigang Sui. An Integrated Technique for Automated Generalization of Contour Maps[J]. The Cartographic Journal, 2000,37(1): 29-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700