用户名: 密码: 验证码:
斑马鱼secl3基因在器官发育过程中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种越来越受关注的模式生物,斑马鱼因其自身所具有的优势已在生命科学的研究中发挥着越来越大的作用。斑马鱼早期胚胎发育是一个由多基因和信号通路共同调控的过程。任何一个参与这一调控过程的基因或信号通路缺陷都会导致早期胚胎发育异常。
     本研究主要利用遗传学,细胞生物学以及分子生物学的研究方法研究sec13基因在斑马鱼早期胚胎发育中的作用。通过ENU介导的突变筛选,我们实验室获得了一个sec13突变的斑马鱼品系secl3sq198。我们前期的研究显示在see13sq198突变体中sec13发生了一个T→A的点突变,该点突变发生在sec13基因第七个内含子倒数第十个核苷酸。这个点突变导致sec13基因的mRNA前体hnRNA在发生剪切的时候剪切位点前移,最终产生了多了8个核苷酸的异常的mRNA。这一异常的mRNA在翻译Sec13蛋白的时候出现了阅读框移码,导致蛋白产物的C端缺失了正常Sec13的85个氨基酸,同时又增加了34个新的氨基酸。而且我们前期的实验还证明该C端缩短的Sec13已失去了与其互作蛋白Sec31a互作的能力。在此基础上我们深入地研究了Sec13在斑马鱼早期器官发育中的功能。
     在真核细胞内,Sec13有两个功能:一是与Sec31相互作用形成COPII复合体的外围复合物参与内质网到高尔基体的蛋白转运;二是与Nup145C(酵母)或Nup96(脊椎动物)以及与其他核孔蛋白相互作用参与核孔复合物的形成从而调节核质转运和基因表达调控。我们第一部分的工作主要是研究作为COPⅡ复合体组成部分的Sec13在斑马鱼早期肠道及其附属器官(肝脏,胰腺)发育中的作用。我们的研究结果发现,C端缩短的Secl3蛋白失去了与Sec31a互作的能力从而导致COPⅡ功能受损。结果,COPII功能受损导致内质网到高尔基体的蛋白转运受阻,从而使细胞外分泌蛋白大量积累在软骨细胞,肝脏细胞和肠道细胞的内质网中。内质网中蛋白过度积累使这些细胞出现了非折叠蛋白反应。最终突变体斑马鱼肠道,肝脏和胰腺由于细胞周期受阻和细胞凋亡而表现出小肠道,小肝脏和小胰腺的表型。
     我们第二部分的工作主要是研究作为核孔复合体组成部分的Sec13在斑马鱼早期视网膜发育中的作用。我们的研究发现,sec13sq198突变体不仅表现出变小的视网膜,而且其内部的分层结构严重遭到破坏(感受器细胞层几乎完全消失,其余两层细胞数量大大减少)。进一步的研究发现,sec13sq198突变体视网膜细胞的分化是相对正常的。最重要的是,我们发现secl3sq198突变体中破坏的视网膜结构不是由COPⅡ功能受损引起的,因为当我们把COPⅡ复合体的另两个组分Sec31a和Sec31b同时敲除或者用药物阻断内质网到高尔基体的蛋白转运时,斑马鱼胚胎眼睛虽然变小,但其内部的分层结构并未受到破坏。之后,当我们通过电子显微镜和免疫荧光观察sec13sq198突变体视网膜不同类型细胞的核孔结构时我们发现这些核孔的形成严重受到阻碍。而且,我们发现核孔结构形成异常导致总1nRNA累积在视网膜不同类型的细胞核内。最后突变体斑马鱼由于激活的p53所介导的视网膜细胞凋亡而表现出小眼睛表型。
     综上所述,利用sec13sq198这个遗传突变体,我们不仅证明了Sec13在消化器官和视网膜发育中起重要作用,而且还首次将Sec13的两个功能在多细胞生物水平上很好的区分开了。
As a model system which is receiving increasing attentions, zebrafish is playing a growing role in life sciences research. Early embryogenesis of zebrafish is a complex processes controlled by a large number of genes and different signaling pathways. Any defects in these processes can lead to embryonic abnormalities.
