用户名: 密码: 验证码:
基于石墨烯与硅纳米结构高性能光伏器件的构造与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有优异的光学及电学特性,在未来光电子器件透明电极领域有广阔的应用前景。硅纳米结构尤其是垂直排列的硅纳米阵列结构具有优异的陷光能力和电荷传输能力,在新一代高性能太阳能电池领域吸引了人们广泛的研究兴趣。制备稳定低成本高转换效率的石墨烯/硅光伏器件是当前的研究热点与前沿方向。
     本文主要对基于石墨烯与硅纳米结构的高性能光伏器件的构造与光电性能展开系统研究。通过制备高质量石墨烯与多种具有优异陷光能力的硅纳米(微米)阵列结构,对硅纳米(微米)阵列结构进行表面钝化、对石墨烯进行修饰掺杂、以及引入电子阻挡层等手段构筑了高性能石墨烯/硅光伏器件。此外,还构筑了基于硅纳米线阵列的异质结器件并对其光伏和光电响应特性进行了研究。主要的研究结果如下:
     1)采用化学气相沉积法(CVD)合成出高质量的石墨烯,利用HNO3、AuCl3等对石墨烯进行掺杂,结合对石墨烯层数的控制,实现其导电性和功函数的调控;利用CVD、金属辅助化学刻蚀法及反应离子刻蚀等方法成功制备硅纳米线和多种具有优异陷光能力的硅纳米(微米)阵列结构。采用甲基和Pt纳米颗粒修饰对硅表面进行钝化,有效的降低其表面载流子复合速率。
     2)制备了单层石墨烯/硅纳米线阵列光伏器件,研究了器件结构与器件性能的关系,采用石墨烯分散液填充硅纳米线间隙将器件能量转换效率提升至2.15%;构建了单层石墨烯纳米带/多根硅纳米线光伏器件,研究了纳米线掺杂浓度与器件光伏性能的关系,纳米线掺杂浓度最高时器件能量转换效率达1.47%。
     3)提出采用硅纳米孔阵列以增加石墨烯与硅的有效结区面积,系统的研究了硅表面钝化、石墨烯层数、HNO3掺杂时间等因素对器件光伏性能的影响。通过优化条件,实现能量转换效率分别达6.85%和7.65%的基于硅纳米线阵列和硅纳米孔阵列光伏器件。通过引入有机电子阻挡层,降低了硅端电子扩散至石墨烯端复合的几率,器件效率进一步提升至8.71%和10.30%。构筑了石墨烯/硅微米孔阵列光伏器件,研究了孔阵列深度与其陷光能力以及器件光伏性能之间的关系。利用具有持续掺杂效果的AuCl3对石墨烯进行掺杂,器件能量转换效率提升至10.40%,且具有优异的稳定性。
     4)构筑了碳量子点/硅纳米线阵列三维核/壳异质结光电器件,研究了该异质结的整流比、开启电压、理想因子和势垒高度等参数。系统地对碳量子点层数与器件光伏性能的关系进行了研究,最优器件的能量转换效率为9.10%。进一步发现该器件可作为自驱动的高灵敏快速光电探测器并对光电探测的关键参数进行了研究。
     5)构建了p型CdTe纳米带/n型硅纳米线阵列异质结光电器件,研究了该异质结的关键参数。由于两种材料较为匹配的能带关系以及纳米线阵列优异的陷光能力,该异质结能充分吸收可见及近红外光,器件能量转换效率为2.3%,远高于基于平面硅的器件。此外,该器件还可以作为稳定的自驱动光电探测器并具有快的响应速度。
     本文在基于石墨烯与硅纳米结构高性能光伏器件的构造与光电性能研究中的主要创新之处为:通过调控石墨烯的导电性与功函数、降低硅表面载流子复合速率、增加硅纳米(微米)结构陷光能力、增大石墨烯与硅有效结区面积以及降低硅端载流子扩散至石墨烯端复合几率等手段构筑了高性能石墨烯/硅光伏器件;利用硅纳米线阵列优异的陷光能力、异质结的能带匹配关系和三维核/壳结构独特的电荷传输特性构建了高性能硅纳米线阵列异质结光电器件。
Graphene is an attractive candidate for the application as transparent electrode infuture optoelectronic devices due to its extraordinary optical and electrical properties.Silicon (Si) nanostructures, especially Si nanoarray structures, are of tremendousinterests in new-generation solar cell applications, because of their outstandinglight-trapping and excellent carrier transport abilities. Construction of high efficiencygraphene/Si solar cells with low cost and stable performance has attracted significantattention recently.
     In this thesis, we conducted a systematic study on the high-performance photovoltaicdevices based on graphene and Si nanostructures. The main investigations are focusedon the synthesis of high-quality graphene and various Si nano (micro) structures withexcellent light-trapping capability, modification and passivation of graphene and Si, aswell as construction of high-performance graphene/Si solar cells by using of electronblocking layer. Additionally, the heterojunction photovoltaic devices based on Sinanowire (SiNW) array were also fabricated and their photovoltaic and photoresponseproperties were studied. The main results are summarized as follows:
     1) High-quality graphene was synthesized by chemical vapor deposition (CVD)method, and HNO3and AuCl3doping were employed to tune its conductivity and workfunction. SiNWs and various Si nanoarrays (microarray) with excellent light-trappingabilities were prepared by using CVD, metal-assisted chemical etching and reactive ionetching methods. The carrier recombination activity at Si surface was effectivelysupressed by using a passivation method including CH3and Pt nanoparticlesmodification.
     2) We fabricated monolayer graphene/SiNW array Schottky junction solar cells andextensively studied the effect of device configuration on the photovoltaic characteristics.A maximum PCE of2.15%was achieved through filling the interspace of SiNW arraywith graphene suspension. Furthermore, solar cells based on monolayer graphenenanoribbon/multiple SiNWs were also constructed. By enhancing the doping level ofSiNWs, an optimal efficiency of1.47%was attained.
     3) We proposed a strategy to increase the effective junction area between grapheneand Si by using Si nanohole (SiNH) array. The effects of Si passivation, graphene layernumber, as well as HNO3doping time on the devices photovoltaic performance were studied. The PCEs of6.85%and7.65%were achieved for SiNW array/graphene andSiNH array/graphene devices, respectively, by optimizing the device architectures.What is more, the PCEs were substantially enhanced to8.71%and10.30%, respectively,through inserting an organic electron blocking layer between graphene and Si, whichcan lower the probability of electron diffusion from Si to graphene. Furthermore,photovoltaic devices based on graphene/Si micro-hole array were fabricated. The holesdepth and corresponding light-trapping ability were studied in order to increase thedevice photovoltaic performance. The maximum efficiency was enhanced to as high as10.40%with excellent air stability through doping graphene with AuCl3.
