用户名: 密码: 验证码:
双馈异步风力发电系统穿越电网故障运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外风力发电产业迅猛发展,大规模风电接入带来了电网稳定性和电力调度困难等问题,因此各国风电接入标准要求风电场及其风电机组具备更强的抵御电网故障的能力。双馈异步发电机(DFIG)的定子在并网运行中与电网直接相连,电网故障容易对DFIG的运行特性产生影响,甚至造成机组故障脱网,因此值得对双馈风电机组“穿越”电网故障的相关技术问题进行深入研究。
     本文针对接入到大电网的双馈风力发电系统“穿越”电网故障的相关技术问题开展研究,工作重点在于电网故障下的DFIG特性和双馈变流器控制。通过理论分析、控制方法提出、仿真研究和实验验证,力求全面、准确、深入的完成课题研究工作,取得一些兼具科研学术和工程应用价值的成果。
     1.为了满足电网故障下对双馈风力发电系统的研究,建立了在三相静止坐标系、两相静止坐标系和两相同步旋转系下的DFIG暂态数学模型。分别采用ABC划分方案和对称分量法,揭示了实际电力系统中电压跌落故障类型的变化规律和机组并网端电压的跌落特点。综合考虑电网电压跌落和恢复两个过程,对电网不对称跌落下的DFIG电磁响应过渡过程进行了定性描述和定量分析,重点对定子暂态磁链引起的转子电压响应进行了理论计算和仿真研究,提出了根据正序和负序电网电压分别求解定子磁链和转子电压动态响应的方法,采用矢量轨迹图直观地描述了这一动态响应过程。研究发现定子磁链暂态分量和转子过压是影响DFIG系统控制性能的主要因素,这为控制软件改进和硬件保护设计提供了理论依据。
     2.基于定子磁链或定子电压定向的矢量控制,通过在转子控制中添加转子反电动势前馈补偿项,能够增强电机侧变流器(RSC)在电网电压小幅跌落下的连续运行能力。针对电网电压对称跌落,提出了一种基于比例积分谐振(PI-R)调节器的磁链有源衰减RSC改进控制算法。通过控制转子电流加快定子暂态磁链衰减并消除磁链振荡,从而降低转子过压和过流,使跌落发生后的DFIG尽快进入稳态控制,获得更加平稳的定子无功补偿电流和电磁转矩。应用PI-R调节器不但提高了RSC对转子暂态过压的抗扰性,而且保证了磁链有源衰减算法中对暂态转子电流的控制精度。基于转子控制系统的频域特性分析,给出了PI-R调节器参数的设计原则。通过仿真和实验验证了理论分析的正确性和改进算法的有效性。此外,对低电压穿越(LVRT)期间RSC的电压和电流输出能力进行分析,揭示了在严重电网故障下依靠变流器控制的局限性、以及双馈系统采用一定的硬件保护措施实现LVRT的必要性。
     3.对电网电压不对称跌落故障下的DFIG系统控制进行了深入研究。建立了不平衡电网电压下的DFIG系统数学模型。在不平衡电网电压下,分别采用基于正、负序双同步旋转坐标系(双SRF)下的双PI电流环矢量控制、和基于正序SRF下的PI-R电流矢量控制,实现了RSC与电网侧变流器(GSC)的协同控制目标。针对电网电压不对称跌落故障,提出了基于PI-R调节器的磁链有源衰减RSC改进控制算法,实现了不平衡电网电压下的稳态控制和不对称跌落下的暂态性能改进,有效消除了定子磁链振荡和电磁转矩脉动,减小转子过压和定、转子过流。通过仿真验证了改进控制算法的有效性。此外,对不对称跌落下RSC的电压和电流输出能力进行了分析。
     4.针对MW级双馈风力发电系统的LVRT控制技术进行研究。在综合考虑硬件保护措施和RSC改进控制算法及其输出容量限制的基础上,提出了双馈风电系统LVRT控制和实现方案,适用于电网电压不同深度的对称和不对称跌落故障。给出了硬件保护装置转子侧主动式crowbar和dc-chopper电阻值的选取原则。对双馈机组无功补偿控制进行研究和改进,通过GSC的实时无功补偿以及合理设计dc-chopper电阻,改善了DFIG机组的无功控制性能,通过仿真验证了方案的可行性。基于电网电压跌落和恢复下的DFIG电磁暂态响应分析,提出了定子非同步并网模拟电网电压跌落和恢复的测试方案,能够实现对MW级双馈变流器LVRT控制性能的初步测试,通过1.5MW双馈系统仿真和实验验证了测试方案可行性。最后,完成了1.5MW双馈变流器的风电场LVRT测试实验,初步验证了双馈系统软、硬件LVRT控制策略的可行性。
With rapid development of wind power generation industry at home and abroad in recent years, large-scale wind power integration brought electric dispatching difficulties and stability problem of the power system. Transmission system operators (TSOs) of countries or regions have issued their grid codes which require wind turbines to remain connected during grid faults. The doubly fed induction generator (DFIG) system is sensitive to the grid disturbance and even fault tripping, due to the stator is directly connected to the grid. Therefore it is necessary and important for DFIG system to research the control technologies of the grid fault ride-through (FRT).