     In this study, we utilized genetic, cell biology and molecular biology approaches to investigate the role of sec13gene during zebrafish early embryogenesis. Through ENU-mediated mutagenesis, we obtained a zebrafish sec13mutant, sec13sq198. Our previous study showed that there is a T to A transversion in the7th intron of the sec13gene. This point mutation creates a new splicing receptor site which leads to the addition of extra eight nucleotides into the final mRNA. This mutant mRNA is predicted to encode a polypeptide with85amino acids truncated from the carboxyl-terminus of WT Secl3and the addition of34new amino acids due to frame shift in the new open reading frame. Furthermore, Our previous work also demonstrated that carboxyl-terminus-truncated Sec13loses its affinity to Sec31a. So based on these data, we decide to comprehensively investigate the role of sec13during zebrafish early embryogenesis.
     Sec13is a dual functional protein in eukaryotes. First, it interacts with Sec31a to form the outer coat of the COPII complex, facilitating protein transport form ER to Golgi apparatus. Second, it also interacts with (Nup145C in yeast and Nup96in vertebrates) to form NPCs to facilitate nucleo-cytoplasmic transport and regulate gene expression. Our first part efforts mainly focused on the role of sec13during zebrafish digestive organs organogenesis, namely, the intestine, liver and pancreas. We found that the carboxyl-terminus-truncated Sec13in secl3sq198loses its affinity to Sec31a, that leads to the dysfucntuion of the COPII complex. As a consequence, protein transport from ER to golgi apparatus was blocked, giving rise to the accumulation of secretory protein in the ER of chondrocytes, liver and intestinal cells. Unfolded protein response (UPR) was activated due to the sudden build up of protein mass in ER and consequently, the stressed cells underwent cell-cycle arrest and cell apoptosis, which halt the growth of developing digestive organs.
     Our second part is about nuclear pore function of sec13during retinal early development. In this respect, we found that, despite that all types of the retinal cells were specified, sec13sq198mutant embryos developed small eyes characterized by gradual loss of the photoreceptor cell layer (PCL) and reduction of cell numbers in other cell layers. Surprisingly, blocking COPII function either by double-knockdown of Sec31a and Sec31b or by drug treatment (Brefeldin A), though produced small eyes, did not disrupt the layered structure of the eye, suggesting that the retina lesion observed in sec13sq198was not totally due to COPII dysfunction. Our further data from immunostaining and transmission electron microscopy (TEM) analysis demonstrated that the retina of sec13sq198failed to form proper nuclear pores which led to the nuclear accumulation of total mRNA. TUNEL assay revealed that the p53-dependent apoptosis pathway was abnormally activated which finally caused the small eye phenotype by triggering cell apoptosis in sec13sq198.
     Our overall data not only demonstrated the importantce of Sec13in organogenesis of digestive organs and eyes but also provided the first genetic evidence to demonstrate that the two functions of Sec13, namely as a key component of COPII and NPCs can be differentially uncoupled during the process of organogenesis in a multicellular organism.
引文
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP. (2007). The molecular architecture of the nuclear pore complex. Nature,450:695-701.
    Antonny B. (2006). Membrane deformation by protein coats. Curr Opin Cell Biol,18: 386-394.
    Antonny B, Schekman R. (2001). ER export:public transportation by the COPII coach. Curr Opin Cell Biol,13:438-443.
    Argenton F, Zecchin E, Bortolussi M. (1999). Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech Dev,87:217-221.
    Assouline B, Nguyen V, Mahe S, Bourrat F, Scharfmann R. (2002). Development of the pancreas in medaka. Mech Dev,117:299-303.
    Bagnat M, Navis A, Herbstreith S, Brand-Arzamendi K, Curado S, Gabriel S, Mostov K, Huisken J, Stainier DY. (2010). Csell is a negative regulator of CFTR-dependent fluid secretion. Curr Biol,20:1840-1845.
    Barlowe C. (2003). Signals for COPII-dependent export from the ER:what's the ticket out? Trends Cell Biol,13:295-300.
    Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R. (1994). COPII:a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell,77:895-907.
    Barth KA, Wilson SW. (1995). Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development,121:1755-1768.
    Bi X, Coipina RA, Goldberg J. (2002). Structure of the Sec23/24-Sarl pre-budding complex of the COPII vesicle coat. Nature,419:271-277.
    Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W. (2001). Pancreas development in zebrafish:early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol,230:189-203.
    Blobel G. (1985). Gene gating:a hypothesis. Proc Natl Acad Sci USA,82:8527-8529
    BORT R, S IGNORE M, TREMBLAY K, et al. (2006). Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol,290:44-56.