     4) Three-dimensional core-shell heterojunctions based on carbon quantum dots(CQDs) and SiNW array were first prepared, and some key parameters of theheterojunctions including rectification ratio, turn-on voltage, ideality factor as well asbarrier height were studied. The maximum PCE of9.10%was achieved by optimizingthe CQDs layer number. In addition, the heterojuncitons can function as self-poweredvisible light photodetectors with high-sensitivity and high-speed. Some key parametersrelated to photodetector were also investigated.
     5) We successfully fabricated p-CdTe nanoribbon/n-SiNW array heteojunctionoptoelectronic devices and investigated some key parameters of the heteojunction. Dueto their matched energy bandgap and outstanding light-trapping ability of SiNW array,the heterojunctions can effectively absorb most incident light ranging from visible tonear-infrared (NIR), giving rise to an PCE of2.3%, much higher than that of planar Sibased device. What is more, the heterojunctions can serve as high-speed self-poweredphotodetectors operated in the visible to NIR range with good stability.
     The main innovations of this thesis are:(1) The high-performance graphene/Si solarcells were achieved through tuning the conductivity and work function of graphene,reducing the surface carrier recombination velocity of Si, enhancing the light-trappingability of Si nano (micro) structures, increasing the effective junction area ofgraphene/Si as well as lowering the probability of electron diffusion from Si tographene.(2) The high-performance heteojunction optoelectronic devices based onSiNW array were attained by taking advantage of the excellent light-trapping ability ofSiNW array, the matched energy bandgap of heterojunction and the unique chargetransport property of three-dimensional core-shell structure.
引文
[1] Green M. A.硅太阳能电池:高级原理与实践[M].狄大卫,欧阳子,韩见殊,张博,沈冬冬,曹邵阳.上海:上海交通大学出版社,2011:144–146.
    [2] Wenham S., Green, M.A. Silicon solar cells[J]. Progress in Photovoltaics: Research andApplications,1998,4(1):3–33.
    [3] Zhao J.H., Wang A.H., Green M.A., Francesca F.19.8%efficient “honeycomb” texturedmulticrystalline and24.4%monocrystalline silicon solar cells[J]. Applied Physics Letters,1998,73(14):1991–1993.
    [4] Green M.A. Third generation photovoltaics: solar cells for2020and beyond[J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14(1-2):65–70.
    [5] Luque A., Hegedus S. Handbook of photovoltaic science and engineering[M]. John Wiley andSons,2003:205–210.
    [6] Green M.A., Emery K., Hishikawa Y., Warta W. Solar cell efficiency tables (version25)[J].Progress in Photovoltaics: Research and Applications,2009,17(5):320–326.
    [7] Meier J., Spitznagel J., Kroll U., Bucher C., Fay S., Moriarty T. Potential of amorphous andmicrocrystalline silicon solar cells[J]. Thin Solid Films,2004,451:518–524.
    [8] Yamamoto K., Toshimi M., Suzuki T., Tawada Y., Okamoto T., Nakajima A. Photovoltaic cellsbased on nanoscale structures[R], San Francisco: MRS Spring Meeting,1998.
    [9] Wu X., Keane J.C., Dhere R.G., Dehart C., Duda A., Gessert T.A. et al. Formation of solar cellswith conductive barrier layers and foil substrates[R]. Munich: Proceedings of the17thEuropean Photovoltaic Solar Energy Conference,2001.
    [10]庄大明,张弓.铜铟镓硒薄膜太阳能电池的发展现状以及应用前景[J].真空,2004,41(02):1-7.
    [11] R.R., Law D.C., Edmondson K.M., Fetzer C.M., Kinsey G.S., Yoon H.40%efficientmetamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Applied Physics Letters,2007,90(18):183516–183516-3.
    [12] Peng K.Q., Wang X., Wu X.L., Lee S.T. Platinum nanoparticle decorated silicon nanowires forefficient solar energy conversion[J]. Nano Letters,2009,9(11):3704–3709.
    [13] Tang C.W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters,1986,48(2):183–185.
    [14] Li G., Zhu R., Yang Y. Polymer solar cells[J]. Nature Photonics,2012,6(3):153–161.
    [15] Hagfeldt A., Boschloo G., Sun L.C., Kloo L., Pettersson H. Dye-sensitized solar cells[J].Chemical Reviews,2010,110(11):6595–6663.
    [16] Ebrahim S., Soliman M., Adbel-Fattah T. Hybrid inorganic-organic heterojunction solar cell[J].Journal of Electronic Materials,2011,40(9):2033–2041.
    [17] Han L.Y., Islam A., Chen H., Malapaka C., Chiranjeevi B., Zhang S. F., et al.High-efficiency dye-sensitized solar cell with a novel co-adsorbent[J]. Energy&Environmental Science,2012,5(3):6057–6060.
    [18]科技部网站,德国企业创立了有机太阳能电池效率世界新高[J].功能材料信息,2013,10(2):49.
    [19] Kojima A., Teshima K., Yasuo S., Miyasaka T. Organometal halide perovskites as visible-lightsensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050–6051.
    [20] Liu M.Z., Johnston M., Snaith H.J. Efficient planar heterojunction perovskite solar cells byvapour deposition[J]. Nature,501(7467):395–398.
    [21] Liu D.Y., Kelly T.L. Perovskite solar cells with a planar heterojunction structure prepared usingroom-temperature solution processing techniques[J]. Nature Photonics,2014,8(2):133–138.
    [22] Tang J.Y., Huo Z.Y., Brittman S., Gao H.W., Yang P.D. Solution-processed core-shell nanowiresfor efficient photovoltaic cells[J]. Nature Nanotechnology,2011,6(9):568–572.
    [23] Wallentin J., Anttu N., Asoli D., Aberg I., Magnusson M.H., Siefer G., et al. InP nanowire arraysolar cells achieving13.8%efficiency by exceeding the ray optics limit[J]. Science,2013,339(6123):1057–1060.
    [24] Li X.M., Zhu H.W., Wang K.L., Cao A.Y., Wei J.Q., Li C.Y. et al. Graphene-on-silicon Schottkyjunction solar cells[J]. Advanced Materials,2010,22(25):2743–2748.
    [25] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V. et al. Electricfield effect in atomically thin carbon films[J]. Science,2004,306(5696):666–669.
    [26] Mattevi C., Kim H., Chhowalla M., A review of chemical vapour deposition of graphene oncopper[J]. Journal of Materials Chemistry,2011,21(10):3324–3334.
    [27] Li X.S., Zhu Y.W., Cai W.W., Borysiak M., Han B.Y., Chen D. et al. Transfer of large-areagraphene films for high-performance transparent conductive electrodes[J]. Nano Letters,2009,9(12):4359–4363.