     This thesis focuses on the research of DFIG characteristics and converter control technologies during grid voltage faults. Through theoretical analysis, control method improvement, simulation and experimental verification, a comprehensive, accurate and thorough research work is accomplished. It aims at obtaining some valuable conclusions and achievements for both scientific research and engineering application.
     1. The DFIG dynamic modeling is established and expressed in the three-phase stator stationary reference frame, two-phase stator stationary reference frame and two-phase rotating reference frame, respectively. Using the ABC classification scheme and symmetrical component method, the grid voltage dip fault types and characteristics at the wind turbine connecting point in the actual power system are analyzed. Under the conditions of asymmetrical grid voltage dips, the flux dynamic response and rotor overvoltage induced by grid voltage dip and recovery are qualitatively described and quantitatively analyzed. It focuses on the rotor voltage response caused by the transient stator flux by the theoretical calculation and simulation research. The method to analyze DFIG dynamic responses respectively by the means of positive and negative components under asymmetrical grid voltage dips is proposed. The dynamic response processing is visually described by the stator flux vector locus and rotor voltage vector locus. The research conclusion indicates that the transient components of stator flux and rotor overvoltage are main influencing factors to the control performance of DFIG system. This work provides a beneficial basis for the hardware parameters design and control strategy improvement.
     2. Based on the stator flux or stator voltage oriented vector controls, a rotor side converter (RSC) control which is added in the rotor electromotive force (EMF) feedforward compensation enhances the continuous operation ability of DFIG under grid voltage small amplitude disturbance. Under symmetrical grid voltage dip, an improved PI+Resonant (PI-R) control for RSC with the active flux damping is presented. The damping rate of the transient stator-flux is accelerated and flux oscillation is eliminated by means of the improved control to the rotor current. Then the rotor overvoltage and overcurrent are reduced, and stator reactive compensation current and electromagnetic torque is well controlled during grid fault. PI-R control can achieve zero steady-state error to both the fundamental dc reference and the resonant ac reference. Hence the control system interference rejection to EMF is improved, and regulation accuracy of the proposed active flux damping scheme is guaranteed. The parameters design principles on PI-R regulator are given based on frequency domain characteristics analysis. Simulation and experimental results validate the theoretical analysis and the feasibility of the improved control scheme. In addition, the capacity of voltage and current output for RSC during low voltage ride-through (LVRT) is analyzed. It reveals the software control limitation for coverter to achieve serious grid voltage dip ride-through. Thus it is necessity for DFIG system to apply some hardware protection measures to realize LVRT.
     3. The control strategy of DFIG system under asymmetrical grid voltage dip is emphasized. Dynamic modeling of DFIG system applied on unbalanced voltage conditions is established. Under unbalanced grid voltage, a coordinated control target between RSC and grid side converter (GSC) is realized, which based on two vector control schemes, viz., dual PI current controls implemented in the respective positive and negative synchronous reference frames (SRFs), and PI-R current control in the positive SRF. Under asymmetrical grid voltage fault, an improved PI-R control for RSC with the active flux damping is presented. It not only realizes the steady-state control under unbalanced grid voltage, but also improves the transient performance during asymmetrical voltage dip. The oscillations of stator flux and electromagnetic torque are well eliminated, and the rotor overvoltage and overcurrent are reduced. Simulation results validate the feasibility of the proposed control. In addition, the capacity of voltage and current output for RSC is also analyzed during LVRT.
     4. The LVRT control technology of MW-level DFIG system is investigated. Considering the hardware protection measures, improved RSC control algorithm and output capacity limitations, a comprehensive and practical LVRT control strategy is proposed, which can be applied in the symmetrical or asymmetrical grid voltage dips with different depth. The resistance value choice principles of rotor side active crowbar and dc-chopper are given. Reactive power control of DFIG system is discussed. Through GSC fast reactive power compensation and reasonable design of dc-chopper resistance, the reactive power control performance of DFIG wind turbine is improved. Simulation results prove the feasibility of the scheme. Based on the analysis of DFIG transient behaviors under the grid voltage dip and recovery, a test scheme to simulate the grid voltage dip and recovery by the stator asynchronous grid-connection is presented. The proposed test scheme can realize preliminary experiment on the LVRT control performance of MW-level DFIG converter. Simulation and experimental results of1.5MW DFIG system validate the feasibility of this test scheme. Finally, the wind farm LVRT experiment of1.5MW DFIG converter is accomplished, and the feasibility of the enhanced software and hardware control technology is validated.
