用户名: 密码: 验证码:
Nrf2-ARE信号通路对肠缺血再灌注损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠缺血再灌注(intestinal ischemia reperfusion, IIR)损伤是临床外科常见的危急重症之一,常发生于急性肠系膜缺血、严重烧伤、失血、创伤和感染性休克,以及腹主动脉瘤和小肠移植等复杂的外科手术治疗过程中。肠缺血再灌注损伤是系统性炎症反应综合征(systemic inflammatory response syndrome, SIRS)和多器官功能障碍综合征(multiple organ dysfunction syndrome, MODS)的始动因素,具有极高的发病率和死亡率。继发于小肠移植术后的肠缺血再灌注损伤还会进一步加重免疫排斥反应,并最终导致小肠移植的失败。肠缺血再灌注损伤的预防和治疗是外科临床面临的重要问题。
     肠缺血再灌注损伤的危害不仅局限于肠道本身,同时它还会引起严重的远隔脏器损伤,其机制复杂。其中,肠道屏障功能被破坏,菌群移位,毒性物质如炎症介质、细菌毒素等释放入血,活性氧自由基(reactive oxygen species, ROS)被激活,形成氧化应激,是损伤机制中极为关键的环节。我们和其他学者的研究表明,这种氧化应激和炎症介质所引起的远隔器官损伤的病理生理过程是通过多种分子机制和细胞因子的参与完成的,多种信号通路参与其中,包括:1.核因子κB (nuclear factor kappa B, NFκB)的活化;2.泛素-蛋白酶体系统(ubiquitin proteasome system,UPS)的作用;3.髓样细胞表达的触发受体-1(Triggering Receptor Expressed on Myeloid Cells 1, TREM-1)信号通路的作用;4.聚腺苷二磷酸核糖聚合酶-1(Poly(ADP-ribose)polymerase 1, PARP-1)信号通路的作用等。研究发现,在各种信号通路被ROS激活并产生炎症放大的同时,另外一些基因蛋白也可能被活化并产生保护作用。
     转录因子NF-E2相关因子2(transcription factor NF-E2-related factor-2, Nrf2)是一种重要的内源性抗氧化应激的调节因子,生理状态下定位于细胞浆,与胞质接头蛋白(Kelch-like ECH associating protein 1, Keap-1)结合形成复合物。当受到氧化应激、亲电子试剂等的刺激后,迅速解离出来并活化转位进入细胞核,与抗氧化反应元件(antioxidant response element,ARE)结合,进而诱导其调控的靶基因表达血红素加氧酶1(heme oxygenase 1,HO-1).谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)和NAD(P)H:醌氧化还原酶1(NAD(P)H:quinone oxidoreductase 1,NQO1)等抗氧化和解毒酶,从而对抗ROS引发的氧化应激。因此,调控Nrf2-ARE信号通路可能是预防和治疗氧化应激所致疾病的重要手段和方法。
     随着Nrf2-ARE信号通路能够减轻ROS损害作用的发现,有学者对其在脏器缺血再灌注损伤中的保护作用进行了相关研究,研究显示,Nrf2-ARE信号通路对于心、脑和肾脏缺血再灌注损伤具有重要的保护作用,但其在肠缺血再灌注损伤中的保护作用尚不清楚。
     莱菔硫烷(Sulforaphane,SFN)是一种异硫氰酸盐,主要来源于绿花椰菜一类的十字花科蔬菜,具有抗氧化、抗肿瘤等生物学特性,作为化学预防药物已引起广大研究者的关注。该化合物是已知的Nrf2重要的激活剂,能够诱发Nrf2活化转位入核,与ARE结合,正向调控Ⅱ相解毒酶的表达,清除ROS。近年来研究开发的中药活性成分表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)是从绿茶中提取的主要的活性和水溶性成分,是儿茶素中含量最高的组分,具有抗氧化作用。
     本研究采用大鼠肠缺血再灌注模型,应用已知药物诱导激活Nrf2-ARE信号通路,探讨Nrf2-ARE信号通路对于肠缺血再灌注肠道及远隔脏器损伤的保护作用,再进一步验证中药活性成分EGCG预处理对肠缺血再灌注多脏器损伤的保护作用,以期为肠缺血再灌注多脏器损伤的预防和治疗提供一种新的靶点,同时也为EGCG的开发利用提供更有利的理论依据。
     第一部分:Nrf2-ARE信号通路在大鼠肠缺血再灌注损伤中的作用
     目的:通过分析Nrf2-ARE信号通路诱导药物预处理对肠道Nrf2和HO-1的表达和对氧化应激指标的影响,研究Nrf2-ARE信号通路在大鼠肠缺血再灌注(IIR)损伤中的保护作用及机制,为IIR损伤提供一种新的预防和治疗靶点。
     方法:32只雄性SD大鼠随机分为control组、SFN control组、IIR组和SFN+IIR组,通过夹闭肠系膜上动脉(superior mesenteric artery,SMA)60 min、再灌注120 min,建立IIR损伤模型。预处理组于缺血前30分钟分别以5 mg/kg SFN行腹腔注射,对照组仅行剖腹术及SMA分离术。再灌注结束后,取小肠组织。观察大鼠肠组织形态学和病理学,测定小肠组织匀浆超氧化物岐化酶(SOD)、髓过氧化物酶(MPO)谷胱甘肽(GSH)、GSH-Px,采用免疫组化法观察小肠组织Nrf2和HO-1表达并用Western-blot法进行检测验证。
     结果:1.与control相比,IIR组:(1)小肠粘膜及粘膜下出现水肿、出血,小肠粘膜缺损、断裂(P<0.01);(2)小肠组织SOD活性降低(P<0.01),MPO活性增强(P<0.01);(3)小肠组织GSH水平均显著降低(P<0.01);(4)小肠组织Nrf2、HO-1表达增强(P<0.01,P<0.01)。2.与control相比,SFN control组:(1)小肠组织GSH-Px水平明显增加(P<0.01);(2)小肠组织中Nrf2和HO-1的蛋白表达增多(P<0.01,P<0.01)。3.与IIR组相比,SFN+IIR组:(1)小肠组织的病理表现及损伤程度明显减轻(P<0.05);(2)小肠组织匀浆SOD活性升高(P<0.05),MPO活性降低(P<0.05);(3)小肠组织GSH和GSH-Px水平明显升高(P<0.05,P<0.01);(4)小肠组织Nrf2、HO-1表达增强(P<0.01,P<0.05)。
     结论:肠缺血1小时再灌注2小时可导致明显的小肠组织损伤,表现为小肠扩张,肠粘膜及粘膜下水肿、出血,粘膜缺损、断裂,氧化应激指标增加和抗氧化应激指标的降低。通过Nrf2-ARE信号通路诱导药物预处理后,增加了小肠组织Nrf2和HO-1的表达,同时伴有小肠组织损伤的减轻,氧化应激指标降低和抗氧化应激指标的升高,说明Nrf2信号通路参与了肠缺血再灌注损伤的保护过程,Nrf2-ARE信号通路在大鼠肠缺血再灌注(IIR)肠道损伤中起保护作用。
     第二部分:SFN在大鼠肠缺血再灌注肝、肺损伤中的保护作用
     目的:通过分析已知药物SFN预处理诱导Nrf2-ARE信号通路对IIR动物模型肝、肺组织Nrf2和HO-1的表达和对氧化应激指标的影响,研究SFN通过诱导Nrf2-ARE信号通路产生对大鼠IIR引发的远隔脏器肝、肺损伤的保护作用及机制。
     方法:32只雄性SD大鼠随机分为control组、SFN control组、IIR组、SFN+IIR组,通过夹闭SMA 60 min、再灌注120 min,建立IIR损伤模型。预处理组于缺血前30分钟分别以5 mg/kg SFN行腹腔注射,对照组仅行剖腹术及SMA分离术。再灌注结束后,取肝、肺组织。观察大鼠肝、肺组织形态学和病理学,检测肝功能:血清丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST);测定肺组织支气管肺泡灌洗液蛋白(brochia alveolus lung fluid protein, BALFP);测定肝、肺组织匀浆SOD、MPO、GSH、GSH、Px,采用免疫组化法观察肝、肺组织Nrf2和HO-1表达并用Western-blot法检测验证。