    [28] Gao L.B., Ni G.X., Liu Y.P., Liu B., Neto A.H.C., Loh K.P. Face-to-face transfer of wafer-scalegraphene films[J]. Nature,2014,505(7482):190–194.
    [29] Bae S.K., Kim H.K., Lee Y.B., Xu X.F., Park J.-S., Zheng Y. et al. Roll-to-roll production of30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology,2010,5(8):574–578.
    [30] Schmidt V., Wittemann J.V., Gosele U. Growth, thermodynamics, and electrical properties ofsilicon nanowires[J]. Chemical Reviews,2010,110(1):361–388.
    [31] Peng K.Q., Xu Y., Wu Y., Yan Y.J., Lee S.T., Zhu J. Aligned single-crystalline Si nanowirearrays for photovoltaic applications[J]. Small,2005,1(11):1062–1067.
    [32] Salem B., Dhalluin F., Baron T., Jamgotchian H., Bedu F., Dallaporta H.Chemical-vapour-deposition growth and electrical characterization of intrinsic siliconnanowires[J]. Materials Science and Engineering B,2009,159(160):83–86.
    [33] Wassei J.K., Kaner R.B. Graphene, a promising transparent conductor[J]. Materials Today,2010,13(3):52–59.
    [34] Wu J.B., Becerril H.A., Bao Z.N., Liu Z.F., Chen Y.S., Peumans P. Organic solar cells withsolution-processed graphene transparent electrodes[J]. Applied Physics Letters,2008,92(26):263302–263302-3.
    [35] Liu Z.K., Li J.H., Sun Z.H., Tai G.A., Lau S.P., Yan F. The application of highly dopedsingle-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACSNano,2012,6(1):810–818.
    [36] Wang X., Zhi L.J., Mullen K., Transparent, conductive graphene electrodes for dye-sensitizedsolar cells[J]. Nano Letters,2008,8(1):323–327.
    [37] Wang Y., Tong S. W., Xu X. F., Ozylmaz B., Loh K. P. Interface engineering of layer-by-layerstacked graphene anodes for high-performance organic solar cells[J]. Advanced Materials,2011,23(13):1514–1518.
    [38] Roy-Mayhew J.D., Bozym D.J., Punckt C., Aksay I.A. Functionalized graphene as a catalyticcounter electrode in dye-sensitized solar cells[J]. ACS Nano,2010,4(10):6203–6211.
    [39] Shi Y.M., Kim K.K., Reina A., Hofmann M., Li L.-J., Kong J. Work function engineering ofgraphene electrode via chemical doping[J]. ACS Nano,2010,4(5):2689–2694.
    [40] Dufaux T., Boettcher J., Burghard M., Kern K. Photocurrent distribution in graphene-CdSnanowire devices[J]. Small,2010,6(17):1868–1872.
    [41] Jie W.J., Zheng F.G., Hao J.H. Graphene/gallium arsenide-based Schottky junction solar cells[J],Applied Physics Letters,2013,103(23):233111–233111-4.
    [42] Tsakalakos L., Balch J., Fronheiser J., Korevaar B.A., Sulima O., Rand J. Silicon nanowire solarcells[J]. Applied Physics Letters,2007,91(23):233117–233117-3.
    [43] Kelzenberg M.D., Turner-Evans D.B., Kayes B.M., Filler M.A., Putnam M.C., Lewis N.S. et al.Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Letters,2008,8(2):710–714.
    [44] Peng K.Q., Wang X., Li L., Wu X.L., Lee S.T. High-performance silicon nanohole solar cells[J].Journal of the American Chemical Society,2010,132(20):6872–6873.
    [45] Wei J.Q., Jia Y., Shu Q.K., Gu Z.Y., Wang K.L., Zhuang D.M. et al. Double-walled carbonnanotube solar cells[J]. Nano Letters,2007,7(8):2317–2321.
    [46] Li Z.R., Kunets V.P., Saini V., Xu Y., Dervishi E., Salamo G.J. et al. Light-harvesting using highdensity p-type single wall carbon nanotube/n-type silicon heterojunctions[J]. ACS Nano,2009,3(6):1407–1414.
    [47] Fan G.F., Zhu H.W., Wang K.L., Wei J.Q., Li X.M., Shu Q.K. et al. Graphene/silicon nanowireSchottky junction for enhanced light harvesting[J]. ACS Appliled Materials&Interfaces,2011,3(3):721–725.
    [48] Yu P.C., Tsai C.Y., Chang J.K., Lai C.C., Chen P.H., Lai Y.C. et al.13%Efficiency hybridorganic/silicon nanowire heterojunction solar cell via interface engineering[J]. ACS Nano,2013,7(12):10780–10787.
    [49] Thomas J.P., Zhao L.Y., McGillvray D., Leung K.T. High-efficiency hybrid solar cells bynanostructural modification in PEDOT:PSS with co-solvent addition[J]. Journal of MaterialsChemistry A,2014,2(7):2383–2389.
    [50] Thiyagu S., Hsueh C.C., Liu C.T., Syu H.J., Lin T.C., Lin C.F. Hybrid organic–inorganicheterojunction solar cells with12%efficiency by utilizing flexible film-silicon with ahierarchical surface[J]. Nanoscale,2014,6(6):3361–3366.
    [51] Jeong S., Garnett E.C., Wang S., Yu Z.F., Fan S.H., Brongersma M.L. Hybrid siliconnanocone polymer solar cells[J]. Nano Letters,2012,12(6):2971–2976.
    [52] Zhang F.T., Han X.Y., Lee S.T., Sun B.Q. Heterojunction with organic thin layer for threedimensional high performance hybrid solar cells[J]. Journal of Materials Chemistry,2012,22(12):53625368.
    [53] Peng K.Q., Wang X., Lee S.T. Silicon nanowire array photoelectrochemical solar cells[J].Applied Physics Letters,2008,92(16):163103163103-3.
    [54] Wang X., Peng K.Q., Pan X.J., Chen X., Yang Y., Li L. et al. High-performance siliconnanowire array photoelectrochemical solar cells through surface passivation andmodification[J]. Angewandte Chemie International Edition,2010,50(42):9861–9865.
    [55]柳琴,刘成,叶晓军,郭群超,李红波,陈鸣波,硅表面钝化及对异质结太阳电池特性的影响[J].功能材料与器件学报,2012,18(1):40–45.
    [56] Anderson W.A., Delahoy A.E., Milano R.A. An8%efficient layered Schottky-barrier solarcell[J]. Journal of Applied Physics,1974,45(9)3913–3915.
    [57] Lewis N.S. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798–801.
    [58] Sze S.M., Ng K.K.半导体器件物理[M].第三版.耿莉,张瑞智.西安:西安交通大学出版社,2008:551–553.