引文
[1]曹新.中国能源结构调整探讨[J].中国国情国力,2009(4):21-22.
    [2]《中华人民共和国可再生能源法》[EB/OL]. http://scitech.people.com.cn/GB/1056/3230281.html.
    [3]姚兴佳,王士荣,董丽萍.风力发电技术讲座(一)风力发电技术的发展与现状[J].可再生能源,2006(1):86-88.
    [4]贺德馨.风能技术可持续发展综述[J].电力设备,2008(11):4-8.
    [5]孙宝京.我国风能资源分布[J].中外能源,2008(4):65.
    [6]Burton T. Wind Energy Handbook[M]. U.K.:JOHN WILEY & SONS, LTD,2001.
    [7]肖创英.欧美风电发展的经验与启示[M].北京:中国电力出版社,2010.
    [8]GWEC. Global Wind Report:Annual market update 2011 [R].2012.
    [9]CREIA.中国风电发展报告2011[R].2011.
    [10]中国风能协会.2011年中国风电装机容量统计[R].2012.
    [11]周鹤良.我国风力发电产业发展前景与策略[J].变流技术与电力牵引,2006(2):4-8.
    [12]申宽育.中国的风能资源与风力发电[J].西北水电,2010(1):76-81.
    [13]魏昭峰.风电在我国能源发展中的定位[J].中国电力,2011(4):1-6.
    [14]程启明,程尹曼,王映斐,等.风力发电系统技术的发展综述[J].自动化仪表,2012(1):1-8.
    [15]Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. Renewable Power Generation, IET,2008,2(2):123-138.
    [16]Gorti B V, Alexander G C, Spee R. Power balance considerations for brushless doubly-fed machines [J]. Energy Conversion, IEEE Transactions on,1996,11(4):687-692.
    [17]Protsenko K, Dewei X. Modeling and Control of Brushless Doubly-Fed Induction Generators in Wind Energy Applications[J]. Power Electronics, IEEE Transactions on,2008,23(3):1191-1197.
    [18]Shiyi S, Abdi E, Barati F, et al. Stator-Flux-Oriented Vector Control for Brushless Doubly Fed Induction Generator[J]. Industrial Electronics, IEEE Transactions on,2009,56(10):4220-4228.
    [19]胡海燕,潘再平.开关磁阻风力发电系统综述[J].机电工程,2004(10):48-52.
    [20]Torrey D A. Switched reluctance generators and their control[J]. Industrial Electronics, IEEE Transactions on,2002,49(1):3-14.
    [21]夏长亮,张茂华,王迎发,等.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008(6):104-109.
    [22]桓毅,汪至中.风力发电机及其控制系统的对比分析[J].中小型电机,2002(4):41-45.
    [23]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005(1):63-65.
    [24]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研究[J].中国电机工程学报,2008(20):124-130.
    [25]Polinder H, van der Pijl F F A, de Vilder G J, et al. Comparison of direct-drive and geared generator concepts for wind turbines:Electric Machines and Drives,2005 IEEE International Conference on,2005[C].
    [26]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学,2007.
    [27]黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电网运行的影响分析[J].电工技术学报,2010(4):142-149.
    [28]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007(23):84-89.
    [29]Piwko R, Meibom P, Holttinen H, et al. Penetrating Insights:Lessons Learned from Large-Scale Wind Power Integration[J]. Power and Energy Magazine, IEEE,2012,10(2):44-52.
    [30]Yanhua L, Yongning C, Weisheng W, et al. Impacts of large scale wind power integration on power system:Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),20114th International Conference on,2011[C].
    [31]GmbH E O N. Requirements for Offshore Grid Connections in the E.ON Netz Network[S]. GmbH, E ON Netz,2008.
    [32]Tsili M, Papathanassiou S. A review of grid code technical requirements for wind farms[J]. Renewable Power Generation, IET,2009,3(3):308-332.
    [33]国家质量监督检验检疫总局.GBT 19963-2011风电场接入电力系统技术规定[S].2011.
    [34]GmbH E O N. Grid Code-High and extra high voltage[S]. GmbH, E ON Netz,2006.
    [35]Hojoon S, Hyun-Sam J, Seung-Ki S. Low Voltage Ride Through(LVRT) control strategy of grid-connected variable speed Wind Turbine Generator System:Power Electronics and ECCE Asia (ICPE & ECCE),2011 IEEE 8th International Conference on,2011 [C].
    [36]黄守道,肖磊,黄科元,等.不对称电网故障下直驱型永磁风力发电系统网侧变流器的运行与控制[J].电工技术学报,2011(2):173-180.
    [37]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009(9):140-146.
    [38]Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. Electric Power Applications, IEE Proceedings-,1996,143(3):231-241.
