用户名: 密码: 验证码:
镁/铝异种金属低温钎焊工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金具有比强度高、导热导电性好、减振性好、易切削加工、易回收利用等一系列优点,在汽车、电子、航空领域中有极其重要的应用价值和广阔的应用前景。铝合金同样具有比强度高、导热导电性好、易切削加工以及耐腐蚀性强等特点,在各行业得到广泛的应用。由于镁合金和铝合金应用的广泛性和交叉性,镁/铝异种金属的连接就显得非常必要。采用传统的熔化焊以及固相焊连接镁/铝异种金属,极易在接头中形成脆性Mg-Al系金属间化合物,恶化接头组织性能。钎焊能够有效地连接异种金属,尤其是低温钎焊,它能够在相对较低的温度下实现连接,最大限度地避免有害组织的出现,优化接头组织性能。
     本文采用Sn-xZn系、Sn-30Zn-xCe系钎料对镁合金(AZ31B)/铝合金(6061)异种金属进行低温钎焊。通过试验研究,对适合镁/铝低温钎焊的钎料合金进行设计,并研究不同工艺参数和不同钎料成分对Mg/Al接头的组织演变过程以及力学性能的影响机制。
     研究表明,当采用Sn-30Zn钎料在钎焊温度为330℃、保温时间为5s、预加载荷为2MPa、加热速率为115℃/min的参数下进行Mg/Al异种金属低温钎焊时,接头能够获得最好的组织及性能。接头钎缝区靠近镁合金母材侧主要是一层很薄的Mg2Sn化合物过渡层以及弥散分布的Al-Sn-Zn固溶体;钎缝中心区主要是Sn-Zn组织以及弥散分布的块状Mg2Sn金属间化合物和弥散分布的Al-Sn-Zn固溶体;而在钎缝靠近铝合金母材侧主要是一层很薄的Al-Sn-Zn固溶体过渡层。Al-Sn-Zn固溶体的形成并且弥散分布于Mg/Sn-30Zn/Al接头中能够有效地降低接头的脆性,进而使得钎焊接头能够获得较高的力学性能。然而,钎缝区中部的块状Mg2Sn金属间化合物由于其尺寸较大,最终导致该处成为接头的薄弱区域,接头在此处发生断裂。在此基础上,采用稀土Ce对Sn-30Zn钎料进行合金化,进一步优化接头组织性能。研究表明,相比于Sn-30Zn钎料而言,Sn-30Zn钎料中适量的Ce的添加有利于Mg/Al钎焊接头钎缝区中Mg2Sn金属间化合物的减少和Al-Sn-Zn固溶体的增加,该组织的转变有利于增强接头的力学性能。然而,过量的Ce的介入,将会在接头中产生Ce-Sn、Ce-Zn等金属间化合物。
     本文经一系列的参数以及钎料成分优化,Sn-30Zn-0.05Ce钎料被认为是最适合Mg/Al异种金属低温钎焊的填充焊料。Mg/Sn-30Zn-0.05Ce/Al接头能够提供较高的剪切强度77.48MPa。
Magnesium and its alloys are extensively applied in automotive, electronics and aerospace industries, due to their outstanding physical and mechanical properties such as high strength-to-weight ratio, excellent electrical and thermal conductivity, high damping capacity, ease of machinability and a large recycling potential. Aluminium and its alloys have a series of advantages including high strength-to-weight ratio, excellent electrical and thermal conductivity, ease of machinability and high corrosion resistance, which shows a wide application prospects. It is necessary to bond Mg and Al to form complex structure because of the universal and intersecting application of Mg and Al alloys. Unfortunately, traditional fusion welding processes and solid-state joining processes are normally not suitable for joining of Mg and Al alloys due to the formation of Mg-Al intermetallic compounds, which seriously deteriorates the performance of Mg/Al joint. Brazing, especially low temperature brazing, is considered as a proper method for joining dissimilar metals, because it can achieve a reliable join in the relatively low temperature and maximize to avoid the formation of detrimental structure, and subsequently the microstructure and mechanical property of the joint are optimized.
     In this article, AZ31B Mg alloy and6061Al alloy are joined by using low temperature brazing with Sn-xZn and Sn-30Zn-xCe solder alloys. The effect of technological parameter and solder composition on microstructure evolution and mechanical properties of the different brazed joints are investigated. By experimental study, an optimized solder alloy, which is the most favorable filler alloy for joining Mg/Al dissimilar metals, is obtained.