    Boyadjiev SA, Fromme JC, Ben J, Chong SS, Nauta C, Hur DJ, Zhang G, Hamamoto S, Schekman R, Ravazzola M, Orci L, Eyaid W. (2006). Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat Genet,38:1192-1197.
    Capelson M, Hetzer MW. (2009). The role of nuclear pores in gene regulation, development and disease. EMBO Rep,10:697-705.
    Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW. (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell,140: 372-383.
    Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell,117:427-439.
    Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW. (2010). The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development,137:2107-2115.
    Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM. (2008). Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell,15:657-667.
    Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J. (2005). Loss of function of def selectively up-regulates Deltal13p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev,19:2900-2911.
    Chu J, Sadler KC. (2009). New school in liver development:lessons from zebrafish. Hepatology,50:1656-1663.
    Chuang JC, Mathers PH, Raymond PA. (1999). Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev,84:195-198.
    Chung WS, Shin CH, Stainier DY. (2008). Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell,15:738-748.
    Damelin M, Silver PA. (2000). Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol Cell,5:133-140.
    D'Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW. (2012). A change in nuclear pore complex composition regulates cell differentiation. Dev Cell,22:446-458.
    D'Angelo MA, Hetzer MW. (2008). Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol,18:456-466.
    Davuluri G, Gong W, Yusuff S, Lorent K, Muthumani M, Dolan AC, Pack M. (2008). Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet,4:e1000240.
    de Jong-Curtain TA, Parslow AC, Trotter AJ, Hall NE, Verkade H, Tabone T, Christie EL, Crowhurst MO, Layton JE, Shepherd IT, Nixon SJ, Parton RG, Zon LI, Stainier DY, Lieschke GJ, Heath JK. (2008). Abnormal nuclear pore formation triggers apoptosis in the intestinal epithelium of elys-deficient zebrafish. Gastroenterology,136:902-911.
    Dong PD, Munson CA, Norton W, Crosnier C, Pan X, Gong Z, Neumann CJ, Stainier DY. (2007). Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet,39:397-402.
    Douarin NM. (1975). An experimental analysis of liver development. Med Biol,53:427-455.
    Edlund H. (2002). Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet,3:524-532.
    Espenshade P, Gimeno RE, Holzmacher E, Teung P, Kaiser CA. (1995). Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol,131: 311-324.
    Faria AM, Levay A, Wang Y, Kamphorst AO, Rosa ML, Nussenzveig DR, Balkan W, Choo k YM, Levy DE, Fontoura BM. (2006). The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions. Immunity,24:295-304.
    Field HA, Dong PD, Beis D, Stainier DY. (2003). Formation of the digestive system in zebrafish. Ⅱ. Pancreas morphogenesis. Dev Biol,261:197-208.
    Field HA, Ober EA, Roeser T, Stainier DY. (2003). Formation of the digestive system in zebrafish. Ⅰ. Liver morphogenesis. Dev Biol,253:279-290.
    Forster D, Armbruster K, Luschnig S. (2010). Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol,20:62-68.
    Gao N, Davuluri G, Gong W, Seiler C, Lorent K, Furth EE, Kaestner KH, Pack M. (2011). The nuclear pore complex protein Elys is required for genome stability in mouse intestinal epithelial progenitor cells. Gastroenterology,140:1547-1555.
    Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR. (2004). The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem,279:866-875.
    Gigliotti S, Callaini G, Andone S, Riparbelli MG, Pernas-Alonso R, Hoffmann G, Graziani F, Malva C. (1998). Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the nup155 vertebrate nucleoporin gene. J Cell Biol,142: 1195-1207.
    Gimeno RE, Espenshade P, Kaiser CA. (1995). SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J Cell Biol,131:325-338.
    Giraudo CG, Maccioni HJ. (2003). Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sarl. Mol Biol Cell,14: 3753-3766.
    Goessling W, North TE, Lord AM, Ceol C, Lee S, Weidinger G, Bourque C, Strijbosch R, Haramis AP, Puder M, Clevers H, Moon RT, Zon LI. (2008). APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol, 320:161-174.
    Grimaldi MR, Cozzolino L, Malva C, Graziani F, Gigliotti S. (2007). nupl54 genetically interacts with cup and plays a cell-type-specific function during Drosophila melanogaster egg-chamber development. Genetics,175:1751-1759.
    Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. (1996). Hepatic specification of the gut endoderm in vitro:cell signaling and transcriptional control. Genes Dev.10:1670-1682.
    Hetzer MW, Walther TC, Mattaj IW. (2005). Pushing the envelope:structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol,21:347-380.
    Hinds JW, Ruffett TL. Hinds JW, Ruffett TL. (1971). Cell proliferation in the neural tube:an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat,115:226-264.
    Holtzinger A, Evans T. (2005). Gata4 regulates the formation of multiple organs. Development,132:4005-4014.
    Houssaint E. (1980). Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ,9:269-279.
    Hu M, Easter SS. (1999). Retinal neurogenesis:the formation of the initial central patch of postmitotic cells. Dev Biol,207:309-321.
    Huang H, Ruan H, Aw MY, Hussain A, Guo L, Gao C, Qian F, Leung T, Song H, Kimelman D, Wen Z, Peng J. (2008). Myptl-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis. Development,135:3209-3218.
    Huang H, Vogel SS, Liu N, Melton DA, Lin S. (2001). Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol,177:117-124.
    Hughson FM. (2010). Copy coats:COPI mimics clathrin and COPII. Cell,142:19-21.
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. (2003). Global analysis of protein localization in budding yeast. Nature,425:686-691.
    Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD. (2007). The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol,144:1383-1390.
    Jung J, Zheng M, Goldfarb M, Zaret KS. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science,284:1998-2003.
    Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. (1999). CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol,19:764-776.
    Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. (2002). The role of the transcriptional regulator Ptfla in converting intestinal to pancreatic progenitors. Nat Genet,32:128-134.
    Kelly OG, Melton DA. (2000). Development of the pancreas in Xenopus laevis. Dev Dyn, 218:615-627.
    Kim SK, Hebrok M, Melton DA. (1997). Pancreas development in the chick embryo. Cold Spring Harb Symp Quant Biol,62:377-383.
    Korzh V, Edlund T, Thor S. (1993). Zebrafish primary neurons initiate expression of the LIM homeodomain protein Isl-1 at the end of gastrulation. Development,118:417-425.
    Kuehn MJ, Herrmann JM, Schekman R. (1998). COPII-cargo interactions direct protein sorting into ER-derived transport vesicles.Nature,391:187-190.
    Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R, Yoshihisa T. (2000). Sec24p and Isslp function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell,11:983-998.
    Lammert E, Cleaver O, Melton D. (2003). Role of endothelial cells in early pancreas and liver development. Mech Dev,120:59-64.
    Lang MR, Lapierre LA, Frotscher M, Goldenring JR, Knapik EW. (2006). Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat Genet,38: 1198-1203.
    Li Z, Joseph NM, Easter SS Jr. (2000). The morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Dev Dyn,218:175-188.
    Lim RY, Fahrenkrog B. (2006). The nuclear pore complex up close. Curr Opin Cell Biol,18: 342-347.
    Lupu F, Alves A, Anderson K, Doye V, Lacy E. (2008). Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mous e embryo Dev Cell,14:831-842.
    Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W. (1996). Mutations affecting development of the zebrafish retina. Development,123:263-273.
    Manfroid I, Delporte F, Baudhuin A, Motte P, Neumann CJ, Voz ML, Martial JA, Peers B. (2007). Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development,134:4011-4021.
    Masai I, Stemple DL, Okamoto H, Wilson SW. (2000). Midline signals regulate retinal neurogenesis in zebrafish. Neuron,27:251-263.
    Mayer AN, Fishman MC. (2003). Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development,130:3917-3928.
    Meier I, Brkljacic J. (2009). The nuclear pore and plant development. Curr Opin Plant Biol, 12:87-95.
    Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A. (2006). Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell,21:811-823.
    Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, Ginty DD. (2010). Sec24b selectively sorts Vang12 to regulate planar cell polarity during neural tube closure. Nat Cell Biol,12:41-46.
    Milewski WM, Duguay SJ, Chan SJ, Steiner DF. (1998). Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology,139:1440-1449.
    Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R. (2003). Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell,114:497-509.
    Mossessova E, Bickford LC, Goldberg J. (2003). SNARE selectivity of the COPII coat. Cell, 114:483-495.
    Nakano A, Brada D, Schekman R. (1988). A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol,107:851-863.