    [59] Tu K.N., Thompson R.D., Tsaur B.Y. Low Schottky barrier of rare-earth silicide on n-Si[J].Applied Physics Letters,1981,38(8):626–628.
    [60] Jia Y., Wei J.Q., Wang K.L., Cao A.Y., Shu Q.K., Gui X.C. et al. Nanotube–siliconheterojunction solar cells[J]. Advanced Materials,2008,20(23):4594–4598.
    [61] Wang F.J., Kozawa D., Miyauchi Y., Hiraoka K., Mouri S., Matsuda K. Enhancementmechanism of the photovoltaic conversion efficiency of single-walled carbon nanotube/Sisolar cells by HNO3doping[J]. Applied Physics Express,2013,6(10):102301–102306.
    [62] Jia Y., Cao A.Y., Bai X., Li Z., Zhang L.H., Guo N. et al. Achieving high efficiencysilicon-carbon nanotube heterojunction solar cells by acid doping[J]. Nano Letters,2011,11(5):1901–1905.
    [63] Shi E.Z., Zhang L.H., Li Z. Li P.X., Shang Y.Y., Jia Y. et al. TiO2-Coated CarbonNanotube-Silicon Solar Cells with Efficiency of15%[J]. Scientific Reports,2012,2(884):1–5.
    [64] Di J.T., Y. Z.Z., Zheng Z.H., Sun B.Q., Li Q.W. Aligned carbon nanotubes for high-efficiencySchottky solar cells[J]. Small,2013,9(8):1367–1372.
    [65] Zhu H.W., Wei J.Q., Wang K.L., Wu D.H. Applications of carbon materials in photovoltaic solarcells[J]. Solar Energy Materials&Solar Cells,2009,93(9):1461–1470.
    [66] Gao L.B., Ren W.C., Zhao J.P., Ma L.P. Efficient growth of high-quality graphene films on Cufoils by ambient pressure chemical vapor deposition[J]. Applied Physics Letters,2010,97(18):183109–183109-3.
    [67] Zhang M.L., Peng K.Q., Fan X., Jie J.S., Zhang R.Q., Lee S.T. et al. Preparation of large-areauniform silicon nanowires arrays through metal-assisted chemical etching[J]. The Journal ofPhysical Chemistry C,2008,112(12):4444–4450.
    [68] Liao L.Y., Zhang L., Wang X.R., Dinakov G., Dai H.J. Narrow graphene nanoribbons fromcarbon nanotubes[J]. Nature,2009,458(7240):877–880.
    [69] Lin C.X., Povinelli M.L. Optical absorption enhancement in silicon nanowire arrays with alarge lattice constant for photovoltaic applications [J]. Optics Express,2009,17(22):19371–19381.
    [70] Syu H.J., Shiu S.C., Lin C.F. Silicon nanowire/organic hybrid solar cell with efficiency of8.40%[J]. Solar Energy Materials&Solar Cells,2012,98(10):267–272.
    [71] Wehling T.O., Novoselov K.S., Morozov S.V., Vdovin E.E., Katsnelson M.I., Geim A.K. et al.Molecular doping of graphene[J]. Nano Letters,2008,8(1):173–177.
    [72] Wei D.C., Liu Y.Q., Wang Y., Zhang H.L., Huang L.P., Yu G. Synthesis of N-doped graphene bychemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752–1758.
    [73] Liu H.T., Liu Y.Q., Zhua D.B. Chemical doping of graphene[J]. Journal of Materials Chemistry,2011,21(10):3335–3345.
    [74] Lherbier A., Blase X., Niquet Y.M., Teiozon F., Roche S. Charge transport in chemically doped2D graphene[J]. Physical Review Letters,2008,101(3):036808–036811.
    [75] Kim D.R., Lee C.H., Zheng X.L. Probing flow velocity with silicon nanowire sensors[J]. NanoLetters,2009,9(5):1984–1988.
    [76] Wang Z., Jie J.S., Li F.Z., Wang L., Yan T.X., Luo L.B. et al. Chlorine-doped ZnSe nanoribbonswith tunable n-type conductivity as high-gain and flexible blue/UV photodetectors[J].ChemPlusChem,2012,77(6):470–475.
    [77] Tak Y., Hong S.J., Lee J.S., Yong K. Fabrication of ZnO/CdS core/shell nanowire arrays forefficient solar energy conversion[J]. Journal of Materials Chemistry,2009,19(33):5945–5951.
    [78] Nelson D. The Physics of Solar Cells [M]. London: Imperial College Press,2003:125–130.
    [79] Norde H. A modified forward I-V plot for Schottky diodes with high series resistance[J].Journal of Applied Physics,2008,50(7):5052–5053.
    [80] Luther J.M., Law M., Beard M.C., Song Q., Reese M.O., Ellingson R.J. Schottky solar cellsbased on colloidal nanocrystal films[J]. Nano Letters,2008,8(10):3488–3492.
    [81] Zhang W.Y., Liu Z.Z., Han Y.X., Fu Z.X. Effect of doping concentration on photovoltaicproperty of ZnO:Al/Si heterojunction[J]. Optoelectronics and Advanced Materials-RapidCommunications,2010,4(5):681–684.
    [82] Huang P.Y, Ruiz-Vargas C.S., van der Zande A.M., Whitney W.S., Levendorf M.P., Kevek J.W.Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature,2011,469(7330):389–392.
    [83] Chen J.H., Jang C., Adam S., Fuhrer M.S., Williams E.D., Ishigami M. Charged-impurityscattering in graphene[J]. Nature Physics,2008,4(5):377–381.
    [84] Cui T., Lv R., Huang Z.H., Chen S., Zhang Z., Gan X. Enhanced efficiency of graphene/siliconheterojunction solar cells by molecular doping[J]. Journal of Materials Chemistry A,2013,1(18):5736-5740.
    [85] Shin D.H., Kim J.M., Jang C.W., Kim J.H., Kim S., Choi, S.H. Annealing effects on thecharacteristics of AuCl3-doped graphene[J]. Journal of Applied Physics,2013,113(6):064305–064305-5.
    [86] Chen Z., Santoso I., Wang R., Xie L.F., Mao Y.H. Huang H. Surface transfer hole doping ofepitaxial graphene using MoO3thin film[J]. Applied Physics Letters,2010,96(21):213104–213104-3.
    [87] Tongay S., Berke K., Lemaitre M., Nasrollahi Z., Tanner D.B., Hebard A.F. Stable hole dopingof graphene for low electrical resistance and high optical transparency[J]. Nanotechnology,2011,22(42):425701–425706.
    [88] Tian X., Xu J., Wang X. Band gap opening of bilayer graphene by F4-TCNQ molecular dopingand externally applied electric field[J]. The Journal of Physical Chemistry B,2010,114(35):11377–11381.