     Results show that When the solder of Sn-30Zn is selected to join Mg/Al dissimilar metals, an optimized microstructure and mechanical property of the joint can be obtained with using the optimized brazing parameters. These parameters are brazing temperature of330℃, holding time of5s, operating pressure of2MPa and heating rate of about115℃/min. For Mg/Sn-30Zn/Al brazed joint, Mg2Sn IMC transition layer and dispersive distribution of Al-Sn-Zn solid solutions present in the brazing zone of Mg side, blocky Mg2Sn IMCs and Al-Sn-Zn solid solutions are both generated and dispersedly distributed in brazing zone, while Al-Sn-Zn solid solution transition layer is formed in the brazing zone of Al side. The Al-Sn-Zn solid solutions, forming and dispersing in the brazing zone of the Mg/Sn-30Zn/Al joint in the brazing process, reduce the embrittlement of the brazed joint, and thus the mechanical property is greatly improved. However, the coarse Mg2Sn IMCs form in the center of the brazing zone, which makes there to be the weak area, and the joint fails at this area. On this basis, Ce is added into Sn-30Zn solder alloy in order to further optimize the microstructure and mechanical property of the Mg/Al joint. Results show that comparing with the solder of Sn-30Zn, adding appropriate amount of Ce into Sn-30Zn solder is conducive to decreasing the amount of Mg2Sn intermetallic compounds and increasing the amount of Al-Sn-Zn solid solutions in the brazing zone of the brazed joint, which enhances the mechanical property of soldered joint. Unfortunately, the excessive content of Ce leads to the formation of some Ce-Zn and Ce-Sn intermetallic compounds in brazing zone and subsequently decreases the pull force of soldered joint.
     After a series of technology parameters and solder compositions optimization, Sn-30Zn-0.05Ce solder is considered as the most favorable filler alloy for joining Mg/Al dissimilar metals in this article, and the Mg/Sn-30Zn-0.05Ce/Al joint can offer the highest average shear strength of77.48MPa.
引文
[1]文斌,蒋海燕,曾小勤,等.镁合金焊接技术研究进展[J].轻合金加工技术,2005,33(8):1-5.
    [2]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004.
    [3]邱惠中.扩散焊及其在航空航天领域的应用[J].宇航材料工艺,1997(4):27-32.
    [4]Somekawa H, Hosokawa H, Watanabe H, et al. Experimental study on diffusion bonding in pure magnesium [J]. Materials Transactions,2001,42(10):205-207.
    [5]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [6]姚素娟,张英,褚丙武,等.镁及镁合金的应用与研究[J].世界有色金属,2005(1):26-30.
    [7]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [8]武仲河,战中学,孙全喜,等.铝合金在汽车工业中的应用与发展前景[J].内蒙古科技与经济,2008(9):59-60.
    [9]霍烨.奥迪公司轿车铝材应用技术[J].汽车工业研究,2000(6):34-35.
    [10]任小灵,钟渝.浅谈汽车工业的发展与铝工业[J].上海有色金属,2000,21(2):80-87.
    [11]刘鹏,李亚江,耿浩然,等Mg/Al异种金属的焊接研究现状[J].焊接技术,2006,35(2):1-3.
    [12]邹僖.钎焊[M].北京:机械工业出版社,1988.
    [13]邢丽,柯黎明,孙德超,等.镁合金薄板的搅拌摩擦焊工艺[J].焊接学报,2001,22(6):18-20.
    [14]Bussiba A, Ben Artzy A, Shtechman A, et al. Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies [J]. Materials Science and Engineering A,2001,302:56-62.
    [15]波尔米尔,陈昌麟,邹愉译.轻合金[M].北京:国防工业出版社,1985.
    [16]刘黎明,苗玉刚.镁合金焊接技术探索[J].汽车焊接国际论坛,2003(11):232-236.
    [17]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].舫空工程与维修,2002(4):41-42.
    [18]Pekguleryuz M 0, Avedesian M. Magnesium alloying, some potentials for alloy development[J].轻金属,1992,42(12):679-685.
    [19]美国金属协会.金属手册[M].第九版,第二卷,性能与选择:有色合金及纯金属.北京:机械工业出版社,1994.
    [20]徐占武,潘良仁.液态停留对Mg-Al-Zn系合金机械性能的影响[J].特种铸造及有色合金,1984,(3):34-38.
    [21]黄昌耀.中国发展镁合金压铸工业的前景[J].特种铸造及有色合金,2001(1):155-164.
    [22]Hu H. Squeeze casting of magnesium alloys and their composites [J]. Journal of Materials Science,1998,33:1579-1589.
    [23]Ishikawa K, Kobayashi Y, Shibusawa T. Fatigue fracture toughness of AZ91D alloys at ambient temperature [J]. Journal of Material Science letters,1997,16:1084-1085.