    Nakano A, Muramatsu M. (1989). A novel GTP-binding protein, Sarlp, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol,109: 2677-2691.
    Nasevicius A, Ekker SC. (2000). Effective targeted gene'knockdown'in zebrafish. Nat Genet, 26:216-220.
    Neumann CJ, Nuesslein-Volhard C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science,289:2137-2139.
    Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B, Dong PD, Stainier DY, Heath JK. (2005). Formation of the digestive system in zebrafish:III. Intestinal epithelium morphogenesis. Dev Biol,286:114-135.
    Niu X, Gao C, Jan Lo L, Luo Y, Meng C, Hong J, Hong W, Peng J. (2012). Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish. Dev Biol,367:197-207.
    Nornes S, Clarkson M, Mikkola I, Pedersen M, Bardsley A, Martinez JP, Krauss S, Johansen T. (1998). Zebrafish contains two pax6 genes involved in eye development. Mech Dev,77: 185-196.
    Norum M, Tang E, Chavoshi T, Schwarz H, Linke D, Uv A, Moussian B. (2010). Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS One,5:e10802.
    Ober EA, Verkade H, Field HA, Stainier DY. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature,442:688-691.
    Ohisa S, Inohaya K, Takano Y, Kudo A. (2010). sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol,342:85-95.
    Okita K, Kiyonari H, Nobuhisa I, Kimura N, Aizawa S, Taga T. (2004). Targeted disruption of the mouse ELYS gene results in embryonic death at peri-implantation development. Genes Cells,9:1083-1091.
    Ong YS, Tang BL, Loo LS, Hong W. (2010). p125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER-Golgi transport. J Cell Biol,190: 331-345.
    Pagano A, Letourneur F, Garcia-Estefania D, Carpentier JL, Orci L, Paccaud JP. (1999). Sec24 proteins and sorting at the endoplasmic reticulum. J Biol Chem,274:7833-7840.
    Pujic Z, Malicki J. (2004). Retinal pattern and the genetic basis of its formation in zebrafish. Semin Cell Dev Biol,15:105-114.
    Pyhtila B, Rexach M. (2003). A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J Biol Chem,278:42699-42709.
    Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA. (1999). LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol,145:659-672.
    Rodenas E, Gonzalez-Aguilera C, Ayuso C, Askjaer P. (2012). Dissection of the NUP107 nuclear pore subcomplex reveals a novel interaction with spindle assembly checkpoint protein MAD1 in Caenorhabditis elegans. Mol Biol Cell,23:930-944.
    Rossi JM, Dunn NR, Hogan BL, Zaret KS. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for
    hepatogenesis from the endodermGenes Dev,15:1998-2009.
    Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. (2000). The yeast nuclear pore complex:composition, architecture, and transport mechanism. J Cell Biol,148: 635-651.
    Sadler KC, Krahn KN, Gaur NA, Ukomadu C. (2007). Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrfl. Proc Natl Acad Sci U S A,104:1570-1575.
    Saito A, Hino S, Murakami T, Kanemoto S, Kondo S, Saitoh M, Nishimura R, Yoneda T, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Imaizumi K. (2009). Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol,11:1197-1204.
    Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW. (2010). Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS One,5:e10367.
    Sato K, Nakano A. (2007). Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett.581:2076-2082.
    Seo HC, Drivenes, Ellingsen S, Fjose A. (1998). Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev,73:45-57.
    Schekman R, Novick P. (2004).23 genes,23 years later. Cell,116:S13-5.
    Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK. (2006). Nup-PI:the nucleopore-promoter interaction of genes in yeast. Mol Cell,21:379-391.
    Schmidt K, Cavodeassi F, Feng Y, Stephens DJ. (2013). Early stages of retinal development depend on Sec13 function. Biol Open.2:256-266.
    Schmitt EA, Dowling JE. (1996). Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J Comp Neurol, 371:222-234.
    Schmitt EA, Dowling JE. (1994). Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol,344:532-542.
    Schwarz K, Iolascon A, Verissimo F, Trede NS, Horsley W, Chen W, Paw BH, Hopfner KP, Holzmann K, Russo R, Esposito MR, Spano D, De Falco L, Heinrich K, Joggerst B, Rojewski MT, Perrotta S, Denecke J, Pannicke U, Delaunay J, Pepperkok R, Heimpel H. (2009). Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet,41:936-940.