    [89] Agostinelli G., Delabie A., Vitanov P., Alexieva Z., Dekkers H.F.W., De Wolf S. et al. Very lowsurface recombination velocities on p-type silicon wafers passivated with a dielectric withfixed negative charge[J]. Solar Energy Materials and Solar Cells,2006,90(18):3438–3443.
    [90]陈伟、贾锐、张希清、陈晨、武德起、李昊峰等.晶体硅太阳电池表面钝化技术[J].微纳电子技术,2011,48(02):118–127.
    [91] Royea W.J., Juang A., Lewis N.S. Preparation of air-stable, low recombination velocity Si (111)surfaces through alkyl termination[J]. Applied Physics Letters,2000,77(13):1988–1990.
    [92] Webb L.J., Lewis N.S. Comparison of the electrical properties and chemical stability ofcrystalline silicon (111) surfaces alkylated using grignard reagents or olefins with Lewis acidcatalysts[J]. The Journal of Physical Chemistry B,2003,107(23):5404–5412.
    [93] Zhang Y., Wang H., Liu Z., Zou B., Duan C.Y., Yang T. Optical absorption andphotoelectrochemical performance enhancement in Si tube array for solar energy harvestingapplication[J]. Applied Physics Letters,2013,102(16):163906–163906-4.
    [94] Shingubara S., Okino O., Murakami Y., Sakaue H., Takahagi T. Fabrication of nanohole arrayon Si using self-organized porous alumina mask[J]. Journal of Vacuum Science&TechnologyB,2001,19(5):1901–1904.
    [95] Yu Y.J., Zhao Y., Ryu S., Brus L.E., Kim K.S., Kim P. Tuning the graphene work function byelectric field effect[J]. Nano Letters,2009,9(10):3430–3434.
    [96] Betancur R., MaymóM., Elias X., Vuong L.T., Martorell J. Sputtered NiO as electron blockinglayer in P3HT: PCBM solar cells fabricated in ambient air[J]. Solar Energy Materials&SolarCells,2011,95(2):735–739.
    [97] Hagen J.A., Li W., Steckl A.J., Grote J.G. Enhanced emission efficiency in organiclight-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer[J].Applied Physics Letters,2006,88(17):171109–171111.
    [98] Peng K.Q., Fang H., Hu J.J., Wu Y., Zhu J., Yan Y. J. et al. Metal-particle-induced, highlylocalized site-specific etching of Si and formation of single-crystalline Si nanowires inaqueous fluoride solution[J]. Chemistry-A European Journal,2006,12(30):7942–7947.
    [99] Levitsky I.A., Euler W.B., Tokranova N., Xu B., Castracane J. Hybrid solar cells based onporous Si and copper phthalocyanine derivatives[J]. Applied Physics Letters,2004,85(25):6245–6247.
    [100] Zhang A., Kim H.K., Cheng J., Lo Y.-H. Ultrahigh responsivity visible and infrared detectionusing silicon nanowire phototransistors[J]. Nano Letters,2010,10(6):2117–2120.
    [101] Reina A., Jia X.T., Ho J., Nezich D., Son H., Bulovic V. Large Area, Few-layer graphene filmson arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(1):30–35.
    [102] Bansal A., Li X.L., Lauermann I., Lewis N.S., Yi S.I., Weinberg, W.H. Alkylation of Sisurfaces using a two-step halogenation/Grignard route[J]. Journal of the American ChemicalSociety,1996,118(30):7225–7226.
    [103] Haick H., Hurley P.T., Hochbaum A.I., Yang P.D., Lewis, N.S. Electrical characteristics andchemical stability of non-oxidized, methyl-terminated silicon nanowires[J]. Journal of theAmerican Chemical Society,2006,128(28):8990–8991.
    [104] Zhang F.T., Sun B.Q., Song T., Zhu X.L., Lee S. T. Air Stable, Efficient hybrid photovoltaicdevices based on poly(3-hexylthiophene) and silicon nanostructures[J]. Chemistry of Materials,2011,23(8):2084–2090.
    [105] Das S., Sudhagar P., Ito E, Lee D.Y., Nagarajan S., Lee S.Y. et al. Effect of HNO3functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitizedsolar cells[J]. Journal of Materials Chemistry,2012,22(38):20490–20497.
    [106] Xie C., Lv P., Nie B., Jie J.S., Zhang X.W., Wang Z. et al. Monolayer graphene film/siliconnanowire array Schottky junction solar cells[J]. Appiled Physics Letters,2011,99(13):133113–133113-3.
    [107] S. Maldonado, D. Knapp and N. S. Lewis, Near-ideal photodiodes from sintered goldnanoparticle films on methyl-terminated Si(111) surfaces[J]. Journal of the AmericanChemical Society,2008,130(11):3300–3301.
    [108] Sieval A.B., Huisman C.L., Sch necker A., Schuurmans F.M., van der Heide A.S., Goossens A.et al. Silicon surface passivation by organic monolayers: minority charge carrier lifetimemeasurements and Kelvin probe investigations[J]. The Journal of Physical Chemistry B,2003,107(28):6846–6852.
    [109] Giovannetti G., Khomyakov P.A., Brocks G., Karpan V.M., Van den Brink J., Kelly P.J.Doping graphene with metal contacts[J]. Physical Review Letters,2008,101(2):026803–026803-4.
    [110] Park Y., Choong V., Gao Y., Hsieh B.R., Tang C.W. Work function of indium tin oxidetransparent conductor measured by photoelectron spectroscopy[J]. Applied Physics Letters,1996,68(19):2699–2701.
    [111] Ihm K., Lim J.AT., Lee K.-J., Kwon J.W., Kang T.-H., Chung S. et al. Number of graphenelayers as a modulator of the open-circuit voltage of graphene-based solar cell[J]. AppliedPhysics Letters,2010,97(3):032113–032113-3.
    [112] Zhang F.T., Liu D., Zhang Y.F., Wei H.X., Song T., Sun B.Q. Methyl/Allyl monolayer onsilicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell[J]. ACSApplied Materials&Interfaces,2013,5(11):4678–4684.
    [113] Luo, L.B., Yang, X.B., Liang, F.X., Xu, H., Zhao, Y., Xie, X. Surface defects-induced p-typeconduction of silicon nanowires[J]. The Journal of Physical Chemistry C,2011,115(38):18453–18458.
    [114] Green M.A., Emery K., Hishikawa Y., Warta W., Solar cell efficiency tables (version37)[J].Progress in Photovoltaics: Research and Applications,2011,19(6):84–88.
    [115] Shen X.J., Sun B.Q., Liu D., Lee S.T. Hybrid heterojunction solar cell based onorganic/inorganic silicon nanowire array architecture[J]. Journal of the American ChemicalSociety,2011,133(48):19408–19415.