     结果:1.肠缺血再灌注诱发了肝、肺损伤,表现为与control相比,IIR组:(1)血清ALT、AST明显升高(P<0.01,P<0.01);(2)肺组织BALFP增高(P<0.01);(3)肝、肺组织出现明显的水肿、出血和炎细胞浸润;(4)肝、肺组织SOD活性降低(P<0.01,P<0.05),MPO活性增强(P<0.01,P<0.05);(5)肝、肺组织GSH水平均显著降低(P<0.01,P<0.05);(6)肝、肺组织HO-1表达增强(P<0.01,P<0.01);(7)肝、肺组织Nrf2表达增强(P<0.05,P<0.01)。2.与control相比,SFN control组:(1)肝、肺组织GSH-Px水平明显增加(P<0.05,P<0.01);(2)肝、肺组织中HO-1表达增多(P<0.05,P<0.01);(3)肝、肺组织中Nrf2表达增多(P<0.05,P<0.01)。3.与IIR组相比,SFN+IIR组:(1)肝损伤减轻,血清ALT、AST明显减低(P<0.01,P<0.05);(2)肺损伤减轻,肺组织BALFP降低(P<0.05);(3)肝、肺组织的病理表现及损伤程度明显减轻;(4)肝、肺组织匀浆SOD活性升高(P<0.01,P<0.05),MPO活性降低(P<0.01,P<0.05);(5)肝、肺组织GSH水平明显升高(P<0.05,P<0.01);(6)肝、肺组织GSH-Px水平明显升高(P<0.05,P<0.01);(7)肝、肺组织HO-1表达增强(P<0.01,P<0.01);(8)肝、肺组织Nrf2表达增强(P<0.05,P<0.05)。
     结论:IIR引发远隔脏器肝、肺损伤,表现为肝、肺组织水肿、出血和炎细胞浸润,SFN预处理后,激发活化Nrf2-ARE信号通路,肝、肺组织Nrf2、HO-1表达增加,抑制了组织炎性浸润及氧化应激,肝、肺组织病理损伤的程度减轻,说明SFN通过激发活化Nrf2-ARE信号通路对大鼠IIR引发的远隔脏器肝、肺损伤起保护作用。
     第三部分:EGCG在大鼠肠缺血再灌注肝、肺损伤中的保护作用
     目的:研究EGCG对大鼠肠缺血再灌注肝、肺损伤的保护作用,探讨其是否具有与SFN相同的Nrf2-ARE信号通路激活作用,从而对肠缺血再灌注肝、肺损伤产生保护作用,为EGCG的开发利用提供更有利的理论依据。
     方法:32只雄性SD大鼠随机分为对照组、EGCG control组、IIR组、EGCG+IIR组,通过夹闭肠系膜上动脉60 min、再灌注120 min,建立IIR损伤模型。预处理组于缺血前30分钟分别以50 mg/kg EGCG行腹腔注射,对照组仅行剖腹术及SMA分离术。再灌注结束后,取肺组织。观察大鼠肝、肺组织形态学和病理学,检测肝功能:ALT、AST;测定肺组织含水率;测定肝、肺组织匀浆SOD、MPO、GSH、GSH-Px,采用免疫组化法观察肝、肺组织Nrf2和HO-1表达并用Western-blot法检测验证。
     结果:1.肠缺血再灌注诱发了肝、肺损伤,与对照组相比,IIR组:(1)血清ALT、AST明显升高(P<0.01,P<0.05);(2)肺组织含水率增高(P<0.01);(3)肝、肺组织出现明显的水肿、出血和炎细胞浸润;(4)肝、肺组织SOD活性降低(P<0.01,P<0.01),MPO活性增强(P<0.01,P<0.01);(5)肝、肺组织GSH水平均显著降低(P<0.05,P<0.05);(6)肝、肺组织HO-1表达增强(P<0.01,P<0.01);(7)肝、肺组织Nrf2表达增强(P<0.05,P<0.05)。2.与对照组相比,EGCG control组:(1)肝、肺组织GSH-Px水平明显增加(P<0.01,P<0.01);(2)肝、肺组织中HO-1表达增多(P<0.01,P<0.01);(3)肝、肺组织中Nrf2表达增多(P<0.05,P<0.01)。3.与IIR组相比,EGCG+IIR组:(1)肝损伤减轻,血清ALT、AST明显减低(P<0.01,P<0.05);(2)肺损伤减轻,肺组织含水率降低(P<0.01);(3)肝、肺组织的病理表现及损伤程度明显减轻;(4)肝、肺组织匀浆SOD活性升高(P<0.01,P<0.05),MPO活性降低(P<0.01,P<0.01);(5)肝、肺组织GSH水平明显升高(P<0.01,P<0.01);(6)肝、肺组织GSH-Px水平明显升高(P<0.01,P<0.01);(7)肝、肺组织HO-1表达增强(P<0.01,P<0.01);(8)肝、肺组织Nrf2表达增强(P<0.01,P<0.05)。
     结论:IIR引发远隔脏器肝、肺损伤,表现为肝、肺组织水肿、出血和炎细胞浸润,通过EGCG预处理,有效降低了肝、肺损伤的程度,同时肝、肺组织Nrf2、HO-1表达增加。实验证明,天然中草药绿茶的有效活性成分EGCG,具有与已知药物SFN相同的作用效果,通过激发活化Nrf2-ARE信号通路,对大鼠肠缺血再灌注远隔脏器肝、肺损伤具有保护作用。
     小结
     本研究利用大鼠肠缺血再灌注模型,采用生化自动分析、免疫组化和Western blot分析等分子生物学方法对原发脏器肠道,以及远隔脏器肝、肺功能(AST、ATL、肺含水率和BALFP);肠、肝、肺组织氧化损伤水平(SOD);白细胞趋化因子(MPO);Nrf2的激活表达和Ⅱ相抗氧化反应酶系统(GSH、GSH-Px、HO-1)进行了检测,探讨Nrf2-ARE信号通路在肠缺血再灌注损伤保护机制中的作用,以及SFN和EGCG预处理对肠缺血再灌注肠道及远隔脏器损伤的保护作用。
     结果表明:肠缺血再灌注不但能够导致原发脏器肠道的损伤,还能够引起远隔脏器肝、肺组织的损伤,病理学表现为肠、肝、肺组织的出血、渗出、中性粒细胞浸润;组织结构破坏;肝功能受损;肺组织含水率和BALFP增加;肠、肝和肺组织中的氧化损伤指标和炎症性指标如:SOD含量下降,MPO的含量增加。采用SFN和EGCG预处理后,肠、肝和肺组织Nrf2的核表达增强,Nrf2-ARE信号通路被激活,Ⅱ相抗氧化反应酶系统的水平增加,肠、肝和肺组织损伤程度明显减轻,说明Nrf2-ARE信号通路对于肠缺血再灌注肠道损伤及远隔脏器肝、肺损伤起保护作用,同时,进一步验证了天然中草药绿茶的有效活性成分EGCG,可以诱导活化Nrf2-ARE信号通路,对大鼠肠缺血再灌注肝、肺损伤具有保护作用。
Intestinal ischemia reperfusion (ⅡR) injury is one of the most severe clinical disorders, which is caused by many factors, such as acute mesenteric ischemia, severe burn, hemorrhagic, traumatic or septic shock, and some surgical procedures, including small bowel transplantation and abdominal aortic surgery. It is known thatⅡR injury is an important initiating factor in the pathogenesis of systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS).ⅡR injury which is associated with intestinal transplantation usually lead to the failure of the operation due to the aggravating of immunological rejection. Efforts to prevent and controlⅡR injury remain the challenging and promising for clinical surgery.