    Senger S, Csokmay J, Akbar T, Jones TI, Sengupta P, Lilly MA. (2011). The nucleoporin Sehl forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis. Development,138:2133-2142.
    Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, Hammerschmidt M, Mullins MC, (2007). Stainier DY. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development,134:2041-2050.
    Slack JM. (1995). Developmental biology of the pancreas. Development,121:1569-1580.
    Song J, Kim HJ, Gong Z, Liu NA, Lin S. (2007). Vhnfl acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish. Dev Biol,303: 561-575.
    Stafford D, Prince VE. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol,12:1215-1220.
    Stafford D, White RJ, Kinkel MD, Linville A, Schilling TF, Prince VE. (2006). Retinoids signal directly to zebrafish endoderm to specify insulin-expressing beta-cells. Development, 133:949-956.
    Stagg SM, Gurkan C, Fowler DM, LaPointe P, Foss TR, Potter CS, Carragher B, Balch WE. (2006). Structure of the Sec13/31 COPⅡ coat cage. Nature,439:234-238.
    Stenkamp DL, Frey RA. (2003). Extraretinal and retinal hedgehog signaling sequentially regulate retinal differentiation in zebrafish. Dev Biol,258:349-363.
    Stenkamp DL, Frey RA, Mallory DE, Shupe EE. (2002). Embryonic retinal gene expression in sonic-you mutant zebrafish. Dev Dyn,225:344-350.
    Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. (2004). Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol,6:197-206.
    Streisinger G, Walker C, Dower N, Knauber D, Singer F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature,291:293-296.
    Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM. (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature,441:774-778.
    Takeda A, Goolsby C, Yaseen NR. (2006). NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+hematopoietic cells. Cancer Res,66: 6628-6637.
    Tao J, Zhu M, Wang H, Afelik S, Vasievich MP, Chen XW, Zhu G, Jensen J, Ginsburg D, Zhang B. (2012). SEC23B is required for the maintenance of murine professional secretory tissues. Proc Natl Acad Sci U S A,109:E2001-9.
    Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F. (2002). BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev,118:29-37.
    Townley AK, Schmidt K, Hodgson L, Stephens DJ. (2012). Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion. J Cell Sci,125:673-684.
    Varga ZM, Wegner J, Westerfield M. (1999). Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development,126:5533-5546.
    Wallace KN, Dolan AC, Seiler C, Smith EM, Yusuff S, Chaille-Arnold L, Judson B, Sierk R, Yengo C, Sweeney HL, Pack M. (2005). Mutation of smooth muscle myosin causes epithelial invasion and cystic expansion of the zebrafish intestine. Dev Cell,8:717-726.
    Wallace KN, Yusuff S, Sonntag JM, Chin AJ, Pack M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality. Genesis,30:141-143.
    Wan H, Korzh S, Li Z, Mudumana SP, Korzh V, Jiang YJ, Lin S, Gong Z. (2006). Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter. Exp Cell Res,312:1526-1539.
    Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD. (2009). Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature,459:847-851.
    Ward AB, Warga RM, Prince VE. (2007). Origin of the zebrafish endocrine and exocrine pancreas. Dev Dyn,236:1558-1569.
    Wei X, Malicki J. (2002). nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat Genet,31:150-157.
    Weis K. (2007). The nuclear pore complex:oily spaghetti or gummy bear? Cell,130: 405-407.
    Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I. (2007). NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlpl/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell,19:1537-1548.
    Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DY. (2010). Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Dev Cell,18: 973-984.
    Zhang F, Roosen-Runge F, Skoda MW, Jacobs RM, Wolf M, Callow P, Frielinghaus H, Pipich V, Prevost S, Schreiber F. (2012). Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. Phys Chem Chem Phys,14:2483-2493.
    Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L, de la Fuente R, Wang L, Chen Q, Wang QK. (2008). Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell,135:1017-1027.
    Zhang Y, Li X. (2005). A putative nucleoporin 96 Is required for both basal defense and constitutive resistance responses mediated by suppressor of npr 1-1,constitutive 1 Plant Cell,17:1306-1316.
    Zheng X, Yang S, Han Y, Zhao X, Zhao L, Tian T, Tong J, Xu P, Xiong C, Meng A. (2012). Loss of zygotic NUP107 protein causes missing of pharyngeal skeleton and other tissue defects with impaired nuclear pore function in zebrafish embryos. J Biol Chem,287: 38254-38264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700