    [116] Brillson L.J., Metal-semiconductor interfaces[J]. Surface science,1994,299:909–927.
    [117] Avasthi S., Lee S., Loo Y.-L., Sturm, J. C. Role of majority and minority carrier barrierssilicon/organic hybrid heterojunction solar cells[J]. Advanced Materials,2011,23(48):5762–5766.
    [118] Kim J.Y., Lee K., Coates N. E., Moses D., Nguyen T.-Q., Dante M. Efficient tandem polymersolar cells fabricated by all-solution processing[J]. Science,2007,13,317(5835):222–225.
    [119] Shaw P.E., Ruseckas A., Samuel I.D.W. Exciton diffusion measurements in poly(3-hexylthiophene)[J]. Advanced Materials,2008,20(18):3516–3520.
    [120] Kim K.K., Reina A., Shi Y.M., Park H., Li L.J., Lee Y.H. et al. Enhancing the conductivity oftransparent graphene films via doping[J], Nanotechnology,2010,21(28):285205–285210.
    [121] Gunesx F., Shin H.J., Biswas C., Han G.H., Kim E.S., Chae S. J. et al. Layer-by-layer dopingof few-layer graphene film[J]. ACS Nano,2010,4(8):4595–4600.
    [122] Guo, B., Fang, L., Zhang, B., Gong, J.R. Graphene doping: a review[J]. Insciences Journal,2011,1(2):80–89.
    [123] Jung Y., Li X.K., Rajan N.K., Taylor A.D., Reed M. A., Record high efficiency single-walledcarbon nanotube/silicon p–n junction solar cells[J]. Nano Letters,2013,13(1):95–99.
    [124] Sze S.M., Ng K.K. Physics of Semiconductor Devices[M],3rd Edition. Hoboken, NJ: JohnWiley&Sons,2007:35–37.
    [125] Miao X.C., Tongay S., Petterson M.K., Berke K., Rinzler A.G., Appleton B.E. High efficiencygraphene solar cells by chemical doping[J]. Nano Letters,2012,12(6):2745–2750.
    [126] Moliton A., Nunzi J. M. How to model the behaviour of organic photovoltaic cells[J]. PolymerInternational,2006,55(6):583-600.
    [127] Xu J., Yang X., Yang Q.D., Wong T.L., Lee C.S. Cu2ZnSnS4Hierarchical Microspheres as anEffective Counter Electrode Material for Quantum Dot Sensitized Solar Cells[J]. The Journalof Physical Chemistry C,2012,116(37):19718–19723.
    [128] Yablonovitch E., Allara D.L., Chang C.C., Gmitter T., Bright T.B., Unusually lowsurface-recombination velocity on silicon and germanium surfaces[J]. Physical Review Letters,1986,57(2):249.
    [129] Garnett E, Yang P.D. Light trapping in silicon nanowire solar cells[J]. Nano Letters,2010,10(3):1082–1087.
    [130] Hu L., Chen G., Analysis of optical absorption in silicon nanowire arrays for photovoltaicapplications[J]. Nano Letters,2007,7(11):3249–3252.
    [131] Li L., Peng K.Q., Hu B., Wang X., Hu Y., Wu X.L., Lee S.T. Broadband optical absorptionenhancement in silicon nanofunnel arrays for photovoltaic applications[J]. Applied PhysicsLetters,2012,100(22):223902–223902-4.
    [132] Zhang X.Z., Xie C., Jie J.S., Zhang X.W., Wu Y.M., Zhang W.J. High-efficiency graphene/Sinanoarray Schottky junction solar cells viasurface modification and graphene doping[J].Journal of Materials Chemistry A,2013,1(22):6593–6601.
    [133] Xie C. Zhang X.Z., Wu Y.M., Zhang X.J., Zhang X.W., Wang Y. Surface passivation and bandengineering: a way toward high efficiency graphene–planar Si solar cells[J]. Journal ofMaterials Chemistry A,2013,1(30):8567–8574.
    [134] Cui Y., Zhong Z.H., Wang D.L., Wang W.U., Lieber C.M. High performance silicon nanowirefield effect transistors[J]. Nano Letters,2003,3(2):149–152.
    [135] Cui Y., Wei Q.Q., Park H.K., Lieber C.M., Nanowire nanosensors for highly sensitive andselective detection of biological and chemical species[J]. Science2001,293(5533):1289–1292.
    [136] Luo L.B., Jie J.S., Zhang W.F. He Z.B., Wang J.X., Yuan G.D. et al. Silicon nanowire sensorsfor Hg2+and Cd2+Ions[J]. Applied Physics Letters,2009,94(19):193101–103101-3.
    [137] Huang Y., Duan X.F., Cui Y., Lauhon J., Kim K.H., Lieber C.M. Logic gates and computationfrom assembled nanowire building blocks[J]. Science2001,294(5545):1313–1317.
    [138] Xie C., Jie J.S., Nie B., Yan T.X., Li Q., Lv P. et al. Schottky solar cells based on graphenenanoribbon/multiple silicon nanowires junctions[J]. Applied Physics Letters,2012,100(19):193103–.193103-4.
    [139] J., Dunbar R.B., Hesse H.C., Wiedemann W., Schmidt-Mende L. Nanostructured organic andhybrid solar cells[J]. Advanced Materials,2011,23(16):1810–1828.
    [140] Tian B.Z., Zheng X.L., Kempa T.J., Fang Y., Yu N.F., Yu G.H. Coaxial silicon nanowires assolar cells and nanoelectronic power sources[J]. Nature,2007,449(7164):885–889.
    [141] Czaban J.A., Thompson D.A., Lapierre R.R., GaAs core-shell nanowires for photovoltaicapplications[J]. Nano Letters,2009,9(1):148–154.
    [142] Lu W.H., Wang C.W., Yue W., Chen L.W. Si/PEDOT:PSS core/shell nanowire arrays forefficient hybrid solar cells[J]. Nanoscale2011,3(9):3631–3634.
    [143] Y.L., Wang L., Zhang H.C., Liu Y., Wang H.Y., Kang Z.W. et al. Graphitic carbon quantumdots as a fluorescent sensing platform for highly efficient detection of Fe3+ions[J]. RSCAdvances,2013,3(11):3733–3738.
    [144] Zhang X., Chen W., Hong L.L. et al. One-pot synthesis of N-doped carbon dots with tunableluminescence properties[J]. Journal of Materials Chemistry,2012,22(33):16714–16718.
    [145] Li H.T., Kang Z. W., Liu Y., Lee S.T. Carbon nanodots: synthesis, properties andapplications[J]. Journal of Materials Chemistry,2012,22(46):24230–24253.