     ⅡR injury is not only limited to the intestine itself, but involves severe distant tissue destruction. The mechanism ofⅡR injury is complicated. AfterⅡR, intestinal barrier function is damaged, bacteria translocation, toxic substances release into the blood, such as inflammatory mediators, bacterial toxins and reactive oxygen species (ROS) is activated, contributing to the oxidative stress. This is considered the key factor. Multiple signaling pathways have involved in this pathologic process which demenstrated by our and others studies, such as nuclear factor kappa B (NFκB), ubiquitin proteasome system (UPS), triggering receptor expressed on myeloid cells 1 (TREM-1), poly(ADP-ribose) polymerase 1 (PARP-1), etc. ROS in various signaling pathways are activated and produce inflammatory amplification, while other proteins may also be activated to produce a protective effect.
     Transcription factor NF-E2-related factor-2 (Nrf2) regulates a major environmental and oxidative stress response. It is held in the cytoplasm by a cytoskeletal-associated specific inhibitory protein (Kelch-like ECH associating protein 1, Keap1) under circumstances of normal cellular quiescent state. Upon the stimulation of oxidative stress, cysteine residues within the hinge region of Keap1 can be modified and cause a conformational change in KEAP1 with the loss of Nrf2 binding, then Nrf2 translocated into the nucleus, which binds to the antioxidant response element (ARE) in the promoter region of a number of genes, encoding for antioxidative and phase 2 enzymes, such as heme oxygenase 1 (HO-1), glutathione peroxidase (GSH-Px), and NAD(P)H:quinone oxidoreductase 1 (NQO1), which can antagonize oxidative stress induced by ROS. Thus, regulating Nrf2-ARE signaling pathway may be a potent approach against diseases caused by oxidative stress.
     With the discovery of the Nrf2-ARE signaling pathway can reduce the tissue damage induced by ROS, more and more studies have shown that modulating Nrf2-ARE signaling pathway play a protective role in splanchnic ischemia reperfusion injuries including heart, brain and renal. However, no report addresses a role of Nrf2-ARE signaling pathway in protectingⅡR injury.
     Sulforaphane (SFN) is an isothiocyanate derived from natural product which is present in cruciferous vegetables such as broccoli and has been used as antioxidants and anti-tumor agents, which drawn many researchers attention. The cytoprotective effect of this compound is exerted by modulating Nrf2-ARE pathway. Epigallocatechin gallate (EGCG), the major component including activity and water-solubility of polyphenols in green tea, which is an effective component of traditional Chinese drug, has recently drawn considerable attention for antioxidative properties.
     Our aim is to use a known pharmacal inducer of Nrf2 to explore the mechanisms of Nrf2-ARE signaling pathway in IIR by a rat model, then testify the role of the active ingredient of Chinese medicine-EGCG pretreatment on multiple organs dysfunction induced byⅡR, to seek a new target for prevention and treatment onⅡR injury at the molecular level, and provide more favorable theoretical basis on EGCG development and utilization.
     PartⅠ:Effect of Nrf2-ARE signaling pathway on the protection of intestinal ischemia reperfusion injury in rats
     Objective:To investigate the role of Nrf2-ARE signaling pathway on the protection of intestinal ischemia reperfusion (ⅡR) injury through intervening on the expressions of Nrf2 and HO-1 and the effects on indicators of oxidative stress, and to provide a novel target for prevention and treatment on IIR injury at the molecular level.
     Methods:Thirty-two male Sprague Dawley rats were randomly divided into 4 groups:control, SFN control, IIR, and SFN+ⅡR groups (n=8 in each group). TheⅡR model was established by clamping superior mesenteric artery (SMA) for 1 hour and reperfusion for 2 hours. Pretreatment groups at 30 minutes before ischemia,5mg/kg SFN abdominal injection respectively, the control group carried out only laparotomy and isolation of the SMA without occlusion. Intestinal histology was investigated. Intestinal tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and GSH-Px activity were assayed. The Intestinal Nrf2 and HO-1 were determined by immunohisto-chemical analysis and western blot analysis.
     Results:Firstly, compared with the control group,ⅡR group:(1) Intestine was obvious edema, hemorrhage, bleed, exudation, and lack of small intestinal mucosa (P<0.01); (2) Intestinal SOD activity was decreased (P<0.01). Intestinal MPO activity was increased (P<0.01); (3) Intestinal GSH level was significantly enhanced (P<0.01); (4) Expressions of Nrf2 and HO-1 in the intestinal tissue were increased (P<0.01, P<0.01). Secondly, compared with the control group, SFN control group:(1) Intestinal GSH-Px activity increased significantly (P<0.01); (2) Expressions of Nrf2 and HO-1 in the intestinal tissue were increased (P<0.01,P<0.01). Thirdly, compared with theⅡR group, SFN+ⅡR group:(1) Intestine tissue pathological scores of injury significantly were reduced (P<0.05); (2) Intestinal SOD activity was elevated markedly (P<0.05), MPO activity was conspicuously decreased (P<0.05); (3) Intestinal GSH and GSH-Px levels were significantly enhanced (P<0.05,P<0.01); (4) The expressions of Nrf2 and HO-1 in the intestinal tissue were increased (P<0.01, P<0.05).