    [39]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究[D].浙江大学,2009.
    [40]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆大学电气工程,2007.
    [41]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学电机与电器,2005.
    [42]贺益康,何鸣明,赵仁德,等.双馈风力发电机交流励磁用变频电源拓扑浅析[J].电力系统自动化,2006(4):105-112.
    [43]Bose B K. Modern Power Electronics and AC Drives[M]. CHINA MACHINE PRESS,2006.
    [44]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系[J].电工技术学报,2006(2):39-44.
    [45]阳锦刚,潘再平.级联式无刷双馈发电机的仿真研究[J].太阳能学报,2008(8):1014-1020.
    [46]邓先明,姜建国.无刷双馈电机的工作原理及电磁设计[J].中国电机工程学报,2003(11):130-136.
    [47]Yamamoto M, Motoyoshi O. Active and reactive power control for doubly-fed wound rotor induction generator[J]. Power Electronics, IEEE Transactions on,1991,6(4):624-629.
    [48]Petersson A, Harnefors L, Thiringer T. Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].
    [49]Liu C, Weng H, Sun X, et al. Research of stability of double fed induction motor vector control system:Electrical Machines and Systems,2001. ICEMS 2001. Proceedings of the Fifth International Conference on,2001 [C].
    [50]Mohammed O A, Liu Z, Liu S. Stator power factor adjustable direct torque control of doubly-fed induction machines:Electric Machines and Drives,2005 IEEE International Conference on, 2005[C].
    [51]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术[J].沈阳工业大学学报,2006(2):206-209.
    [52]Datta R, Ranganathan V T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J]. Power Electronics, IEEE Transactions on,2001,16(3):390-399.
    [53]Lie X, Cartwright P. Direct active and reactive power control of DFIG for wind energy generation[J]. Energy Conversion, IEEE Transactions on,2006,21 (3):750-758.
    [54]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005(8):90-94.
    [55]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006(23):109-114.
    [56]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005(16):57-62.
    [57]Liu W, Xiao X, Yin Z, et al. The VSCF generator interconnection under Stator-flux-oriented vector control:Power System Technology,2006. PowerCon 2006. International Conference on,2006[C].
    [58]Luna A, Lima F K A, Rodriguez P, et al. Comparison of power control strategies for DFIG wind turbines:Industrial Electronics,2008. IECON 2008.34th Annual Conference of IEEE,2008[C].
    [59]杨淑英,张兴,张崇巍,等.基于自适应谐振调节器的变速恒频风力发电双馈驱动研究[J].中国电机工程学报,2007(14):96-101.
    [60]邱瑞昌,姜学东,闫耀民,等.转子感应电势定向的双馈电机风力发电系统研究[J].电工技术学报,2004(4):40-44.
    [61]Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control[J]. Power Electronics, IEEE Transactions on,2007,22(2):584-592.
    [62]周鹏,贺益康,胡家兵.电网不平衡状态下风电机组运行控制中电压同步信号的检测[J].电工技术学报,2008(5):108-113.
    [63]万能,于克训,刘志华.双馈电动机矢量控制系统性能分析[J].电机与控制学报,2006(2):138-142.
    [64]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003(8):160-163.
    [65]张兴,张崇巍.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [66]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究[J].电工技术学报,2004(8):67-72.
    [67]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005(20):56-61.
    [68]马小亮,刘志强.双馈电动机直接转矩控制技术的研究[J].电工技术学报,2003(5):63-68.
    [69]Si Z C, Cheung N C, Ka C W, et al. Integral Sliding-Mode Direct Torque Control of Doubly-Fed Induction Generators Under Unbalanced Grid Voltage[J]. Energy Conversion, IEEE Transactions on, 2010,25(2):356-368.
    [70]Pimple B B, Vekhande V Y, Fernandes B G. New direct torque control of DFIG under balanced and unbalanced grid voltage:TENCON 2010-2010 IEEE Region 10 Conference,2010[C].
    [71]Dawei Z, Lie X. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance[J]. Energy Conversion, IEEE Transactions on,2007,22(1):110-118.
    [72]Lei S, Jiabing H. Sliding-Mode-Based Direct Power Control of Grid-Connected Wind-Turbine-Driven Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on,2012,27(2):362-373.
    [73]胡家兵,贺益康,郭晓明,等.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007(14):47-56.
    [74]Wei Q, Harley R G. Improved Control of DFIG Wind Turbines for Operation with Unbalanced Network Voltages:Industry Applications Society Annual Meeting,2008. IAS'08. IEEE,2008[C].
    [75]胡家兵,贺益康,王宏胜.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010(9):97-104.
    [76]胡胜,林新春,康勇,等.一种双馈风力发电机在电网电压不平衡条件下的改进控制策略[J].电工技术学报,2011(7):21-29.