    [146] Yu H. Zhang H.C., Huang H., Liu Y., Li H.T., Ming H. ZnO/carbon quantum dotsnanocomposites: one-step fabrication and superior photocatalytic ability for toxic gasdegradation under visible light at room temperature[J]. New Journal of Chemistry,2012,36(4):1031–1035.
    [147] Fan Y.Q., Cheng H.H., Zhou C., Xie X.J., Liu Y., Dai L.M. et al. Honeycomb architecture ofcarbon quantum dots: a new efficient substrate to support gold for stronger SERS[J].Nanoscale,2012,4(5):1776–1781.
    [148] Li H.T., He X.D., Kang Z.H., Huang H., Liu Y., Liu J.L. rt al. Water-soluble fluorescent carbonquantum dots and photocatalyst design[J]. Angewandte Chemie International Edition,2010,49(26):4430–4434.
    [149] Zhang H.C., Ming H., Lian S.Y., Huang H., Li H.T., Zhang L.L. et al. Fe2O3/carbon quantumdots complex photocatalysts and their enhanced photocatalytic activity under visible light[J].Dalton Transactions,2011,40(41):10822–10825.
    [150] Zhang H.C., Huang H., Ming H., Li H.T., Zhang L.L., Liu Y. et al. Carbon quantumdots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability undervisible light[J]. Journal of Materials Chemistry,2012,22(21):10501–10506.
    [151] Zhang X., Wang F., Huang H., Li H.T., Han X., Liu Y. et al. Carbon quantum dot sensitizedTiO nanotube arrays for photoelectrochemical hydrogen generation under visible light[J].Nanoscale,2013,5(6):2274–2278.
    [152] Zhang F.T., Song T., Sun B.Q. Conjugated polymer-silicon nanowire array hybrid Schottkydiode for solar cell application[J]. Nanotechnology,2012,23(19):194006-194011.
    [153] Wang F., Zhang Y.L., Liu Y., Wang X.F., Shen M.R., Lee S.T. et al. Opto-electronic conversionlogic behaviour through dynamic modulation of electron/energy transfer states at theTiO2-carbon quantum dot interface[J]. Nanoscale,2013,5(5):1831–1835.
    [154] Xu J., Yang X., Yang Q.D., Wong T.L., Lee S.T., Zhang W.J., Lee C.S. Arrays of CdSesensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage[J].Journal of Materials Chemistry,2012,22(26):13374–13379.
    [155] Yang S. H., Pettiette C. L., Conceicao J., Cheshnovsky O., Smalley R. E. UPS ofbuckminsterfullerene and other large clusters of carbon[J]. Chemical physics letters,1987,139(3):233–238.
    [156] Henrich V.E., Dresselhaus G., Zeiger H.J. Observation of two-dimensional phases associatedwith defect Sstates on the surface of TiO2[J]. Physical Review Letters,1976,36(22):1335–1339.
    [157] Chen C.C., Aykol M., Chang C.C., Levi A.F.J., Cronin S.B. Graphene-silicon Schottkydiodes[J]. Nano Letters,2011,11(5):1863–1867.
    [158] Song T., Zhang F.T., Lei X.F., Xu Y.L., Lee S.T., Sun B.Q. Core-shell structured photovoltaicdevices based on PbS quantum dots and silicon nanopillar arrays[J]. Nanoscale,2012,4(4):1336–1343.
    [159] Jung J.-Y., Um H.-D., Jee S.-W., Park K.-T., Bang J.H., Lee J.H. Optimal design forantireflective Si nanowire solar cells[J]. Solar Energy Materials and Solar Cells,2013,112(5):84–90.
    [160] Steim R., Choulis S.A., Schilinsky P., Barbec C.J. Interface modification for highly efficientorganic photovoltaics[J]. Applied Physics Letters,2008,92(9):093303–093303-3.
    [161] Wu Y.M., Zhang X.Z., Jie J.S., Xie C., Zhang X.W., Sun B.Q. et al. Graphene transparentconductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunctionsolar cells[J]. The Journal of Physical Chemistry C,2013,117(23):11968–11976.
    [162] Wang Z.L., Wu W.Z. Nanotechnology-enabled energy harvesting for self-poweredmicro-/nanosystems[J]. Angewandte Chemie International Edition,2012,51(47):11700–11721.
    [163] An X.H., Liu F.Z., Jung Y.J., Kar S. Tunable graphene-silicon heterojunctions for ultrasensitivephotodetection[J]. Nano Letters,2013,13(3):909–916.
    [164] Casalino M., Sirleto L., Iodice M., Saffioti N., Gioffre M., Rendina I. et al. Cu/p-Si Schottkybarrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide[J].Applied Physics Letters,2010,96(24):241112–241112-3.
    [165] Manna S., Das S., Mondal S.P., Singha R., Ray S.K. High efficiency Si/CdS radial nanowireheterojunction photodetectors using etched Si nanowire templates[J]. The Journal of PhysicalChemistry C,2012,116(12):7126–7133.
    [166] Luo L.B., Liang F.X., Jie J.S. Sn-catalyzed synthesis of SnO2nanowires and theiroptoelectronic characteristics[J]. Nanotechnology,2011,22(48):485701–485707.
    [167] Luo L.B., Jie J.S., Chen Z.H., Zhang X.J., Fan X., Yuan G.D. et al. Photoconductive propertiesof selenium nanowire photodetectors[J]. Journal of Nanoscience and Nanotechnology,2009,9(11):6292–6298.
    [168] Bae J., Kim H., Zhang X.M., Dang C.H., Zhang Y., Choi.J. et al. Si nanowiremetal-insulator-semiconductor photodetectors as efficient light harvesters[J]. Nanotechnology,2010,21(9):095502–095506.
    [169] Tu C.C., Lin L.Y. High efficiency photodetectors fabricated by electrostatic layer-by-layerself-assembly of CdTe quantum dots[J]. Applied Physics Letters,2008,93(16):163107–163107-3.
    [170] Morales-Acevedo A. Thin film CdS/CdTe solar cells: research perspectives[J]. Solar Energy,2006,80(6):675–681.
    [171] Jie J.S., Zhang W.J., Bello I., Lee C.S., Lee S.T. One-dimensional II-VI nanostructures:synthesis, properties and optoelectronic applications[J]. Nano Today,2010,5(4):313–336.
    [172] Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices[J]. Nature materials,2010,9(3):205–213.
    [173] Matsumoto H., Kuribayashi K., Uda H., Komatsu Y., Nakano A., Ikegami S. Screen-printedCdS/CdTe solar cell of12.8%efficiency for an active area of0.78cm2[J]. SolarCells,1984,11(4):367–373.
    [174] Sites J., Pan J. Strategies to increase CdTe solar-cell voltage[J]. Thin Solid Films,2007,515(15):6099–6102.
    [175] Britt J., Ferekides C. Thin-film CdS/CdTe solar cell with15.8%efficiency[J]. Applied PhysicsLetters,1993,62(22):2851–2852.