     Conclusions:ⅡR induced intestinal injury, characterized by the histological edema, hemorrhage, lack of small intestinal mucosa. The injury of intestine was alleviated through upregulating Nrf2-ARE signaling pathway, which is accompanied with the expressions of Nrf2 and HO-1 in the intestinal tissue. The activation of Nrf2-ARE signaling pathway plays an important role in the protection of intestinal ischemia reperfusion.
     PartⅡ:SFN protects liver and lung injuries induced by intestinal ischemia reperfusion
     Objective:To investigate the role of a known inducer of Nrf2-ARE signaling pathway on the liver and lung injuries induced byⅡR through evaluating the expressions of Nrf2 and HO-1 and the effects on indicators of oxidative stress, then clarify the effect of SFN by inducing Nrf2-ARE signaling pathway on liver and lung injuries triggered byⅡR in rats.
     Methods:Thirty-two male Sprague Dawley rats were randomly divided into 4 groups:control, SFN control,ⅡR, and SFN+ⅡR groups (n=8 in each group). TheⅡR model was established by clamping SMA for 1 hour and reperfusion for 2 hours. Pretreatment groups at 30 minutes before ischemia, 5mg/kg SFN abdominal injection respectively, the control group carried out only laparotomy and isolation of the SMA without occlusion. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lung brochia alveolus lung fluid protein (BALFP) was measured. Liver and lung histology was investigated. Liver and lung tissue SOD, MPO, GSH and GSH-Px activity were assayed. The liver and lung Nrf2 and HO-1 were determined by immunohistochemical analysis and western blot analysis.
     Results:Firstly, compared with the control group,ⅡR group:(1) Serum ALT and AST were significantly enhanced (P<0.01, P<0.01); (2) Lung BALFP was increased significantly (P<0.01); (3) Liver and lung were obvious edema, hemorrhage, and neutrophil infiltration; (4) Liver and lung SOD activities were decreased (P<0.01, P<0.05), MPO activities were increased (P<0.01, P<0.05); (5) Liver and lung GSH levels were significantly enhanced (P<0.01, P<0.05); (6) Expressions of HO-1 in the liver and lung tissues were increased (P<0.01, P<0.01); (7) Expressions of Nrf2 in the liver and lung tissues were increased (P<0.05, P<0.01). Secondly, compared with the control group, SFN control group:(1) Liver and lung GSH-Px activities increased significantly (P<0.05, P<0.01); (2) Expressions of HO-1 in the liver and lung tissue were increased (P<0.05, P<0.01); (3) Expressions of Nrf2 in the liver and lung tissue were increased (P<0.05, P<0.01). Thirdly, compared with theⅡR group, SFN+IIR group:(1) Serum ALT and AST were significantly decreased (P<0.01, P<0.05); (2) Lung BALFP was decreased significantly (P<0.05); (3) The pathological injuries of liver and lung were improved; (4) Liver and lung SOD activities were elevated significantly (P<0.01, P<0.05), MPO activities were decreased significantly (P<0.01, P<0.05); (5) Liver and lung GSH levels were significantly enhanced (P<0.05, P<0.01); (6) Liver and lung GSH-Px levels were significantly enhanced (P<0.05, P<0.01); (7) Expressions of HO-1 in the liver and lung tissue were increased (P<0.01, P<0.01); (8) Expressions of Nrf2 in the liver and lung tissue were increased (P<0.05, P<0.05).
     Conclusions:ⅡR induced liver and lung injuries, characterized by the histological edema, hemorrhage, and infiltration with inflammatory cells. The injuries of liver and lung were alleviated through Nrf2-ARE signaling pathway, which is accompanied with the overexpressions of Nrf2 and HO-1 in the liver and lung tissue. The activation of Nrf2-ARE signaling pathway induced by SFN plays an important role in the protection of liver and lung injuries induced byⅡR.
     PartⅢ:EGCG protects liver and lung injuries induced by intestinal ischemia reperfusion in rats
     Objective:To investigate EGCG on the protection of liver and lung injuries induced byⅡR, and testify if the role of EGCG pretreatment on multiple organs dysfunction induced by IIR act as SFN through Nrf2-ARE signaling pathway. To provide more favorable theoretical basis on the development and utilization of EGCG.
     Methods:Thirty-two male Sprague Dawley rats were randomly divided into 4 groups:control, EGCG control,ⅡR, and EGCG+ⅡR groups (n=8 in each group). TheⅡR model was established by clamping SMA for 1 hour and reperfusion for 2 hours. Pretreatment groups at 30 minutes before ischemia,50mg/kg EGCG abdominal injection respectively, the control group carried out only laparotomy and isolation of the SMA without occlusion. Serum levels of AST, ALT, and lung water content was assayed. Liver and lung histology was investigated. Liver and lung tissue SOD, MPO, GSH and GSH-Px activity were assayed. The liver and lung Nrf2 and HO-1 were determined by immunohistochemical analysis and western blot analysis.
     Results:Firstly, compared with the control group,ⅡR group:(1) Serum ALT and AST were significantly enhanced (P<0.01, P<0.05); (2) Lung water content was increased significantly (P<0.01); (3) Liver and lung were obvious edema, hemorrhage, and neutrophil infiltration; (4) Liver and lung SOD activities were decreased (P<0.01, P<0.01), MPO activities were increased (P<0.01, P<0.01); (5) Liver and lung GSH levels were significantly enhanced (P<0.05, P<0.05); (6) Expressions of HO-1 in the liver and lung tissues were increased (P<0.01, P<0.01); (7) Expressions of Nrf2 in the liver and lung tissues were increased (P<0.05, P<0.05). Secondly, compared with the control group, EGCG control group:(1) Liver and lung GSH-Px activities increased significantly (P<0.01, P<0.01); (2) Expressions of HO-1 in the liver and lung tissue were increased (P<0.01, P<0.01); (3) Expressions of Nrf2 in the liver and lung tissue were increased (P<0.05, P<0.01). Thirdly, compared with theⅡR group, EGCG+ⅡR group: (1) Serum ALT and AST were significantly decreased (P<0.01, P<0.05); (2) Lung water content was decreased significantly (P<0.01); (3) The pathological injuries of liver and lung were improved; (4) Liver and lung SOD activities were elevated significantly (P<0.01, P<0.05), MPO activities were, decreased significantly (P<0.01, P<0.01); (5) Liver and lung GSH levels were significantly enhanced (P<0.01, P<0.01); (6) Liver and lung GSH-Px levels were significantly enhanced (P<0.01, P<0.01); (7) Expressions of HO-1 in the liver and lung tissue were increased (P<0.01, P<0.01); (8) Expressions of Nrf2 in the liver and lung tissue were increased (P<0.01,P<0.05).