    [77]Hu J, He Y, Xu L, et al. Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators[J]. Industrial Electronics, IEEE Transactions on,2009,56(2):439-451.
    [78]郑艳文,李永东,柴建云,等.不平衡电压下双馈发电系统控制策略[J].电力系统自动化,2009(15):89-93.
    [79]李辉,廖勇,姚骏,等.不平衡电网电压下基于串联网侧变换器的DFIG控制策略[J].电力系统自动化,2010(3):96-100.
    [80]Abad G, Rodriguez M A, Iwanski G, et al. Direct Power Control of Doubly-Fed-Induction-Generator-Based Wind Turbines Under Unbalanced Grid Voltage[J]. Power Electronics, IEEE Transactions on,2010,25(2):442-452.
    [81]Morren J, de Haan S W H, Ferreira J A. Contribution of DG units to primary frequency control: Future Power Systems,2005 International Conference on,2005 [C].
    [82]Morren J, de Haan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. Power Systems, IEEE Transactions on,2006,21(1):433-434.
    [83]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化,2009(13):78-82.
    [84]李和明,张祥宇,王毅,等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012(7):32-39.
    [85]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007(9):77-82.
    [86]迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究[J].中国电机工程学报,2007(25):25-31.
    [87]陈惠粉,乔颖,鲁宗相,等.风电场群的无功电压协调控制策略[J].电力系统自动化,2010(18):78-83.
    [88]张学广,刘义成,海樱,等.改进的配电网双馈风电场电压控制策略[J].中国电机工程学报,2010(7):29-35.
    [89]IEEE Recommended Practice for Monitoring Electric Power Quality[J]. IEEE Std 1159-1995, 1995:i.
    [90]Kezunovic M, Liao Y. A new method for classification and characterization of voltage sags[J]. Electric Power Systems Research,2001,58(1):27-35.
    [91]Djokic S Z, Milanovic J V, Chapman D J, et al. A new method for classification and presentation of voltage reduction events[J]. Power Delivery, IEEE Transactions on,2005,20(4):2576-2584.
    [92]王伟,陈宁,朱凌志,等.双馈风力发电机低电压过渡的相角补偿控制策略[J].中国电机工程学报,2009(21):62-68.
    [93]Morren J, de Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J]. Energy Conversion, IEEE Transactions on,2005,20(2):435-441.
    [94]王勇,张纯江,柴秀慧,等.电网电压跌落情况下双馈风力发电机电磁过渡过程及控制策略[J].电工技术学报,2011(12):14-19.
    [95]杨淑英,张兴,张崇巍,等.电压跌落激起的双馈型风力发电机电磁过渡过程[J].电力系统自 动化,2008(19):85-91.
    [96]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006(8):21-26.
    [97]Lie X, Yi W. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions[J]. Power Systems, IEEE Transactions on,2007,22(1):314-323.
    [98]Lopez J, Sanchis P, Roboam X, et al. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips[J]. Energy Conversion, IEEE Transactions on, 2007,22(3):709-717.
    [99]Guo J, Zhang L, Cai X. Dynamic response of wind power generation based on DFIG under grid fault:Power Electronics and Motion Control Conference,2009. IPEMC'09. IEEE 6th International, 2009[C].
    [100]欧阳金鑫,熊小伏,张涵轶.电网短路时并网双馈风电机组的特性研究[J].中国电机工程学报,2011(22):17-25.
    [101]Marques J, Pinheiro H. Dynamic Behavior of the Doubly-Fed Induction Generator in Stator Flux Vector Reference Frame:Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th, 2005[C].
    [102]Zhou H L, Yang G, Li D Y. Short circuit current analysis of DFIG wind turbines with crowbar protection:Electrical Machines and Systems,2009. ICEMS 2009. International Conference on, 2009[C].
    [103]Morren J, de Haan S W H. Short-Circuit Current of Wind Turbines With Doubly Fed Induction Generator[J]. Energy Conversion, IEEE Transactions on,2007,22(1):174-180.
    [104]李辉,赵猛,叶仁杰,等.电网故障下双馈风电机组暂态电流评估及分析[J].电机与控制学报,2010(8):45-51.
    [105]张学广,徐殿国,李伟伟.双馈风力发电机三相短路电流分析[J].电机与控制学报,2008(5):493-497.
    [106]石一辉,鲁宗相,闵勇,等.双馈感应发电机三相短路电流解析计算模型[J].电力系统自动化,2011(8):38-43.
    [107]Abdel-Baqi O, Nasiri A. A Dynamic LVRT Solution for Doubly Fed Induction Generators[J]. Power Electronics, IEEE Transactions on,2010,25(1):193-196.
    [108]Lima F K A, Luna A, Rodriguez P, et al. Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults[J]. Power Electronics, IEEE Transactions on,2010,25(1):118-130.