    [24]Li H. Strueture and mechanical properties of rapidly solidified magnesium based Mg-Al-Zn-RE alloys consolidated by extrusion [J].Materials Science and Technology,1996,12(12):81-89.
    [25]唐远景.我国铝及铝合金的应用及趋势浅析[J].轻金属,1994(5):61-64.
    [26]郝士明.镁的合金化与合金相图[J].材料与冶金学报,2002,1(3):166-170.
    [27]李亚江,刘鹏,王娟,夏春智.Mg/Al异种材料脉冲TIG焊接头的组织结构[J].焊接学报,2006,9(27):39-42.
    [28]Liu P, Li Y J, Geng H R, Wang J. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials [J].Materials Letters 2007(61):1288-1291.
    [29]王恒,刘黎明,柳绪静.镁铝异种材料TIG焊接接头扩散行为分析[J].焊接学报,2005,26(7):5-8.
    [30]Liu X J, Huang R S, Wang H Y, et al. Improvement of TIG lap weldability of dissimilar metals of Al and Mg [J]. Science and Technology of Welding & Joining,2007,12(3):258-260.
    [31]Ben-Artzy A, Munitz A, Kohn G, et al. Joining of light hybrid constructions made of magnesium and aluminum alloys [C]. Magnesium Technology,Seactle,2002:295-302.
    [32]Wang J, Feng J C, Wang Y X. Microstructure of Al-Mg dissimilar weld made by cold metal transfer MIG welding [J]. Materials Science and Technology,2008,24(7):827-831.
    [33]周炳琨,高以智,陈倜嵘.激光原理[M].北京:国防工业出版社,2000.
    [34]吕百达.激光光学[M].北京:高等教育出版社,2003.
    [35]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005.
    [36]李慧,钱鸣,李达.金属间化合物对AZ31B镁/6061铝异种金属激光焊接性的影响[J].激光杂志,2007,28(5):61-63.
    [37]Borrisutthekul R,Miyashita Y,Mutoh Y. Dissimilar material laser welding between magnesium alloy AZ31 B and aluminum alloy A5052-0 [J]. Science and Technology of Advanced Materials,2005,6(2):199-204.
    [38]柳绪静,刘黎明,王恒,等.镁铝异种金属激光-TIG复合热源焊焊接性分析[J].焊接学报,2005,26(8):31-34.
    [39]Liu L M, Liu X J, Liu S H. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer [J].Scripta Materialia,2006,55(4):383-386.
    [40]Qi X D, Liu L M. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique [J]. Materials and Design,2012,33:436-443.
    [41]王红阳.镁铝异种金属激光胶接焊工艺及微观组织研究[D].大连理工大学,2010.
    [42]Liu L M, Wang H Y, Zhang Z D. The analysis of laser weld bonding of Al alloy to Mg alloy [J].Scripta Materialia,2007,56(6):473-476.
    [43]Wang H Y, Liu L M, Zhu M L, et al. Laser weld bonding of A6061A1 alloy to AZ31B Mg alloy [J]. Science and Technology of Welding & Joining,2007,12(3):261-265(5).
    [44]Liu L M, Wang H Y. The effect of the adhesive on the microcracks in the laser welded bonding Mg to Al joint[J]. Materials Science and Engineering A,2009,507:22-28.
    [45]Yan Y B, Zhang Z W, Shen W, et al. Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate [J]. Materials Science and Engineering A,2010,527:2241-2245.
    [46]Stern A, Aizenshtein M. Bonding zone formation in magnetic pulse welds [J]. Science and Technology of Welding and Joining,2002,7(5):339-342.
    [47]Kore S D, Imbert J, Worswick M J, Zhou Y. Electromagnetic impact welding of Mg to Al sheets [J]. Science and Technology of Welding and Joining,2009,14(6):549-553.
    [48]Thomas W M,Nicholas E D. Friction stir welding for the transportation industries [J]. Materials and Design,1997,18(4/6):269-273.
    [49]Joelj D. The friction stir welding advantage [J]. Welding Journal,2001,80(5):30-34.
    [50]史耀武,唐伟.搅拌摩擦焊的原理与应用[J].电焊机,2000,1:6-9.
    [51]Somasekharan A C, Murr L E. Microstructures in friction-stir welded dissimilar and magnesium alloys to 6061-T6 aluminum [J]. Materials Characterization,2004,52(1):49-64.
    [52]Kostka A, Coelho R S, Santos J D, Pyzalla A R. Microstructure of friction stir welding of aluminium alloy to magnesium alloy [J]. Scripta Materialia,2009,60:953-956.