     Conclusions:ⅡR induced liver and lung injuries, characterized by the histological edema, hemorrhage, and infiltration with inflammatory cells. The injuries of liver and lung can be alleviated through EGCG pretreatment, which is accompanied with the overexpressions of Nrf2 and HO-1 in the liver and lung tissue. EGCG, the major component of polyphenols in green tea, can protect liver and lung injuries induced byⅡR through Nrf2-ARE signaling pathway.
     We use intestinal ischemia reperfusion (ⅡR) rat model to analyze the intestine, liver and lung injuries marker (histology, serum ALT, AST, lung water content and BLAFP), tissue oxidative stress (SOD, MPO), and the expression of Nrf2-ARE pathway (Nrf2, GSH, GSH-Px and HO-1) using biochemical analysis, immunohistochemical analysis and Western blot analysis to evaluate the role of Nrf2-ARE signaling pathway on the protective effect ofⅡR and the effect of SFN, EGCG pretreatment to liver and lung injuries induced byⅡR.
     The result showed as follows:Intestinal ischemia reperfusion (ⅡR) not only leads to intestinal damage itself, but also causes severe destruction of remote organs, characterized by the histological edema, hemorrhage and infiltration with inflammatory cells, significant increasing of ALT, AST, lung water content, and BLAFP. Intestine, liver and lung SOD and MPO levels changed markedly inⅡR group. Pretreatment with SFN or EGCG, the intestine, liver and lung injuries were improved, which is accompanied with the level of tissue Nrf2. At the meantime, phase 2 antioxidant and detoxification enzymes increased markedly. The Nrf2-ARE signaling pathway has been shown to have beneficial effects on the prevention ofⅡR. This also demonstrate that EGCG, which is the major component of polyphenols in green tea, plays an important role in the induction of Nrf2-ARE signaling pathway, and the protection of liver and lung injuries induced byⅡR.
引文
1. Frishman WH, Novak S, Brandt LJ, Spiegel A, Gutwein A, Kohi M, Rozenblit G. Pharmacologic management of mesenteric occlusive disease. Cardiol Rev. 2008;16(2):59-68.
    2. Radhakrishnan RS, Radhakrishnan GL, Radhakrishnan HR, Xue H, Adams SD, Moore-Olufemi SD, Harting MT, Cox CS Jr, Kone BC. Pretreatment with bone morphogenetic protein-7 (BMP-7) mimics ischemia preconditioning following intestinal ischemia/reperfusion injury in the intestine and liver. Shock. 2008;30(5):532-536.
    3. Bretz B, Blaze C, Parry N, Kudej RK. Ischemic postconditioning does not attenuate ischemia-reperfusion injury of rabbit small intestine. Vet Surg.2010; 39(2):216-223.
    4. Granger DN, Hollwarth ME, Parks DA. Ischemia-reperfusion injury:role of oxygen-derived free radicals. Acta Physiol Scand Suppl.1986;548:47-63.
    5. Tekin 10, Sipahi EY, Comert M, Acikgoz S, Yurdakan G. Low-density lipoproteins oxidized after intestinal ischemia/reperfusion in rats. J Surg Res. 2009;157(1):e47-54.
    6. HOOPER CE. Methods for the investigation of cellular renewal in the intestinal epithelium. Methods Med Res.1961;9:326-342.
    7. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci.2004; 49(9):1359-1377.
    8. Cui T, Miksa M, Wu R, Komura H, Zhou M, Dong W, Wang Z, Higuchi S, Chaung W, Blau SA, Marini CP, Ravikumar TS, Wang P. Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med.2010; 181(3):238-246.
    9. Yao JH, Zhang XS, Zheng SS, Li YH, Wang LM, Wang ZZ, Chu L, Hu XW, Liu KX, Tian XF. Prophylaxis with carnosol attenuates liver injury induced by intestinal ischemia/reperfusion. World J Gastroenterol.2009;15(26):3240-3245.
    10. Sizlan A, Guven A, Uysal B, Yanarates O, Atim A, Oztas E, Cosar A, Korkmaz A. Proanthocyanidin protects intestine and remote organs against mesenteric ischemia/reperfusion injury. World J Surg.2009;33(7):1384-1391.
    11. Nezu Y, Nezu Y, Shigihara K, Harada Y, Yogo T, Hara Y, Tagawa M. Effects of small intestinal ischemia and reperfusion on expression of tumor necrosis factor-alpha and interleukin-6 messenger RNAs in the jejunum, liver, and lungs of dogs. Am J Vet Res.2008;69(4):512-518.
    12. Stallion A, Kou TD, Latifi SQ, Miller KA, Dahms BB, Dudgeon DL, Levine AD. Ischemia/reperfusion:a clinically relevant model of intestinal injury yielding systemic inflammation. J Pediatr Surg.2005;40(3):470-477.
    13.Tomita M, Kishimoto H, Takizawa Y, Hayashi M. Effects of intestinal ischemia/reperfusion on P-glycoprotein mediated biliary and renal excretion of rhodamine123 in rat. Drug Metab Pharmacokinet.2009;24(5):428-437.
    14. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol.2002; 282(2):C227-241.
    15. Czaja MJ. Induction and regulation of hepatocyte apoptosis by oxidative stress. Antioxid Redox Signal.2002;4(5):759-767.
    16. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal.2002;14(11):879-897.
    17. Zimmerman BJ, Granger DN. Mechanisms of reperfusion injury. Am J Med Sci. 1994;307(4):284-292.
    18. Teke Z, Kabay B, Ozden A, Yenisey C, Bir F, Demirkan NC, Bicakci T, Erdem E. Effects of tempol, a membrane-permeable radical scavenger, on local and remote organ injuries caused by intestinal ischemia/reperfusion in rats. J Surg Res. 2008;149(2):259-271.
    19. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine.3rd ed. New York:Oxford University Press; 1999.
    20. Nohl H, Gille L, Kozlov A, Staniek K. Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep.2003;8(3):135-141.
    21. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys.1992;298(2):446-451.
    22. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy:A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev.2001;53(1):135-159.
    23.Sutton HC, Winterbourn CC. On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Radic Biol Med.1989;6(1):53-60.
    24. Zwacka RM, Zhang Y, Zhou W, Halldorson J, Engelhardt JF. Ischemia/reper-fusion injury in the liver of BALB/c mice activates AP-1 and nuclear factor kappaB independently of IkappaB degradation. Hepatology.1998;28(4): 1022-1030.
    25. Harada N, Iimuro Y, Nitta T, Yoshida M, Uchinami H, Nishio T, Hatano E, Yamamoto N, Yamamoto Y, Yamaoka Y. Inactivation of the small GTPase Racl protects the liver from ischemia/reperfusion injury in the rat. Surgery.2003; 134(3):480-491.
    26. Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation. 1992;53(5):957-978.