    [109]Xing Z, Qin L, Shuying Y, et al. Response and Protection of DFIG System under Grid Fault:Power and Energy Engineering Conference (APPEEC),2010 Asia-Pacific,2010[C].
    [110]黎芹,张兴,杨淑英,等.双馈风力发电机低电压穿越转子动态过程分析[J].电力系统及其自动化学报,2010(5):19-24.
    [111]Xiangwu Y, Venkataramanan G, Yang W, et al. Grid-Fault Tolerant Operation of a DFIG Wind Turbine Generator Using a Passive Resistance Network[J]. Power Electronics, IEEE Transactions on, 2011,26(10):2896-2905.
    [112]Dawei X, Li R, Tavner P J, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. Energy Conversion, IEEE Transactions on,2006,21(3):652-662.
    [113]张学广,徐殿国,潘伟明,等.基于电网电压定向的双馈风力发电机灭磁控制策略[J].电力系统自动化,2010(7):95-99.
    [114]Song Wang Y D. Stability analysis of field oriented doubly-fed induction machine drive based on computer simulation[J]. Electric Machines and Power Systems,1993,21(1):11-24.
    [115]Zhendong Z, Longya X, Yuan Z, et al. Novel rotor-side control scheme for Doubly Fed Induction Generator to ride through grid faults:Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010[C].
    [116]Petersson A, Harnefors L, Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines[J]. Power Electronics, IEEE Transactions on, 2005,20(1):227-235.
    [117]Xiao S, Yang G, Zhou H. A LVRT control strategy based on flux tracking for DFIG-based wind power systems:Power Electronics and ECCE Asia (ICPE & ECCE),2011 IEEE 8th International Conference on,2011[C].
    [118]石一辉,乔颖,闵勇,等.考虑定子侧暂态过程的双馈感应发电机转子电流解耦控制[J].电力系统自动化,2011(3):77-82.
    [119]蔚兰,陈国呈,宋小亮,等.一种双馈感应风力发电机低电压穿越的控制策略[J].电工技术学报,2010(9):170-175.
    [120]谢震,张兴,宋海华,等.电网电压骤升故障下双馈风力发电机变阻尼控制策略[J].电力系统自动化,2012(3):39-46.
    [121]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007(16):60-64.
    [122]Erlich I, Winter W, Dittrich A. Advanced grid requirements for the integration of wind turbines into the German transmission system:Power Engineering Society General Meeting,2006. IEEE, 2006[C].
    [123]Xiangwu Y, Venkataramanan G, Yang W, et al. Grid-Fault Tolerant Operation of a DFIG Wind Turbine Generator Using a Passive Resistance Network[J]. Power Electronics, IEEE Transactions on, 2011,26(10):2896-2905.
    [124]Zhan C, Barker C D. Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-connected voltage source converter:AC and DC Power Transmission,2006. ACDC 2006. The 8th IEE International Conference on,2006[C].
    [125]Flannery P S, Venkataramanan G. Evaluation of Voltage Sag Ride-Through of a Doubly Fed Induction Generator Wind Turbine with Series Grid Side Converter:Power Electronics Specialists Conference,2007. PESC 2007. IEEE,2007[C].
    [126]李建林,赵栋利,李亚西,等.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可再生能源,2006(5):57-60.
    [127]Lohde R, Jensen S, Knop A, et al. Analysis of three phase grid failure and Doubly Fed Induction Generator ride-through using crowbars:Power Electronics and Applications,2007 European Conference on,2007[C].
    [128]Erlich I, Wrede H, Feltes C. Dynamic Behavior of DFIG-Based Wind Turbines during Grid Faults: Power Conversion Conference-Nagoya,2007. PCC'07,2007[C].
    [129]Abbey C, Joos G. Supercapacitor Energy Storage for Wind Energy Applications[J]. Industry Applications, IEEE Transactions on,2007,43(3):769-776.
    [130]Jin Y, Fletcher J E, O'Reilly J. A Series-Dynamic-Resistor-Based Converter Protection Scheme for Doubly-Fed Induction Generator During Various Fault Conditions [J]. Energy Conversion, IEEE Transactions on,2010,25(2):422-432.
    [131]Chompoo-inwai C, Yingvivatanapong C, Methaprayoon K, et al. Reactive compensation techniques to improve the ride-through of induction generators during disturbance:Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004[C].
    [132]胡书举,李建林,梁亮,等.风力发电用电压跌落发生器研究综述[J].电力自动化设备,2008(2):101-103.
    [133]Oranpiroj K, Premrudeepreechacharn S, Ngoudech M, et al. The 3-phase 4-wire voltage sag generator based on abc algorithm:Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,2009. ECTI-CON 2009.6th International Conference on,2009[C].
    [134]Rong Z, Heng N, Peng Z. A three-phase programmable voltage sag generator for low voltage ride-through capability test of wind turbines:Energy Conversion Congress and Exposition (ECCE), 2010 IEEE,2010[C].