    [176] Wu X.Z. High-efficiency polycrystalline CdTe thin-film solar cells[J]. Solar Energy,2004,77(6):803–814.
    [177] Wang, X., Zhu, H., Xu, Y., Wang, H., Tao, Y., Hark, S. et al. Aligned ZnO/CdTe core shellnanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties[J]. ACSNano,2010,4(6):3302–3308.
    [178] Kum M.C., Jung H., Chartuprayoon N., Chen W., Mulchandani A., Myung, N.V. TuningElectrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon[J]. TheJournal of Physical Chemistry C,2012,116(16):9202–9208.
    [179] Zhou J. Chen G.H., Nie B., Zou J., Song J. Luo L.B. et al. Growth of multi-step shaped CdTenanowires and a distinct photoelectric response in a single nanowire[J]. CrystEngComm,2013,15(34):6863–6869.
    [180] Ye Y., Dai L., Sun T., You L.P., Zhu R., Gao J.Y. et al. High-quality CdTe nanowires: synthesis,characterization, and application in photoresponse devices[J]. Journal of Applied Physics,2010,108,044301–044306.
    [181] Xie X., Kwok S.Y., Lu Z.Z., Liu Y.K., Cao Y.L., Luo L.B. et al. Visible-NIR photodetectorsbased on CdTe nanoribbons[J]. Nanoscale,2012,4(9):2914–2919.
    [182] Hochbaum A.I., Fan R., He R.R., Yang P.D., Controlled growth of Si nanowire arrays fordevice integration[J]. Nano Letters,2005,5(3):457–460.
    [183] Huang Z.P., Geyer N., Werner P., Boor J. d., Gosele U. Metal-assisted chemical etching ofsilicon: A review[J]. Advanced Materials,2011,23(2):285–308.
    [184] Garnett E., Yang P.D. Light trapping in silicon nanowire solar cells[J]. Nano Letters,2010,10(3):1082–1087.
    [185] Jie J.S., Zhang W.J., Peng K.Q., Yuan G.D., Lee C.S., Lee S.T. Surface-dominated transportproperties of silicon nanowires [J]. Advanced Functional Materials,2008,18(20):3251–3257.
    [186] Garnett E.C., Yang P.D. Silicon nanowire radial p n junction solar cells[J]. Journal of theAmerican Chemical Society,2008,130(29):9224–9225.
    [187] Sivakov V., Andra G., Gawlik A., Berger A., Plentz J., Falk F. et al. Silicon nanowire-basedsolar cells on glass: synthesis, optical properties, and cell parameters[J]. Nano Letters,2009,9(4):1549–1554.
    [188] Cai X.M., Zeng S.W., Zhang B.P. Fabrication and characterization of InGaN pin homojunctionsolar cell[J]. Applied Physics Letters,2009,95(17):173504–173504-3.
    [189] Wu D., Jiang Y., Li S.Y., Li F.Z., Li J.W., Lan X.Z. et al. Construction of high-quality CdS:Gananoribbon/silicon heterojunctions and their nano-optoelectronic applications[J].Nanotechnology,2011,22(40):405201–405206.
    [190] Zhang X.W., Zhang X.J., Zhang X.Z., Zhang Y.P., Bian L., Wu Y.M. et al. ZnSe nanoribbon/Sinanowire p–n heterojunction arrays and their photovoltaic application with graphenetransparent electrodes[J]. Journal of Materials Chemistry,2012,22(43):22873–22880.
    [191] Zhu L., Jie J.S., Wu D., Luo L.B., Wu C.Y., Zhu Z.F.et al. Synthesis of Sb-doped p-type CdTenanowires and their application as high-performance nano-Schottky barrier diodes[J]. Journalof Nanoengineering and Nanomanufacturing,2012,2(2):191–196.
    [192] Fan Z.Y., Ho J.C., Takahashi T., Yerushalmi R., Takei K., Ford A.C. et al. Toward thedevelopment of printable nanowire electronics and sensors[J]. Advanced Materials,2009,21(37):3730–3743.
    [193] Wu D., Jiang Y., Zhang Y.G., Li J.W., Yu Y.Q., Zhang Y.P. et al. Device structure-dependentfield-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons[J]. Journal ofMaterials Chemistry,2012,22(13):6206–6212.
    [194] Maiolo J.R., Atwater H.A., Lewis N.S., Macroporous silicon as a model for silicon wire arraysolar cells[J]. The Journal of Physical Chemistry C,2008,112(15):6194–6201.
    [195] Luo L.B., Yang X.B., Liang F.X., Xu H., Zhao Y., Xie X. et al. Surface danglingbond-mediated molecules doping of germanium nanowires[J]. The Journal of PhysicalChemistry C,2011,115(49):24293–24299.
    [196] Guo C.S., Luo L.B., Yuan G.D., Yang X.B., Zhang R.Q., Zhang W.J. et al. Surface passivationdoping of silicon nanowires[J]. Angewandte Chemie International Edition,2009,121(52):10080–10084.
    [197] Ohmi T., Isagawa T., Kogure M., Imaoka T. Native oxide growth and organic impurityremoval on Si surface with ozone-injected ultrapure water[J]. Journal of the ElectrochemicalSociety,1993,140(3):804–810.
    [198] He L.N., Jiang C.Y., Wang H., Lai D. Rusli. High efficiency planar Si/organic heterojunctionhybrid solar cells[J]. Applied Physics Letters,2012,100(7):073503–073503-3.
    [199] Amin N., Isaka T., Yamada A., Konagai M. Highly efficient1μm thick CdTe solar cells withtextured TCOs[J]. Solar Energy Materials and Solar Cells,2001,67(1):195–201.
    [200] Macfarlane G.G., McLean T.P., Quarrington J.E., Roberts V. Fine structure in theabsorption-edge spectrum of Si[J]. Physical Review,1958,111(5):1245–1250.
    [201] Jie J.S., Zhang W.J., Jiang Y., Meng X.M., Li Y.Q., Lee S.T. Photoconductive characteristics ofsingle-crystal CdS nanoribbons[J]. Nano Letters,2006,6(9):1887–1892.
    [202] Luo L.B., Zeng L.H., Xie C., Yu Y.Q., Liang F.X., Wu C.Y. et al. Light trapping and surfaceplasmon enhanced high-performance NIR photodetector[J]. Scientific Reports,2014, DOI:10.1038/srep03914.
    [203] Wu D., Jiang Y., Zhang Y.G., Yu Y.Q., Zhu Z.F., Lan X.Z. et al. Self-powered and fast-speedphotodetectors based on CdS:Ga nanoribbon/Au Schottky diodes[J]. Journal of MaterialsChemistry,2012,22(43):23272–23276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700