    27. Rudiger HA, Clavien PA. Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology. 2002;122(1):202-210.
    28. Bauer M, Bauer I. Heme oxygenase-1:Redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal.2002;4(5):749-758.
    29. Paxian M, Rensing H, Rickauer A, Schonhofen S, Schmeck J, Pannen BH, Bauer I, Bauer M. Kupffer cells and neutrophils as paracrine regulators of the heme oxygenase-1 gene in hepatocytes after hemorrhagic shock. Shock.2001; 15(6): 438-445.
    30. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem.2000;275(21):16023-16029.
    31. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2 small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;36(2):313-322.
    32. Venugopal R, Jaiswal AK. Nrfl and Nrf2 positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD(P) H:quinone oxidoreductasel gene. Proc Natl Acad Sci USA.1996;93(25): 14960-14965.
    33.Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA.1994;91(21):9926-9930.
    34. Motohashi H, O'Connor T, Katsuoka F, Engel JD, Yamamoto M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene.2002;294(1-2):1-12.
    35. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res.2001;61(8):3299-3307.
    36. Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong AN. Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem.2004; 279(22):23052-23060.
    37.Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells.2001; 6(10):857-868.
    38. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem. 2004;279(30):31556-31567.
    39. Nioi P, Nguyen T, Sherratt PJ, Pickett CB. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol.2005;25(24): 10895-10906.
    40. Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M. Identification of the interactive in terface and phylogenic conservation of the Nrf2 Keapl system. Genes Cells.2002;7(8):807-820.
    41. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keapl represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev.1999; 13(1):76-86.
    42. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M. Scaffolding of Keapl to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA.2004; 101(7):2046-2051.
    43. Xue F, Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell.1993;72(5):681-693.
    44. Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J.2004;378(2):373-382.
    45. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P. Protection against electrophile and oxidant stress by induction of the phase 2 response:fate of cysteines of the Keapl sensor modified by inducers. Proc Natl Acad Sci USA.2004;101(7):2040-2045.
    46. Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keapl modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol.2005;18(12):1917-1926.
    47. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keapl are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA.2002;99(18):11908-11913.
    48. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, Yamamoto M. Keapl regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells.2003;8(4):379-391.
    49. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Ann Rev Pharmacol Toxicol.2003;43:233-260.
    50. Yu R, Chen C, Mo YY, Hebbar V, Owuor ED, Tan TH, Kong AN. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem. 2000;275(51):39907-39913.
    51. Zipper LM, Mulcahy RT. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun. 2000;278(2):484-492.
    52.Reichard JF, Petersen DR. Involvement of phosphatidylinositol 3-kinase and extracellular-regulated kinase in hepatic stellate cell antioxidant response and myofibroblastic transdifferentiation.2006;446(2):111-118.
    53. Stewart D, Killeen E, Naquin R, Alam S, Alam J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem.2003;278(4):2396-2402.
    54. McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem.2003;278(24): 21592-21600.
    55. Nguyen T, Sherratt PJ, Huang HC, Yang CS, Pickett CB. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem.2003;278(7):4536-4541.
    56. Kobayashi A, Ohta T, Yamamoto M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol.2004;378:273-286.
    57. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keapl is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol.2004;24(24):10941-10953.
    58. Zhang DD, Hannink M. Distinct cysteine residues in Keapl are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemo-preventive agents and oxidative stress. Mol Cell Biol.2003;23(22):8137-5151.
    59. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130-7139.
    60. Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem.2002;277(45):42769-42774.
    61. Motohashi H, Katsuoka F, Engel JD, Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA.2004; 101(17):6379-6384.
    62. Friling RS, Bensimon A, Tichauer Y, Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci USA.1990;87(16):6258-6262.
    63.Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem.1991;266(18):11632-11639.
    64. Wasserman WW, Fahl WE. Functional antioxidant responsive elements. Proc Natl Acad Sci USA.1997;94(10):5361-5366.
    65.Erickson AM, Nevarea Z, Gipp JJ, Mulcahy RT. Identification of a variant antioxidant response element in the promoter of the human glutamate-cysteine ligase modifier subunit gene. Revision of the ARE consensus sequence. J Biol Chem.2002;277(34):30730-30737.
    66. Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H: quinone oxidoreductase 1 gene:reassessment of the ARE consensus sequence. Biochem J.2003;374(Pt 2):337-348.
    67. Nguyen T, Huang HC, Pickett CB. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem. 2000;275(20):15466-15473.
    68. Wild AC, Moinova HR, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem. 1999;274(47):33627-33636.
    69. Jeyapaul J, Jaiswal AK. Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Pharmacol.2000;59(11):1433-1439.
    70. Fujiwara KT, Kataoka K, Nishizawa M. Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 1993;8(9):2371-2380.
    71. Nagar S, Remmel RP. Uridine diphosphoglucuronosyltransferase pharmacogene-tics and cancer. Oncogene.2006;25(11):1659-1672.
    72. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Phar-macol Toxicol.2005;45:51-88.
    73. Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the trans-cription factor Nrf2 by cancer chemopreventive agents:role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol.2002; 22(9):2883-2892.
    74. Kawai M, Kitade H, Koshiba T, Waer M, Pirenne J. Intestinal ischemia reperfusion and lipopolysaccharide transform a tolerogenic signal into a sensitizing signal and trigger rejection. Transplantation.2009;87(10):1464-1467.
    75. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res.2009; 105(4):365-374.
    76. Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem.2008; 104(4):1116-1131.
    77. Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol.2008; 75(11):2214-2223.
    1. Frishman WH, Novak S, Brandt LJ, Spiegel A, Gutwein A, Kohi M, Rozenblit G. Pharmacologic management of mesenteric occlusive disease. Cardiol Rev. 2008;16(2):59-68.
    2. Radhakrishnan RS, Radhakrishnan GL, Radhakrishnan HR, Xue H, Adams SD, Moore-Olufemi SD, Harting MT, Cox CS Jr, Kone BC. Pretreatment·with bone morphogenetic protein-7 (BMP-7) mimics ischemia preconditioning following intestinal ischemia/reperfusion injury in the intestine and liver. Shock. 2008;30(5):532-536.
    3. Bretz B, Blaze C, Parry N, Kudej RK. Ischemic postconditioning does not attenuate ischemia-reperfusion injury of rabbit small intestine. Vet Surg. 2010;39(2):216-223.
    4. Cerqueira NF, Hussni CA, Yoshida WB. Pathophysiology of mesenteric ischemia/reperfusion:a review. Acta Cir Bras.2005;20(4):336-343.
    5. Nezu Y, Nezu Y, Shigihara K, Harada Y, Yogo T, Hara Y, Tagawa M. Effects of small intestinal ischemia and reperfusion on expression of tumor necrosis factor-alpha and interleukin-6 messenger RNAs in the jejunum, liver, and lungs of dogs. Am J Vet Res.2008;69(4):512-518.
    6. Pierro A, Eaton S. Intestinal ischemia reperfusion injury and multisystem organ failure. Semin Pediatr Surg.2004;13(1):11-17.