    [135]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007(3):77-81.
    [136]穆钢,王健,严干贵,等.双馈型风电机群近满载工况下连锁脱网事件分析[J].电力系统自动化,2011(22):35-40.
    [137]陈伯时.电力拖动自动控制系统—运动控制系统[M].北京:机械工业出版社,2006.
    [138]Rahimi M, Parniani M. Coordinated Control Approaches for Low-Voltage Ride-Through Enhancement in Wind Turbines With Doubly Fed Induction Generators[J]. Energy Conversion, IEEE Transactions on,2010,25(3):873-883.
    [139]Jabr H M, Kar N C. Effect of main and leakage flux saturation on the transient performances of doubly-fed wind driven induction generator[J]. Electric Power Systems Research, 2007,77(8):1019-1027.
    [140]汤蕴璆.电机学[M].2.北京:机械工业出版社,2007.
    [141]Jing Z, Wei Z, Yikang H, et al. Modeling and control of a wind-turbine-driven DFIG incorporating core saturation during grid voltage dips:Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008[C].
    [142]Jabr H M, Kar N C. Leakage flux saturation effects on the transient performance of wound rotor induction motors[J]. Electric Power Systems Research,2008,78(7):1280-1289.
    [143]Hu J, He Y, Zhu J G. The Internal Model Current Control for Wind Turbine Driven Doubly-Fed Induction Generator:Industry Applications Conference,2006.41st IAS Annual Meeting. Conference Record of the 2006 IEEE,2006[C].
    [144]杨顺昌,廖勇.双馈发电机考虑主磁路饱和数学模型[J].电工技术学报,1996(4):1-5.
    [145]Iki H, Kado, Uriu. Influence and analysis of voltage sags on electric power systems for industrial plants:Universities Power Engineering Conference,2004. UPEC 2004.39th International,2004[C].
    [146]Bollen M H J. The influence of motor re-acceleration on voltage sags:Industry Applications Society Annual Meeting,1994., Conference Record of the 1994 IEEE,1994[C].
    [147]Juarez E E, Hernandez A. Stochastic Assessment of Phase-Angle Jumps Caused by Voltage Sags Applying an Analytical Method:Probabilistic Methods Applied to Power Systems,2006. PMAPS 2006. International Conference on,2006[C].
    [148]Bollen M H J. Characterisation of voltage sags experienced by three-phase adjustable-speed drives[J]. Power Delivery, IEEE Transactions on,1997,12(4):1666-1671.
    [149]袁旭峰,程时杰,文劲宇.改进瞬时对称分量法及其在正负序电量检测中的应用[J].中国电机工程学报,2008(1):52-58.
    [150]Lidong Z, Bollen M H J. Characteristic of voltage dips (sags) in power systems[J]. Power Delivery, IEEE Transactions on,2000,15(2):827-832.
    [151]何仰赞,温增银.电力系统分析(上册)[M].武汉:华中科技大学出版社,2002.
    [152]中国国家标准化管理委员会.GB/T 15543-2008电能质量三相电压不平衡[S].2008.
    [153]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京交通大学,2008.
    [154]Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. Electric Power Applications, IEE Proceedings-,1996,143(3):231-241.
    [155]Guofeng Y, Jianyun C, Yongdong L. Vector control and synchronization of doubly fed induction wind generator system:Power Electronics and Motion Control Conference,2004. IPEMC 2004. The 4th International,2004[C].
    [156]梅柏杉,王晗,杨林涛.双馈感应电机间接转矩控制策略的研究[J].微电机,2011(5):64-67.
    [157]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进[J].中国电机工程学报,2008(18):61-65.
    [158]Jun H, Bin W. New integration algorithms for estimating motor flux over a wide speed range[J]. Power Electronics, IEEE Transactions on,1998,13(5):969-977.
    [159]唐芬,金新民,姜久春,等.兆瓦级直驱型永磁风力发电机无位置传感器控制[J].电工技术学报,2011(4):19-25.
    [160]李永东,曾毅,谭卓辉,等.无速度传感器三电平逆变器异步电动机直接转矩控制系统(Ⅱ)——基于全阶定子磁链观测器的参数和速度辨识[J].电工技术学报,2004(8):88-92.
    [161]战亮宇.双馈风力发电系统变流器控制的相关研究[D].北京交通大学,2012.
    [162]Xiaoming Y, Merk W, Stemmler H, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J]. Industry Applications, IEEE Transactions on, 2002,38(2):523-532.
    [163]Tan P C, Loh P C, Holmes D G. High-Performance Harmonic Extraction Algorithm for a 25 kV Traction Power Quality Conditioner [J]. Electric Power Applications, IEE Proceedings-, 2004,151(5):505-512.