    [53]Zettler R. Dissimilar Al to Mg alloy friction stir welds [J]. Advanced Engineering Materials,2006,8(5):415-421.
    [54]McLean A A, Powell G L F, Brown I H, Linton V M. Friction stir welding of magnesium alloy AZ31B to aluminium alloy 5083 [J]. Science and Technology of Welding and Joining,2003,8(6):462-464.
    [55]Yutaka S S, Seung H C P, Masato M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Materialia,2004,50 (9):1233-1236.
    [56]Chen Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Materialia,2008,58(6):433-436. [57] Yan J C, Xu Z W, Li Z Y, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Materialia,2005,53(5):585-589.
    [58]Mahendran G, Balasubramanian V, Senthilvelan T. Developing diffusion bonding windows for joining AZ31B magnesium-AA2024 aluminium alloys [J].Materials and Design,2009,30:1240-1244.
    [59]刘鹏,李亚江,王娟,耿浩然.Mg/Al异种材料真空扩散焊界面区域的显微组织[J].焊接学报,2004,25(5):5-8.
    [60]Liu P, Li Y J, Geng H R, Wang J. Investigation of interfacial structure of Mg/Al vacuum diffusion-bonded joint [J]. Vacuum,2006,80:395-399.
    [61]Wang J, Li Y J, Liu P, Geng H R. Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding [J]. Journal of materials processing technology, 2008,205:146-150.
    [62]Liu L M,Tan J H, Liu X J. Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy [J]. Materials Letters,2007,61(11-12):2373-2377.
    [63]Liu L M, Tan J H, Zhao L M, Liu X J. The relationship between microstructure and properties of Mg/Al brazed joints using Zn filler metal [J]. Materials Characterization, 2008,59:479-483.
    [64]Zhao L M, Zhang Z D. Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints [J]. Scripta Materialia,2008,58:283-286.
    [65]Liu L M, Zhao L M, Xu RZ. Effect of interlayer composition on the microstructure and strength of diffusion bonded Mg/Al joint [J]. Materials and Design,2009,30:4548-4551.
    [66]肖盈盈,周健,薛峰,等.Sn-Zn系无铅焊料研究和亟待解决的问题[J].电子与封装,2006,6(4):10-14.[67] Ari M, Saatci B, Gunduz M, Payveren M, Durmus S. Thermo-electrical characterization of Sn-Zn alloys [J]. Materials Characterization,2008,59:757-763.
    [68]Massalski TB. Binary Alloy Phase Diagrams [M]. ASM International:Ohio,1990.
    [69]Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams [M]. ASM International:Ohio,1995.
    [70]Lin K L, Wen L H, Liu T P. The Microstructures of the Sn-Zn-Al Solder Alloys [J]. Journal of Electronic Materials,1998,27(3):97-105.
    [71]Garcia L R, Osorio W R, Garcia A. The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy [J]. Materials and Design,2011,32:3008-3012.
    [72]Meng F G, Wang J, Liu L B, Jin Z P. Thermodynamic modeling of the Mg-Sn-Zn ternary system [J]. Journal of Alloys and Compounds,2010,508:570-581.
    [73]Yu S P, Wang M C, Hon M H. Formation of intermetallic compounds at eutectic Sn-Zn-Al solder/Cu interface [J]. Journal of Materials Research,2001,16:76-82.
    [74]Wang H, Xue S B, Zhao F, Chen W X. Effects of Ga, Al, Ag, and Ce multi-additions on the properties of Sn-9Zn lead-free solder [J]. Journal of Materials Science:Materials in Electronics,2010,21:111-119.
    [75]Chen X, Hu A M, Li M, Mao D L, Study on the properties of Sn-9Zn-xCr lead-free solder [J].Journal of Alloys and Compounds,2008,460:478-484.
    [76]Chen W X, Xue S B, Wang H, Hu Y H, Wang J X. Effects of rare earth Ce on properties of Sn-9Zn lead-free solder [J].Journal of Materials Science:Materials in Electronics,2010,21:719-725.
    [77]Wu C M L, Yu D Q, Law C M T, Wang L. The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements [J]. Journal of Electronic Materials,2002,31(9):921-927.
    [78]刘金水,谢贤清,蒋冰,等.Ce对Zn-Al合金组织性能的影响[J].中国有色金属学报,1998,8:6-10.
    [79]Cheng T T. The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis [J]. Intermetallics,2000,8:29-37.
    [80]刘琼,卢斌,粟慧,等.添加0.1%Ce对Sn-3.0Ag-0.5Cu焊料与铜基板间的金属间化合物的影响[J].中国稀土学报,2007,25(6):707-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700