    7. Varga J, Stasko P, Toth S, Pristasova Z, Bujdos M, Pomfy M. Development of jejunal graft damage during intestinal transplantation. Ann Transplant.2009; 14(3):62-69.
    8. Kato T, Ruiz P, Thompson JF, Eskind LB, Weppler D, Khan FA, Pinna AD, Nery JR, Tzakis AG. Intestinal and multivisceral transplantation. World J Surg.2002 Feb;26(2):226-37.
    9. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49(9):1359-1377.
    10. Galili Y, Ben-Abraham R, Weinbroum A, Marmur S, Iaina A, Volman Y, Peer G, Szold O, Soffer D, Klausner J, Rabau M, Kluger Y. Methylene blue prevents pulmonary injury after intestinal ischemia-reperfusion. J Trauma.1998;45(2): 222-225.
    11. Chen ZB, Zheng SS, Yuan G, Ding CY, Zhang Y, Zhao XH, Ni LM. Effects of intestinal lymph on expression of neutrophil adhesion factors and lung injury after trauma-induced shock. World J Gastroenterol.2004;10(21):3221-3224.
    12. Wang ZZ, Zhao WJ, Zhang XS, Tian XF, Wang YZ, Zhang F, Yuan JC, Han GZ, Liu KX, Yao JH. Protection of Veratrum nigrum L. var. ussuriense Nakai alkaloids against ischemia-reperfusion injury of the rat liver. World J Gastroenterol.2007;13(4):564-571.
    13. Yao JH, Li YH, Wang ZZ, Zhang XS, Wang YZ, Yuan JC, Zhou Q, Liu KX, Tian XF. Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. Clin Exp Pharmacol Physiol.2007;34(11):1102-1108.
    14. Tian XF, Zhang XS, Li YH, Wang ZZ, Zhang F, Wang LM, Yao JH. Proteasome inhibition attenuates lung injury induced by intestinal ischemia reperfusion in rats. Life Sci.2006;79(22):2069-76.
    15. Tian XF, Yao JH, Li YH, Gao HF, Wang ZZ, Yang CM, Zheng SS. Protective effect of pyrrolidine dithiocarbamate on liver injury induced by intestinal ischemia-reperfusion in rats. Hepatobiliary Pancreat Dis Int.2006;5(1):90-95.
    16. Tian XF, Yao JH, Li YH, Zhang XS, Feng BA, Yang CM, Zheng SS. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats. World J Gastroenterol.2006;12(3):388-392.
    17. Yao JH, Zhang XS, Zheng SS, Li YH, Wang LM, Wang ZZ, Chu L, Hu XW, Liu KX, Tian XF. Prophylaxis with carnosol attenuates liver injury induced by intestinal ischemia/reperfusion. World J Gastroenterol.2009;15(26):3240-3245.
    18. Gibot S, Massin F, Alauzet C, Montemont C, Lozniewski A, Bollaert PE, Levy B. Effects of the TREM-1 pathway modulation during mesenteric ischemia-reperfusion in rats. Crit Care Med.2008;36(2):504-510.
    19. Di Paola R, Mazzon E, Xu W, Genovese T, Ferrraris D, Muia C, Crisafulli C, Zhang J; Cuzzocrea S. Treatment with PARP-1 inhibitors, GPI 15427 or GPI 16539, ameliorates intestinal damage in rat models of colitis and shock. Eur J Pharmacol.2005;527(1-3):163-171.
    20. Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox. Signal 2005; 7(3-4): 385-394.
    21. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res.2009; 105(4):365-374.
    22. Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem.2008; 104(4):1116-1131.
    23. Yoon HY, Kang Nl, Lee HK, Jang KY, Park JW, Park BH. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol.2008; 75(11):2214-2223
    24. Yu D, Sekine-Suzuki E, Xue L, Fujimori A, Kubota N, Okayasu R. Chemopreventive agent sulforaphane enhances radiosensitivity in human tumor cells. Int J Cancer.2009; 125(5):1205-1211.
    25. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection:a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med.2008; 45(10):1375-1383.
    26. Kwak MK, Wakabayashi N, Kensler TW. Chemoprevention through the Keapl-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res 2004; 555(1-2):133-148.
    27. Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ. (-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys. 2008;476(2):171-177.
    28. Zhang ZM, Yang XY, Yuan JH, Sun ZY, Li YQ. Modulation of NRF2 and UGT1A expression by epigallocatechin-3-gallate in colon cancer cells and BALB/c mice. Chin Med J (Engl).2009;122(14):1660-1665.
    29. Ajamieh H, Teoh NC. Red wine coming up roses for intestinal ischemia reperfusion injury:role for resveratrol? J Gastroenterol Hepatol.2009;24(11): 1703-1705.
    30. Guven A, Tunc T, Topal T, Kul M, Korkmaz A, Gundogdu G, Onguru O, Ozturk H. Alpha-lipoic acid and ebselen prevent ischemia/reperfusion injury in the rat intestine. Surg Today.2008; 38(11):1029-1035.
    31. Tekin 10, Sipahi EY, Comert M, Acikgoz S, Yurdakan G. Low-density lipoproteins oxidized after intestinal ischemia/reperfusion in rats. J Surg Res. 2009;157(1):e47-e54.
    32. Teke Z, Kabay B, Ozden A, Yenisey C, Bir F, Demirkan NC, Bicakci T, Erdem E. Effects of tempol, a membrane-permeable radical scavenger, on local and remote organ injuries caused by intestinal ischemia/reperfusion in rats. J Surg Res. 2008;149(2):259-271.
    33. Zimmerman BJ, Granger DN. Mechanisms of reperfusion injury. Am J Med Sci. 1994;307(4):284-292.
    34. Freeman BA, Crapo JD. Biology of disease:free radicals and tissue injury. Lab Invest.1982;47(5):412-426.
    35. Deitch EA, Rutan R, Waymack JP. Trauma, shock, and gut translocation. New Horiz.1996;4(2):289-299.
    36. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC. The Nrf2-ARE pathway:an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci.2008; 1147:61-69
    37. Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Dore S. Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience.2007.;147(1):53-59.
    38. Jeong WS, Jun M, Kong AN. Nrf2:a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal.2006; 8(1-2): 99-106.
    39. Piao CS, Gao S, Lee GH, Kim do S, Park BH, Chae SW, Chae HJ, Kim SH. Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res.2010;61(4):342-348.
    40. Megison SM, Horton JW, Chao H, Walker PB. A new model for intestinal ischemia in the rat. J Surg Res.1990;49(2):168-173.
    41. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg.1970; 101(4):478-483.
    42. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol.2002; 282(22):C227-241.
    43. Sun Z, Olanders K, Lasson A, Dib M, Annborn M, Andersson K, Wang X, Andersson R. Effective treatment of gut barrier dysfunction using an antioxidant, a PAF inhibitor, and monoclonal antibodies against the adhesion molecule PECAM-1. J Surg Res.2002; 105(2):220-233.