    [164]马琳,金新民,唐芬,等.小功率单相并网逆变器并网电流的比例谐振控制[J].北京交通大学学报,2010(2):128-132.
    [165]涂春鸣,罗安,汤赐,等.注入式混合型有源电力滤波器的控制算法[J].中国电机工程学报,2008(24):52-58.
    [166]Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators [J]. Industry Applications, IEEE Transactions on,2001,37(2):601-610.
    [167]Marques J, Pinheiro H. Dynamic Behavior of the Doubly-Fed Induction Generator in Stator Flux Vector Reference Frame:Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th, 2005[C].
    [168]肖磊,黄守道,黄科元,等.直驱型永磁同步风力发电机机侧变流器谐波抑制[J].中国电机工程学报,2011(6):31-37.
    [169]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [170]Jiabing H, Yikang H. DFIG wind generation systems operating with limited converter rating considered under unbalanced network conditions-Analysis and control design[J]. Renewable Energy,2011,36(2):829-847.
    [171]邓雅.不平衡电网电压下双馈风力发电系统变流器控制策略研究[D].北京交通大学,2011.
    [172]Jiabing H, Yikang H. Reinforced Control and Operation of DFIG-Based Wind-Power-Generation System Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on, 2009,24(4):905-915.
    [173]Lingling F, Kavasseri R, Haiping Y, et al. Control of DFIG for rotor current harmonics elimination: Power & Energy Society General Meeting,2009. PES'09. IEEE,2009[C].
    [174]Brekken T K A, Mohan N. Control of a Doubly Fed Induction Wind Generator Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on,2007,22(1):129-135.
    [175]Brekken T, Mohan N. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions:Power Electronics Specialist Conference,2003. PESC'03.2003 IEEE 34th Annual,2003[C].
    [176]Lie X, Yi W. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions[J]. Power Systems, IEEE Transactions on,2007,22(1):314-323.
    [177]Hong-Geuk P, Abo-Khalil A G, Dong-Choon L, et al. Torque Ripple Elimination for Doubly-Fed Induction Motors under Unbalanced Source Voltage:Power Electronics and Drive Systems,2007. PEDS'07.7th International Conference on,2007[C].
    [178]Enjeti P N, Ziogas P D, Ehsani M. Unbalanced PWM converter analysis and corrective measures: Industry Applications Society Annual Meeting,1989., Conference Record of the 1989 IEEE, 1989[C].
    [179]Moran L, Ziogas P D, Joos G. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions[J]. Industry Applications, IEEE Transactions on, 1992,28(6):1286-1293.
    [180]Vincenti D, Hua J. A three-phase regulated PWM rectifier with on-line feedforward input unbalance correction[J]. Industrial Electronics, IEEE Transactions on,1994,41(5):526-532.
    [181]Hong-Seok S, Kwanghee N. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. Industrial Electronics, IEEE Transactions on,1999,46(5):953-959.
    [182]Hong-Seok S, In-Won J, Kwanghee N. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions[J]. Industrial Electronics, IEEE Transactions on, 2003,50(6):1238-1245.
    [183]Bo Y, Oruganti R, Panda S K, et al. An Output-Power-Control Strategy for a Three-Phase PWM Rectifier Under Unbalanced Supply Conditions[J]. Industrial Electronics, IEEE Transactions on, 2008,55(5):2140-2151.
    [184]Jiabing H, Yikang H. Modeling and Control of Grid-Connected Voltage-Sourced Converters Under Generalized Unbalanced Operation Conditions[J]. Energy Conversion, IEEE Transactions on, 2008,23(3):903-913.
    [185]何鸣明.不对称电网故障下PWM整流器的控制策略的研究[D].浙江大学,2006.
    [186]Peng Z, Yikang H, Dan S, et al. Control and Protection of a DFIG-Based Wind Turbine under Unbalanced Grid Voltage Dips:Industry Applications Society Annual Meeting,2008. IAS'08. IEEE, 2008[C].
    [187]Tan L. DIGITAL SIGNAL PROCESSING:Fundamentals and Applications[M]. UK:Elsevier Inc., 2008.
    [188]Kayikci M, Milanovic J V. Reactive Power Control Strategies for DFIG-Based Plants[J]. Energy Conversion, IEEE Transactions on,2007,22(2):389-396.
    [189]Feltes C, Engelhardt S, Kretschmann J, et al. Dynamic performance evaluation of DFIG-based wind turbines regarding new German grid code requirements:Power and Energy Society General Meeting, 2010 IEEE,2010[C].
    [190]Teninge A, Roye D, Bacha S. Reactive power control for variable speed wind turbines to low voltage ride through grid code compliance:Electrical Machines (ICEM),2010 XIX International Conference on,2010[C].
    [191]唐芬.直驱永磁风力发电系统并网技术研究[D].北京:北京交通大学电气工程学院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700