    44. Brooks HJ, McConnell MA, Corbett J, Buchan GS, Fitzpatrick CE, Broadbent RS. Potential prophylactic value of bovine colostrum in necrotizing enterocolitis in neonates:an in vitro study on bacterial attachment, antibody levels and cytokine production. FEMS Immunol Med Microbiol.2006; 48(3):347-354.
    45. Nitescu N, Ricksten SE, Marcussen N, Haraldsson B, Nilsson U, Basu S, Guron G. N-acetylcysteine attenuates kidney injury in rats subjected to renal ischaemia-reperfusion. Nephrol Dial Transplant.2006; 21(5):1240-1247.
    46. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA.1994;91(21):9926-9930.
    47. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, Hayes JD. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res.2001;61(8):3299-3307.
    48. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem.2000;275(21):16023-16029.
    49. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2 small Maf heterodimer mediates the induction of phase Ⅱ detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;36(2):313-322.
    50. Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD(P) H:quinone oxidoreductasel gene. Proc Natl Acad Sci USA.1996;93(25):14960-14965.
    51. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keapl represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev.1999;13(1): 76-86.
    52. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M. Scaffolding of Keapl to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA.2004;101(7):2046-2051.
    53. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keapl are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA.2002;99(18):11908-11913.
    54. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol.2003;43:233-260.
    55.Nagar S, Remmel RP. Uridine diphosphoglucuronosyltransferase pharmaco-genetics and cancer. Oncogene.2006;25(11):1659-1672.
    56. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharma-col Toxicol.2005;45:51-88.
    57. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008; 74(13):1526-1539.
    58. Zaets SB, Xu DZ, Lu Q, Feketova E, Berezina TL, Gruda M, Malinina IV, Deitch EA, Olsen EH. Recombinant factor ⅩⅢ diminishes multiple organ dysfunction in rats caused by gut ischemia-reperfusion injury. Shock.2009;31(6):621-626.
    59. Szabo A, Vollmar B, Boros M, Menger MD. Gender differences in ischemia-reperfusion-induced microcirculatory and epithelial dysfunctions in the small intestine. Life Sci.2006;78(26):3058-3065.
    60. Sun Z, Wang X, Deng X, Lasson A, Wallen R, Hallberg E, Andersson R. The influence of intestinal ischemia and reperfusion on bidirectional intestinal barrier permeability, cellular membrane integrity, proteinase inhibitors, and cell death in rats. Shock.1998;10(3):203-212.
    61.Turnage RH, Bagnasco J, Berger J, Guice KS, Oldham KT, Hinshaw DB. Hepatocellular oxidant stress following intestinal ischemia-reperfusion injury. J Surg Res.1991;51 (6):467-471.
    62. Horie Y, Ishii H. Liver dysfunction elicited by gut ischemia-reperfusion. Patho-physiology.2001;8(1):11-20.
    63. Leister I, Mbachu EM, Post S, Samel ST, Stojanovic T, Gutt CN, Becker H, Markus PM. Vasoactive intestinal polypeptide and gastrin-releasing peptide attenuate hepatic microvasculatory disturbances following intestinal ischemia and reperfusion. Digestion.2002;66(3):186-192.
    64. Harward TR, Brooks DL, Flynn TC, Seeger JM. Multiple organ dysfunction after mesenteric artery revascularization. J Vasc Surg.1993;18(3):459-467.
    65.Turnage RH, Guice KS, Oldham KT. Pulmonary microvascular injury following intestinal reperfusion. New Horiz.1994;2(4):463-475.
    66. Avgerinos ED, Kostopanagiotou G, Costopanagiotou C, Kopanakis N, Andreadou I, Lekka M, Nakos G, Smyrniotis V. Intestinal preconditioning ameliorates ischemia-reperfusion induced acute lung injury in rats:an experimental study. J Surg Res.2010;160(2):294-301.
    67. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology.2001;94(6):1133-1138.
    68. Toyokuni S. Reactive oxygen species-induced molecular damage and its appli-cation in pathology. Pathol Int.1999;49(2):91-102.
    69. Xiao F, Eppihimer MJ, Willis BH, Carden DL. Complement-mediated lung injury and neutrophil retention after intestinal ischemia-reperfusion. J Appl Physiol. 1997;82(5):1459-1465.
    70. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349.
    71. Stefanutti G, Pierro A, Parkinson EJ, Smith VV, Eaton S. Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat.Crit Care Med.2008;36(5):1564-1572.
    72. Ogura J, Kobayashi M, Itagaki S, Hirano T, Iseki K. Alteration of Mrp2 and P-gp expression, including expression in remote organs, after intestinal ischemia-reperfusion. Life Sci.2008;82(25-26):1242-1248.
    73. Tan S, Gelman S, Wheat JK, Parks DA. Circulating xanthine oxidase in human ischemia reperfusion. South Med J.1995;88(4):479-482.
    74. Primiano T, Sutter TR, Kensler TW. Antioxidant-inducible genes. Adv Pharmacol. 1997;38:293-328.
    75.Sriram N, Kalayarasan S, Sudhandiran G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulm Pharmacol Ther.2009;22(3):221-236.
    76. Cox G. IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of neutrophils. Am J Physiol.1996;271(4 Pt 1):L566-L571.
    77. Tomita M, Kishimoto H, Takizawa Y, Hayashi M. Effects of intestinal ischemia/reperfusion on P-glycoprotein mediated biliary and renal excretion of rhodamine 123 in rat. Drug Metab Pharmacokinet.2009; 24(5):428-37
    78. Stallion A, Kou TD, Latifi SQ, Miller KA, Dahms BB, Dudgeon DL, Levine AD. Ischemia/reperfusion:a clinically relevant model of intestinal injury yielding systemic inflammation. J Pediatr Surg.2005;40(3):470-477.
    79. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA. Post-injury multiple organ failure:the role of the gut. Shock.2001;15(1):1-10.
    80. Pierro A and Eaton S. Intestinal ischemia reperfusion injury and multisystem organ failure. Semin Pediatr Surg.2004;13(1):11-17.
    81. Kaplan N, Yagmurdur H, Kilinc K, Baltaci B, Tezel S. The protective effects of intravenous anesthetics and verapamil in gut ischemia/reperfusion-induced liver injury. Anesth Analg.2007; 105(5):1371-1378.
    82. Horie Y, Wolf R, Anderson DC, Granger DN. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion. J Clin Invest.1997; 99(4):781-788.
    83. Itoh M, Guth PH. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology.1985; 88(Pt 1):1162-1167.
    84. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med.1985; 312(3):159-163.
    85. Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H. Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney Int.2001; 60(3):1173-1181.
    86. Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med.2001; 7(5):598-604.
    87. Trevisanato SI, Kim YI. Tea and health. Nutr Rev.2000 Jan;58(1):1-10.
    88. Higdon JV, Frei B. Tea catechins and polyphenols:health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr.2003;43(1):89-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700